Mathematical Physics 1: Linear Algebra, CMI
Problem set 7
Instructor: Govind S. Krishnaswami
Due at the beginning of class on Friday, August 28.
Projections

1. The projection onto a subspace $U_{d} \in V_{n}$ should depend only on the subspace U and not on a basis we pick for it. In lecture we showed this for projection onto a 1-dimensional subspace. You will show this here in general. Suppose the columns $\vec{a}_{1}, \vec{a}_{2}, \cdots, \vec{a}_{d}$ of A are a basis for U and the columns of B are also a basis for U. Then they are related by a change of basis C. In particular we can expand each of the b-basis vectors in the a-basis as in $b_{1}=c_{11} a_{1}+c_{21} a_{2}+\cdots c_{d 1} a_{n}$. Proceed in this manner and write the matrix C (explicitly) such that $B=A C$.
2. What are the dimensions of A, B and C ?
3. Is C invertible and why?
4. Show that $P_{A}=P_{B}$ using the formula for the projection to a subspace spanned by the columns of a matrix. (Hint: Use the fact that $A^{T} A$ is invertible.)
5. In lecture we showed that if $A_{n \times d}$ has linearly independent columns, then $A^{T} A$ is invertible. Here you will show the converse. Suppose we know that $A^{T} A$ is invertible i.e. has trivial kernel. Then argue why A must have linearly independent columns. (Hint: The proof is in a similar spirit to the one given in lecture and should not be more than a few lines.)
6. Suppose \vec{q}_{i} form an orthonormal basis for a vector space and v is a vector in this space. Then what is the orthogonal projection of v onto the basis vector \vec{q}_{j} ?
