Mathematical Physics 1: Linear Algebra, CMI

Problem set 2
Instructor: Govind S. Krishnaswami
Due at the beginning of class on Tuesday 11 August.

Matrix multiplication and Pauli Matrices.

The Pauli matrices are the 2×2 matrices

$$
\sigma_{1}=\left(\begin{array}{cc}
0 & 1 \tag{1}\\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

They are important in quantum mechanics and group theory. Here $i=\sqrt{-1}$ is the imaginary unit with $i^{2}=-1 . I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ is called the 2×2 identity matrix.

1. Calculate σ_{1}^{2}, multiplying rows by columns (dot products).
2. Calculate σ_{2}^{2}, multiplying by rows (linear combination of rows of right member of product)
3. Calculate σ_{3}^{2} multiplying by columns (linear combination of columns of left member of product)
4. Calculate $\sigma_{1} \sigma_{2}$ multiplying columns by rows (sum of outer products). Express the answer in terms of the Pauli matrices.
5. Calculate $\sigma_{2} \sigma_{3}$ multiplying by columns. Express the answer in terms of the Pauli matrices..
6. Calculate $\sigma_{3} \sigma_{1}$ multiplying by rows. Express the answer in terms of the Pauli matrices.
7. $\delta_{i j}$ for $1 \leq i, j \leq n$ is the Kronecker delta, it vanishes for $i \neq j$ and equals 1 for $i=j$. Which matrix are $\delta_{i j}$ the entries of? Write $\delta_{i j}$ as a matrix for $n=2,3$
8. For $1 \leq i, j \leq 3, \epsilon_{i j k}$ is the Levi-Civita symbol (epsilon tensor). $\epsilon_{123}=1$ and it is antisymmetric under the interchange of any two neighbouring indices, such as $\epsilon_{i j k}=-\epsilon_{j i k}$. Find $\epsilon_{i j k}$ for all possible values of $1 \leq i, j, k \leq 3$.
9. Using these results, verify that the products of the Pauli matrices can be summarized in the formula

$$
\begin{equation*}
\sigma_{a} \sigma_{b}=\delta_{a b} I+i \epsilon_{a b c} \sigma_{c}, \quad \text { where } a, b=1,2,3 \tag{2}
\end{equation*}
$$

The repeated index c is summed from 1 to 3 .
10. The commutator of a pair of matrices measures to what extent $A B \neq B A$. More precisely, $[A, B]=A B-B A$. Using the above results, find $\left[\sigma_{1}, \sigma_{2}\right],\left[\sigma_{2}, \sigma_{3}\right],\left[\sigma_{3}, \sigma_{1}\right]$ and express the answers in terms of the Pauli matrices. The final answer should fit in one line.

