Nonlinear Dynamics, Spring 2020 CMI

Problem set 11
Due by 12 noon on Tuesday April 7, 2020
Index of a vector field

1. $\langle\boldsymbol{7}\rangle$ Suppose C is a simple closed curve (no self intersections) that encloses n isolated fixed points $\mathbf{r}_{1 *}, \mathbf{r}_{2 *}, \ldots, \mathbf{r}_{n *}$ with indices $I_{\mathbf{r}_{1 *}}, \ldots, I_{\mathbf{r}_{n *}}$. Show that the index of C is the sum of the indices of the enclosed fixed points.

$$
\begin{equation*}
I_{C}=I_{\mathbf{r}_{1 *}}+I_{\mathbf{r}_{2 *}}+\cdots+I_{\mathbf{r}_{n *}} . \tag{1}
\end{equation*}
$$

Hint: Draw a figure showing the fixed points and contour and try to deform the contour and argue what happens.
2. $\langle 7\rangle$ Find the index of the fixed point at the origin of the dipole field $\dot{x}=x^{2}-y^{2}, \dot{y}=2 x y$. Sketch the vector field and choose a suitable contour C. Hint: You may answer this question purely by pictorial methods without evaluating any integrals.

