Mathematical Physics 1: Linear Algebra, CMI

Problem set 6

Instructor: Govind S. Krishnaswami
Due at the beginning of class on Tuesday, August 25.
General solution of $A x=b$ and orthogonality of subspaces
Consider the matrix $A=\left(\begin{array}{cccc}1 & 3 & 0 & 2 \\ 0 & 0 & 1 & 4 \\ 1 & 3 & 1 & 6\end{array}\right)$

1. Between which vector spaces is A a linear transformation? Give the dimensions of the domain and target. $<1\rangle$
2. Using row elimination bring A to row echelon (upper triangular) form. What is its rank and pivots? $<2>$
3. Write the equation for the kernel $A x=0$ in echelon form. Which are the pivot variables and free variables? $<1>$
4. Find the special solutions which form a basis for $N(A)$ by prescribing convenient values (0 's and 1's as described in the lecture) to the free variables. Verify that these basis vectors are orthogonal to the row space of $A .<2\rangle$
5. Assemble the special solutions as the columns of a matrix N, the null space matrix. Do you notice any relation between N and the reduced row echelon form of A ? $<2>$
6. Express $N(A)$ as the span of its basis vectors. What is the dimension of the null space and does it agree with the rank-nullity theorem? $<2>$
7. Find the null space of A^{T} by the same procedure as above. (Start with A^{T} and bring it to row echelon form, etc.) $<2>$
8. Is the column vector $\tilde{b}=\left(\begin{array}{lll}1 & 6 & 0\end{array}\right)^{T}$ orthogonal to $N\left(A^{T}\right)$? What does this imply for the consistency of $A x=\tilde{b} ?<1>$
9. Is the column vector $b=\left(\begin{array}{lll}1 & 6 & 7\end{array}\right)^{T}$ orthogonal to $N\left(A^{T}\right)$? What does this imply for the consistency of $A x=b ?<1>$
10. Find the particular solution to $A x=b$ for $b=\left(\begin{array}{lll}1 & 6 & 7\end{array}\right)^{T}$ that corresponds to the special choice of setting all free variables to zero. $\langle 1\rangle$
11. Using the above particular solution and the basis for the null space write a formula for the general solution to $A x=b$ for the above b. How many parameters parameterize the general solution? $<2>$
12. Suppose in the system of equations $A x=b$ we know that $A_{m \times n}$ has rank $r=n-1$. What is $\operatorname{dim} N(A)$? Suppose further we know that $m=n+1$. Then what is the dimension of the space of $\tilde{b}^{\prime} s$ for which there is no solution to $A x=\tilde{b}$? Do such \tilde{b} 's form a vector space? By dimension we mean the number of real parameters needed to specify the \tilde{b} 's for which there is no solution. $\langle 2\rangle$
13. Give an example of a matrix (or class of matrices) for which the column space $C(A)$ is orthogonal to the null space $N(A)$ (you may identify isomorphic vector spaces). $\langle 1\rangle$
