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These notes are a short summary of the topics covered in this course for first year (first semester) B.Sc.

students. They are not complete and are not a substitute for a text book (some suggestions may be found below).

But they could be useful to you if you work out the examples, fill in the details and try to provide any missing

proofs. Any corrections/comments may be sent to govind@cmi.ac.in

1 Some text books for linear algebra

• C. Lanczos, Applied analysis - chapter 2 on matrices and eigenvalue problems

• C. Lanczos, Linear differential operators, chapter 3 on matrix calculus

• T. M. Apostol, Calculus Vol 2, chapters 1-5

• Gilbert Strang, Introduction to linear algebra

• Gilbert Strang, Linear algebra and its applications

• Courant and Hilbert, Methods of mathematical physics, Vol 1

• Arfken and Weber, Mathematical methods for physicists

• Sheldon Axler, Linear algebra done right

• P.R. Halmos, Finite-dimensional vector spaces

• Serge Lang, Introduction to linear algebra

• Erwin Kreyszig, Advanced engineering mathematics

2



• K T Tang, Mathematical Methods for Engineers and Scientists 1: Complex Analysis, Determinants
and Matrices

In addition, there are several books in the CMI library that cover linear algebra. Look under Dewey

classification 512.5 for books from a mathematical viewpoint and under 530.15 for books on mathematical

methods for physicists (eg. the book by Dettman or others such as 530.15 CAN, DEN, DET, COU, DAS,

JEF)

2 Initial remarks

• Linear algebra is useful in many classical physics and engineering problems.

• Linear equations are a first approximation to more complicated and accurate non-linear equa-
tions. Near a point of equilibrium we can often linearize the equations of motion to study
oscillations: vibrations of a solid or LC oscillations in an electrical circuit.

• Importance of linear algebra in physics is greatly amplified since quantum mechanics is a
linear theory.

• Linear algebra is an example of a successful mathematical theory with many very satisfying
theorems eg. Spectral decomposition.

• Linear algebra is also important in computer science e.g., web search, image (data) compres-
sion.

• Linear algebra is important in statistics: least squares fitting of data, regression.

• Linear algebra is important in electrical engineering, eg. the fast fourier transform.

• Linear algebra is fun and the basic concepts are not difficult. It has a nice interplay between
algebra (calculation) and geometry (visualization). It may also be your first encounter with
mathematical abstraction, eg. thinking of spaces of vectors rather than single vectors.

• The basic objects of linear algebra are (spaces of) vectors, linear transformations between
them and their representation by matrices.

• Examples of vectors include position and momentum of a particle, electric and magnetic fields
at a point etc.

• Examples of matrices include inertia Iij =
∫
ρ(~r)

(
r2δij − rirj

)
d3r tensor of a rigid body,

stress tensor (momentum flux density) Sij = pδij + ρvivj of an ideal fluid, Minkowski metric
tensor ηµν of space-time in special relativity.

• Matrix multiplication violates the commutative law of multiplication of numbers AB 6= BA
in general. Also there can be non-trivial divisors of zero: matrices can satisfy AB = 0 with
neither A nor B vanishing.

• Matrix departure from the classical axioms of numbers is as interesting as spherical geometry
departure from the axioms of Euclidean geometry.
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3 An initial view of linear equations

• Many equations of physics and engineering are differential equations. But a differential is a
limit of a difference quotient if we discretize. This turns linear differential equations into linear
algebraic equations. We will make this precise later on. Linear equations also arise for example
in the relation of the angular momentum vector to the angular velocity vector L = Iω , where
I is the inertia matrix.

• A basic problem of linear algebra is to solve a system of linear algebraic equations.

x− 2y = 1 or ax+ by = c
3x+ 2y = 11 dx+ ey = f. (1)

• Cayley recognized that these should be thought of as a single matrix equation Ax = b .(
1 −2
3 2

)(
x
y

)
=

(
1
11

)
(2)

• Matrix vector multiplication A

(
x
y

)
by rows: dot product of each row of A with the column

vector

(
x
y

)
.

