Nonlinear Dynamics, Spring 2020 CMI

Problem set 10
Due by 5pm on Friday April 3, 2020
Index of a vector field

1. $\langle\mathbf{4}\rangle$ Calculate the index of a vector field (around a unit circle centered at the origin and oriented counterclockwise) with constant cartesian components.
2. $\langle\mathbf{3}\rangle$ Pictorially argue what the index of a vector field is whose cartesian components fluctuate a little bit. Draw a figure of the proposed vector field and curve C.
3. $\langle\mathbf{6}\rangle$ Consider the linear system $\dot{x}=a x$ and $\dot{y}=a y$ for $a \neq 0$. What sort of fixed point does the corresponding vector field \mathbf{v} have at the origin? Take C to be the unit circle centered at the origin and traversed counter-clockwise. Find the index $I_{C}(\mathbf{v})$. Use a suitable parametrization of C to calculate the index. How does $I_{C}(\mathbf{v})$ depend on the sign of a, briefly comment.
4. $\langle\mathbf{6}\rangle$ Consider the linear oscillator $m \ddot{x}=-k x$ with $m=k=1$. Choose C to be a unit circle traversed counter-clockwise. Find the index I_{C} of the corresponding vector field. Illustrate with a figure and also obtain the answer pictorially.
