Mathematical Physics 1: Linear Algebra, CMI

Problem set 9

Instructor: Govind S. Krishnaswami
Due at the beginning of class (9:15am) on Fri, Sep 4.
Eigenvalue problem associated to a matrix
Given a matrix H, the associated eigenvalue problem is $H x=\lambda x$. The problem is to find all complex numbers (eigenvalues) λ for which there is a non-zero vector x satisfying this equation. In quantum mechanics, H is the energy operator. The possible eigenvalues are the possible energies of the system. The corresponding eigenvector x is the wavefunction of the state with energy λ. As an example consider $H=\left(\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right)$. The eigenvalue problem is the system of equations $(H-\lambda I) x=0$ where I is the 2×2 identity matrix.

1. Find the condition on λ for $H-\lambda I$ to have a non-trivial kernel. $\langle 2\rangle$
2. The above condition must be a quadratic equation $\lambda^{2}+b \lambda+c=0$, called the characteristic equation. Find $b, c .\langle 1\rangle$
3. Solve this condition and find the allowed eigenvalues λ. (Hint: there should be two $\left.\lambda_{1}<\lambda_{2}\right)<2>$
4. For each eigenvalue λ_{1}, λ_{2}, find the corresponding eigenvectors, column vectors u_{1}, u_{2} (Hint: Use Gaussian elimination to solve $\left(H-\lambda_{1} I\right) u_{1}=0$. Check that the answer satisfies $H u_{1}=\lambda_{1} u_{1}$ for instance). $\langle 3\rangle$
5. Show that the eigenvectors corresponding to eigenvalue λ_{1} span a vector space. What is the dimension of the eigen-space corresponding to the eigenvalue $\lambda_{1} ?<2>$
6. Find the determinant of H and compare it with the product of eigenvalues as well as with the coefficient c determined above. $\langle 2\rangle$
7. The trace of $H, \operatorname{tr} H$ is defined as the sum of its diagonal elements. Find $\operatorname{tr} H$ and compare it to the sum of eigenvalues as well as to the coefficient $-b$ found earlier. $<2>$
8. Using the eigenvalues, calculate the matrix product $\left(H-\lambda_{1}\right)\left(H-\lambda_{2}\right)=H^{2}-\left(\lambda_{1}+\lambda_{2}\right) H+$ $\lambda_{1} \lambda_{2} .<1>$
9. Using the previous result, find H^{9} without multiplying H explicitly 9 times. $<1>$
10. Explain based on H, why you could have expected the particular numerical value obtained for the smaller eigenvalue λ_{1}. (Hint: what is the meaning of the eigenvalue problem for $\lambda=\lambda_{1}$?) $\left.<1\right\rangle$
11. Calculate the expected value of the energy in the state u_{2}, which is defined as $E_{2}=\frac{u_{2}^{T} H u_{2}}{u_{2}^{T} u_{2}}$. Compare it with $\left.\lambda_{2} .<1\right\rangle$
12. Calculate the dot product of eigenvectors $u_{1} \cdot u_{2}=u_{1}^{T} u_{2}$. Comment on the geometrical meaning of the answer. $<2>$
