Mathematical Physics 1: Linear Algebra, CMI

Problem set 11 Instructor: Govind S. Krishnaswami Due at the beginning of class on Mon, Sep 14. Diagonalization, Eigenvalues and Eigenvectors

1. The matrix $L = i \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}$ acting on \mathbf{C}^3 represents (up to a constant factor) a component of angular momentum in quantum mechanics. Is L hermitian or symmetric?

- 2. What do you expect about the angles between the eigenvectors of L and why?
- 3. Find the characteristic equation for L. The spectrum of a matrix is the set of eigenvalues. Find the spectrum of L. Name the eigenvalues appropriately using the labels λ_0, λ_{\pm} with $\lambda_+ > 0$. Assemble the eigenvalues in a diagonal matrix $\Lambda = diag(\lambda_-, \lambda_0, \lambda_+)$.
- 4. Find the eigenspaces (expressed as span of some vectors) of the eigenvalues.
- 5. What are the dimensions of the eigenspaces of L? Is L deficient?
- 6. Assemble the eigenvectors (normalized to 1) as the columns of a matrix $U = (u_{-}, u_{0}, u_{+})$. What sort of matrix is U? Why? (Note: if an eigenspace is 1-dimensional, you need to include only one eigenvector from it in U, not the most general vector in the eigenspace.)
- 7. What is the expected (numerical) value of L in the state u_0 , i.e., $u_0^{\dagger}Lu_0$? Give the answer using the eigenvalue problem, without explicit matrix multiplication.
- 8. What is U^{-1} ? (Hint: This does not need a long calculation.)
- 9. Evaluate the similarity transformation $U^{-1}LU$ and compare it with the matrix Λ .
- 10. What are the matrix elements of L in the basis specified by the columns of U?
- 11. For the matrix $N = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$ find the eigenvalues and their algebraic and geometric multiplicities. Is N deficient in eigenvectors?
- 12. Consider the Pauli matrices as linear transformations from $\mathbf{C}^2 \to \mathbf{C}^2$. In the standard cartesian o.n. basis, $\sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. What is their commutator?
- 13. Find the eigenvalues and corresponding linearly independent (normalized to 1) eigenvectors of σ_2 .
- 14. Using the eigenvectors, find the unitary transformation U that diagonalizes σ_2 . Check that it does the job i.e. $U^{\dagger}\sigma_2 U = \Lambda$.
- 15. Find the matrix representation of σ_3 in the eigenbasis of σ_2 .
- 16. Are σ_2 and σ_3 simultaneously diagonalizable? Why?