Mathematical Physics 1: Linear Algebra, CMI

Problem set 11
Instructor: Govind S. Krishnaswami
Due at the beginning of class on Mon, Sep 14.
Diagonalization, Eigenvalues and Eigenvectors

1. The matrix $L=i\left(\begin{array}{ccc}0 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 0\end{array}\right)$ acting on \mathbf{C}^{3} represents (up to a constant factor) a component of angular momentum in quantum mechanics. Is L hermitian or symmetric?
2. What do you expect about the angles between the eigenvectors of L and why?
3. Find the characteristic equation for L. The spectrum of a matrix is the set of eigenvalues. Find the spectrum of L. Name the eigenvalues appropriately using the labels $\lambda_{0}, \lambda_{ \pm}$with $\lambda_{+}>0$. Assemble the eigenvalues in a diagonal matrix $\Lambda=\operatorname{diag}\left(\lambda_{-}, \lambda_{0}, \lambda_{+}\right)$.
4. Find the eigenspaces (expressed as span of some vectors) of the eigenvalues.

5 . What are the dimensions of the eigenspaces of L ? Is L deficient?
6. Assemble the eigenvectors (normalized to 1) as the columns of a matrix $U=\left(u_{-}, u_{0}, u_{+}\right)$. What sort of matrix is U ? Why? (Note: if an eigenspace is 1 -dimensional, you need to include only one eigenvector from it in U, not the most general vector in the eigenspace.)
7. What is the expected (numerical) value of L in the state u_{0}, i.e., $u_{0}^{\dagger} L u_{0}$? Give the answer using the eigenvalue problem, without explicit matrix multiplication.
8. What is U^{-1} ? (Hint: This does not need a long calculation.)
9. Evaluate the similarity transformation $U^{-1} L U$ and compare it with the matrix Λ.
10. What are the matrix elements of L in the basis specified by the columns of U ?
11. For the matrix $N=\left(\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right)$ find the eigenvalues and their algebraic and geometric multiplicities. Is N deficient in eigenvectors?
12. Consider the Pauli matrices as linear transformations from $\mathbf{C}^{2} \rightarrow \mathbf{C}^{2}$. In the standard cartesian o.n. basis, $\sigma_{2}=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right), \sigma_{3}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$. What is their commutator?
13. Find the eigenvalues and corresponding linearly independent (normalized to 1) eigenvectors of σ_{2}.
14. Using the eigenvectors, find the unitary transformation U that diagonalizes σ_{2}. Check that it does the job i.e. $U^{\dagger} \sigma_{2} U=\Lambda$.
15. Find the matrix representation of σ_{3} in the eigenbasis of σ_{2}.
16. Are σ_{2} and σ_{3} simultaneously diagonalizable? Why?

