Mathematical Physics 1: Linear Algebra, CMI

Problem set 4 Instructor: Govind S. Krishnaswami Due at the beginning of class on Tuesday, August 18. Matrix of discretized derivative

In the lecture it was mentioned that Newton's equation $\ddot{x} = f$ could be written as a matrix equation when discretized. Here you will do this for the simpler problem of the first derivative. Given the position of a particle x(t), find its (approximate) velocity. We are provided the positions of the particle $x_k \equiv x(t_k)$ at equally spaced times t_1, t_2, \dots, t_n , with $t_{i+1} - t_i = \Delta$.

- 1. Assemble the positions of the particle in a column vector with *n*-components X and display it. <1>
- 2. The velocity is $\dot{x}(t) = \lim_{\Delta \to 0} \frac{x(t+\Delta)-x(t)}{\Delta}$. Define the approximate velocity \dot{x}_k at any time t_k as the difference quotient with $\Delta = 1$. Write a formula for \dot{x}_k . You may assume that the particle returned to its original position at the end of the journey $x(t_{n+1}) = x(t_1)$. < 1 >
- 3. List out \dot{x}_k for k = 1, 2, 3, n 1, n < 2 >

The approximate velocities are assembled in a column vector $V = \begin{pmatrix} x_1 \\ \dot{x}_2 \\ \vdots \\ \dot{x} \end{pmatrix}$

- 4. Find the matrix D, which when applied to the column of positions, produces the column of approximate velocities V = DX. < 2 >
- 5. Write out the matrix D_n for the case n = 4 explicitly. < 1 >
- 6. What vector space do V and X live in? < 1 >
- 7. Is D_4 upper triangular? Is D_4 symmetric? < 1 >
- 8. Using elementary row operations, bring D_4 to row echelon form. < 2 >
- 9. What is the rank of D_4 ? < 1 >
- 10. What is the determinant of D_4 ? Is it invertible? < 2 >
- 11. Find a column vector annihilated by D_4 . If there is a non-zero vector in the kernel of D_4 , find it, otherwise explain why there isn't one. (Hint: Use multiplication by columns to think of DX or use Gaussian elimination to solve for the kernel.) < 2 >
- 12. What sort of physical motion does the above-discovered vector in the kernel represent? <2>
- 13. Can you guess all vectors in the kernel of D_n and their physical meaning? < 2 >