Mathematical Physics 1: Linear Algebra, CMI

Problem set 9 Instructor: Govind S. Krishnaswami Due at the beginning of class (9:15am) on Fri, Sep 4. Eigenvalue problem associated to a matrix

Given a matrix H, the associated eigenvalue problem is $Hx = \lambda x$. The problem is to find all complex numbers (*eigenvalues*) λ for which there is a non-zero vector x satisfying this equation. In quantum mechanics, H is the energy operator. The possible eigenvalues are the possible energies of the system. The corresponding eigenvector x is the wavefunction of the state with energy λ . As an example consider $H = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$. The eigenvalue problem is the system of equations $(H - \lambda I)x = 0$ where I is the 2×2 identity matrix.

- 1. Find the condition on λ for $H \lambda I$ to have a non-trivial kernel. $\langle 2 \rangle$
- 2. The above condition must be a quadratic equation $\lambda^2 + b\lambda + c = 0$, called the characteristic equation. Find b, c. < 1 >
- 3. Solve this condition and find the allowed eigenvalues λ . (Hint: there should be two $\lambda_1 < \lambda_2$) < 2 >
- 4. For each eigenvalue λ_1, λ_2 , find the corresponding eigenvectors, column vectors u_1, u_2 (Hint: Use Gaussian elimination to solve $(H - \lambda_1 I)u_1 = 0$. Check that the answer satisfies $Hu_1 = \lambda_1 u_1$ for instance). < 3 >
- 5. Show that the eigenvectors corresponding to eigenvalue λ_1 span a vector space. What is the dimension of the eigen-space corresponding to the eigenvalue λ_1 ? < 2 >
- 6. Find the determinant of H and compare it with the product of eigenvalues as well as with the coefficient c determined above. < 2 >
- 7. The trace of H, tr H is defined as the sum of its diagonal elements. Find tr H and compare it to the sum of eigenvalues as well as to the coefficient -b found earlier. < 2 >
- 8. Using the eigenvalues, calculate the matrix product $(H \lambda_1)(H \lambda_2) = H^2 (\lambda_1 + \lambda_2)H + \lambda_1\lambda_2$. < 1 >
- 9. Using the previous result, find H^9 without multiplying H explicitly 9 times. <1>
- 10. Explain based on H, why you could have expected the particular numerical value obtained for the smaller eigenvalue λ_1 . (Hint: what is the meaning of the eigenvalue problem for $\lambda = \lambda_1$?) < 1 >
- 11. Calculate the expected value of the energy in the state u_2 , which is defined as $E_2 = \frac{u_2^T H u_2}{u_2^T u_2}$. Compare it with λ_2 . < 1 >
- 12. Calculate the dot product of eigenvectors $u_1 \cdot u_2 = u_1^T u_2$. Comment on the geometrical meaning of the answer. $\langle 2 \rangle$