Mathematical Physics 1: Linear Algebra, CMI

Problem set 8 Instructor: Govind S. Krishnaswami Due at the beginning of class on Tuesday, September 1. Projections, Orthogonal matrices

- 1. Let $A = -i\sigma_2 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. Is A anti-symmetric? Why?
- 2. Find A^n for all $n = 0, 1, 2, \cdots$. (Hint: the answer is very simple, A^n is periodic in n.)
- 3. Define the matrix exponential for any real number x, as the matrix $e^{Ax} = \sum_{n=0}^{\infty} \frac{A^n x^n}{n!}$. Obtain a formula for e^{Ax} as a linear combination $e^{Ax} = f(x)I + g(x)A$. Find f(x), g(x).
- 4. Using the above-obtained formula, find whether e^{Ax} is an orthogonal matrix.
- 5. Suppose the measured currents flowing through a circuit element for the following applied potential differences are $\begin{pmatrix} V: & -3 & -1 & \frac{1}{2} & 1 & 2 & 3 \\ I: & -2 & -1.5 & 0.1 & 2 & 2.5 & 3 \end{pmatrix}$. Using the least squares method, you will fit a straight line I = GV + C through the data. Draw a rough figure of the data on an I V plot and indicate the expected straight line and the errors that are to be minimized.
- 6. Find the normal equations explicitly.
- 7. Solve the normal equations either by Gaussian elimination or matrix inversion.
- 8. What is the best-fit value of resistance?
- 9. What is the best-fit value of current in the absence of any applied voltage?
- 10. The above best-fit line through the data minimizes the norm² of the error vector $||e(x)||^2 = ||b Ax||^2$ where the overdetermined system was Ax = b. Obtain the value of this minimal error norm $||e(x)||_{min}$ in the above example. First get a formula for it and then its numerical value.