Mathematical Physics 1: Linear Algebra, CMI

Problem set 5
Instructor: Govind S. Krishnaswami
Due at the beginning of class on Friday, August 21.
Transpose, Inverse, Linear transformation

1. Find the inverse of the matrix Q using Gauss-Jordan elimination, and say when it exists (θ is a real number. Check your answer against the general formula for inverse of a 2×2 matrix obtained in lecture.)

$$
Q=\left(\begin{array}{cc}
\cos \theta & \sin \theta \tag{1}\\
-\sin \theta & \cos \theta
\end{array}\right)
$$

2. Between which two vector spaces is Q a linear transformation?
3. Find the transpose of Q, and comment on its relation to Q^{-1}
4. Is Q an isomorphism?
5. Plot the action of Q on the vector $\binom{1}{0}$ in the plane for $\theta=\pi / 4$.
6. Give a suitable name/description for Q that describes its action on vectors.
7. Consider the reflection R of any vector in \mathbf{R}^{2} about the x-axis. Write in components what R does to a general vector.
8. Is R a linear transformation? Why?
9. If it is a linear transformation, find the matrix representation of the reflection R in the standard cartesian basis for \mathbf{R}^{2}.
10. The matrix $A=\left(\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & \sqrt{2} \\ 0 & 0 & 0\end{array}\right)$ is a toy version of the annihilation operator in quantum mechanics. Find
(a) its rank,
(b) its pivots and determinant
(c) all vectors it annihilates
(d) a 3-component column vector b for which $A x=b$ has no solution.
