Mathematical Physics 1: Linear Algebra, CMI

Problem set 2

Instructor: Govind S. Krishnaswami

Due at the beginning of class on Tuesday 11 August.

Matrix multiplication and Pauli Matrices.

The Pauli matrices are the 2×2 matrices

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$
(1)

They are important in quantum mechanics and group theory. Here $i = \sqrt{-1}$ is the imaginary unit with $i^2 = -1$. $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ is called the 2 × 2 identity matrix.

- 1. Calculate σ_1^2 , multiplying rows by columns (dot products).
- 2. Calculate σ_2^2 , multiplying by rows (linear combination of rows of right member of product)
- 3. Calculate σ_3^2 multiplying by columns (linear combination of columns of left member of product)
- 4. Calculate $\sigma_1 \sigma_2$ multiplying columns by rows (sum of outer products). Express the answer in terms of the Pauli matrices.
- 5. Calculate $\sigma_2 \sigma_3$ multiplying by columns. Express the answer in terms of the Pauli matrices.
- 6. Calculate $\sigma_3 \sigma_1$ multiplying by rows. Express the answer in terms of the Pauli matrices.
- 7. δ_{ij} for $1 \le i, j \le n$ is the Kronecker delta, it vanishes for $i \ne j$ and equals 1 for i = j. Which matrix are δ_{ij} the entries of? Write δ_{ij} as a matrix for n = 2, 3
- 8. For $1 \leq i, j \leq 3$, ϵ_{ijk} is the Levi-Civita symbol (epsilon tensor). $\epsilon_{123} = 1$ and it is antisymmetric under the interchange of any two neighbouring indices, such as $\epsilon_{ijk} = -\epsilon_{jik}$. Find ϵ_{ijk} for all possible values of $1 \leq i, j, k \leq 3$.
- 9. Using these results, verify that the products of the Pauli matrices can be summarized in the formula

$$\sigma_a \sigma_b = \delta_{ab} I + i \epsilon_{abc} \sigma_c, \quad \text{where} \quad a, b = 1, 2, 3.$$

The repeated index c is summed from 1 to 3.

10. The commutator of a pair of matrices measures to what extent $AB \neq BA$. More precisely, [A, B] = AB - BA. Using the above results, find $[\sigma_1, \sigma_2], [\sigma_2, \sigma_3], [\sigma_3, \sigma_1]$ and express the answers in terms of the Pauli matrices. The final answer should fit in one line.