Mathematical Physics 1: Linear Algebra, CMI
Problem set 4
Instructor: Govind S. Krishnaswami
Due at the beginning of class on Tuesday, August 18. Matrix of discretized derivative

In the lecture it was mentioned that Newton's equation $\ddot{x}=f$ could be written as a matrix equation when discretized. Here you will do this for the simpler problem of the first derivative. Given the position of a particle $x(t)$, find its (approximate) velocity. We are provided the positions of the particle $x_{k} \equiv x\left(t_{k}\right)$ at equally spaced times $t_{1}, t_{2}, \cdots, t_{n}$, with $t_{i+1}-t_{i}=\Delta$.

1. Assemble the positions of the particle in a column vector with n-components X and display it. $\langle 1\rangle$
2. The velocity is $\dot{x}(t)=\lim _{\Delta \rightarrow 0} \frac{x(t+\Delta)-x(t)}{\Delta}$. Define the approximate velocity \dot{x}_{k} at any time t_{k} as the difference quotient with $\Delta=1$. Write a formula for \dot{x}_{k}. You may assume that the particle returned to its original position at the end of the journey $x\left(t_{n+1}\right)=x\left(t_{1}\right)$. $<1>$
3. List out \dot{x}_{k} for $k=1,2,3, n-1, n .<2>$

The approximate velocities are assembled in a column vector $V=\left(\begin{array}{c}\dot{x}_{1} \\ \dot{x}_{2} \\ \vdots \\ \dot{x}_{n}\end{array}\right)$
4. Find the matrix D, which when applied to the column of positions, produces the column of approximate velocities $V=D X .<2>$
5. Write out the matrix D_{n} for the case $n=4$ explicitly. $\left.<1\right\rangle$
6. What vector space do V and X live in? $<1>$
7. Is D_{4} upper triangular? Is D_{4} symmetric? $<1>$
8. Using elementary row operations, bring D_{4} to row echelon form. $\left.<2\right\rangle$
9. What is the rank of D_{4} ? < $<1>$
10. What is the determinant of D_{4} ? Is it invertible? $<2>$
11. Find a column vector annihilated by D_{4}. If there is a non-zero vector in the kernel of D_{4}, find it, otherwise explain why there isn't one. (Hint: Use multiplication by columns to think of $D X$ or use Gaussian elimination to solve for the kernel.) $<2>$
12. What sort of physical motion does the above-discovered vector in the kernel represent? $<2>$
13. Can you guess all vectors in the kernel of D_{n} and their physical meaning? $<2>$

