Mathematical Physics 1: Linear Algebra, CMI

Problem set 12
Instructor: Govind S. Krishnaswami
Due at the beginning of class on Fri, Sep 18.
Principal Axis Transformation

1. Consider the quadratic curve E in the $x-y$ plane defined by the equation $2 x^{2}+3 x y-$ $y x+2 y^{2}=1$. Write this equation as a matrix equation and identify the real symmetric matrix A whose quadratic form is involved.
2. Plot the curve E roughly on the $x-y$ plane. (Find a few points on E and join the dots, the figure must show the major and minor axes roughly)
3. Do the $x-y$ coordinate axes point along the principal axes of E ? Why or why not?
4. What is the condition for the position vector of a point P to point in the same direction as the normal?
5. Find the principal axes of E by interpreting it as an eigenvalue problem.
6. Find the lengths of the semi-major and semi-minor axes.
7. Indicate the principal axes and their lengths in a figure.
8. Find the particular principal axis transformation Q for the above quadratic curve satisfying $\operatorname{det} Q=+1$ What sort of transformation is Q, describe its action on the coordinate axes? (Hint: This and the next question involve choices of order!)
9. Find a different principal axis transformation Q^{\prime} with $\operatorname{det} Q^{\prime}=-1$. Describe the action of Q^{\prime} on the coordinate axes.
10. Explain the need for reflections in the passage to principal axes and in the choice of eigenvalue matrix Λ in the above example.
11. Is A a positive definite matrix? Why?
12. Find e^{A} for the above matrix A using the principal axis transformation.
