Mathematical Physics 1: Linear Algebra, CMI

Problem set 3
Instructor: Govind S. Krishnaswami
Due at the beginning of class on Friday August 14.

Gaussian Elimination

1. Write the following linear equations in matrix form $A x=b$ and use elementary row operations to reduce to row echelon form (upper triangular form).

$$
\begin{equation*}
2 x+3 z=-1, \quad x-y+5 z=1, \quad 4 y-2 z=6 \tag{1}
\end{equation*}
$$

2. What are the pivots?

3 . What is the rank of A ?
4. Is A invertible?
5. Continue with elimination upwards to bring A to diagonal form. Find all solutions x, y, z. Check that they are correct by plugging into the original system of equations.
6. What are the elementary matrices E_{21}, E_{31}, E_{32} needed for reduction to echelon form?
7. What are the inverses of E_{21}, E_{31}, E_{32} ?
8. Factorize $A=L U$ as the product of a lower and upper triangular matrix.
9. What is the determinant of A ? (Look up how to calculate the determinant of a 3×3 matrix if you need to.)

10 . What is the product of the pivots of A ?
11. What is the permutation matrix C that cyclically permutes the rows of a 3×3 matrix? i.e., $r_{1} \rightarrow r_{2} \rightarrow r_{3} \rightarrow r_{1}$?
12. Write the above cyclic permutation matrix C as a product of row exchange matrices. (i.e., think how you can realize a cyclic permutation via successive row exchanges.)