• A column vector such as

(
1
2

)
can be viewed as an arrow from the origin to the point (1, 2)

of the plane.

• Index notation for components of a vector and a matrix: Rather than calling the coefficients
a, b, d, e · · · , we can label them a11, a12, a21, a22 and the RHS as b1, b2(

a11 a12

a21 a22

)(
x
y

)
=

(
b1
b2

)
(3)

• aij are called the components or entries (or matrix elements) of the matrix A .

• Finding the right notation is part of the solution of a problem.

• The matrix A operates on a vector x to produce the output Ax . So matrices are sometimes
called operators.

• In this section we will not be very precise with definitions, and just motivate them with
examples.

• A way of looking at matrix vector multiplication:

(
a b
c d

)(
x
y

)
= x

(
a
c

)
+ y

(
b
d

)
as linear

combinations of columns: x× first column plus y× second column.

• Input variables x, y or vector

(
x
y

)
live in the domain space, here it consists of two compo-

nent column vectors.

• The RHS vector b =

(
1
11

)
lives in the codimain or target space. Here the target space

consists of two component vectors.
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• The possible outputs, vectors Ax form the range or image space. The image is necessarily a
subset of the target.

• Row picture (domain picture): Each row x − 2y = 1, 3x + 2y = 11 defines a line (more
generally a plane or hyperplane) and the solution is at the intersection of these lines. This is
the domain space picture since it is drawn in the space of input variables x, y .

• Column picture (target space picture of Ax = b): Linear combinations of the column vectors
of A to produce the column vector b . The columns are possible outputs (for the inputs (x =
1, y = 0) and (x = 0, y = 1)). So the columns are in the range, which is in the target.

• The row and column pictures, though both drawn on a plane are not the same spaces, one is
in the domain and other in the target.

• In this example, linear combinations of the columns span the whole plane, so we can get any

output vector

(
b1
b2

)
we want. Such square matrices are invertible.

• Example:

 1 2 4
2 4 8
4 8 16

xy
z

 =

 5
10
20

 or

x+ 2y + 4z = 5
2x+ 4y + 8z = 10

4x+ 8y + 16z = 20. (4)

• Notice that the RHS is the sum of the first and third columns, so one possible solution is
(x, y, z) = (0, 1, 1).

• The coefficient matrix in this case is symmetric AT = A . Transpose of matrix exchanges rows
with columns. What is the transpose of A from the first example?

• But this is not the only solution, since the latter two equations are just multiples of the first
one. So we have a 2-parameter family of solutions (5− 2y − 4z, y, z) with y and z arbitrary.

• So though there were apparently 3 equations in 3 unknowns, in fact there is only one inde-
pendent equation and the system is ‘under-determined’.

• The same system of equations has no solution if the RHS is changed a little bit at random
to say, (5, 10, 16). This is because the last two columns are multiples of the first column so the
only possible outputs are multiplies of the first column.

• So a system can go from infinitely many solutions to no solutions with a small change in the
RHS!

• This matrix will turn out not to be invertible. Generally, invertible square matrices are those
for which you can uniquely solve Ax = b for any b .

• It seems natural to have as many equations as unknowns (even-determined systems). But it
is necessary in many contexts to study a rectangular system.

• Newton’s second order differential equation for the position of a particle, m∂2x
∂t2

= f(t) needs
two initial conditions x(0), ẋ(0). But we may wish to study the solutions without specifying the
initial conditions. Then we have two less equations than unknowns.

• ∇V = F . Given the force F , these are 3 equations for one unknown potential V , so it is
strongly over determined. Only conservative forces arise from a potential!
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• ∇ · v = 0 is one equation for three velocity components of an incompressible fluid flow, so
strongly under determined. There are many such flows!

• Rectangular underdetermined example. Try to solve it, draw the row and column pictures.

x+ 2y + 3z = 6
2x+ 5y + 2z = 4 (5)

• Square incompatible system, this one has no solutions:

x+ 3y + 5z = 4
x+ 2y − 3z = 5

2x+ 5y + 2z = 8 (6)

• Notice that the third row is the sum of the first two, but the same is not true of the RHS.

• Linear algebra develops a systematic theory to understand all these possible features of a
system of m equations in n unknowns. It also provides algorithms for solving the equations!

4 Matrix Multiplication

• An m × n matrix is a rectangular array of numbers (real or complex) with m rows and n
columns. If m = n we have a square matrix. If m = n = 1 the matrix reduces to a number
(scalar). A 1× n matrix is a row vector. An m× 1 matrix is a column vector.

• Av multiplication of a column vector by a matrix from the left is a new column vector. It is
a linear combination (specified by the components of v ), of the columns of A

 | | . . |
c1 c2 . . cn
| | . . |



v1

v2

.

.
vn

 = v1

 |c1

|

+ v2

 |c2

|

+ · · · vn

 |cn
|

 (7)

• Row picture of multiplication of a row vector from right by a matrix xA . The result is a
linear combination of the rows of A , i.e. a new row vector.

(
x1 x2 . . xm

)


row1

row2

.

.
rowm

 = x1(row1) + x2(row2) + · · ·+ xm(rowm) (8)

• Suppose A is an m× n matrix and B is n× p . Then C = AB is an m× p matrix.

• Matrix multiplication in components
∑n
k=1AikBkj = Cij

• Summation convention: repeated indices are summed except when indicated

• Sometimes we write Aik for Aik , with row superscript and column subscript. Then AikB
k
j =

Cij .
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• The identity matrix I is the diagonal matrix with 1′s along the diagonal. Iv = v for every
vector and IA = AI = A for every matrix.

• Matrix multiplication is associative, can put the brackets anywhere A(BC) = (AB)C ≡ ABC
• To see this, work in components and remember that multiplication of real/complex numbers
is associative

[A(BC)]il = Aij(BC)jl = AijBjkCkl = [(AB)C]il (9)

• Matrix multiplication distributes over addition A(B + C) = AB +AC

• Addition of matrices is commutative A+B = B +A , we just add the corresponding entries.

• The zero matrix is the one whose entries are all 0′s . A+ 0 = A and 0A = 0 for every matrix,
and 0v = 0 for every vector.

• Outer product of a column vector with a row vector gives a matrix: This is just a special case
of matrix multiplication of Am×1 with B1×n to give a matrix Cm×n . For example(

x
y

)
( z w ) =

(
xz xw
yz yw

)
(10)

• Four different ways to multiply matrices. All are a consequence of the basic formula
∑n
k=1AikBkj =

Cij . They are just different ways of interpreting this equation. It is always good to have such
different algorithmic/physical/geometric interpretations of equations.

• Example to practice matrix multiplication for rectangular matrices. Do it each of the four
ways described below.

(
1 2 3
0 −1 1

) 0 1 −1 2
1 0 1 2
−1 1 1 0

 =

(
−1 4 4 6
−2 1 0 −2

)
(11)

• 1. Rows times columns: This is the traditional way. Cij is the dot product of the ith row
of A with the jth column of B . To see this from the formula, fix both i and j and consider∑n
k=1AikBkj = Cij . The sum over k signifies the dot product of the ith row of A with the jth

column of B .

• 2. By columns: columns of C are linear combinations of columns of A . The jth column
of C is a linear combination of the columns of A , each column taken as much as specified by
the jth column of B . This again follows from

∑n
k=1AikBkj = Cij , by fixing j , so that we are

looking at the jth column of C (i is arbitrary). Then think of the Bkj as coefficients in a linear
combination of the columns of A .

• 3. By rows: rows of C are linear combinations of rows of B . The ith row of C is a linear
combination of the rows of B , each row taken as much as specified by the ith row of A .

• 4. Columns times rows: As a sum of matrices which are outer products of the columns of A
and rows of B . For example, consider Am×2 and B2×p matrices. The matrix elements of their
product can be written as

Cij = AikBkj = Ai1B1j +Ai2B2j (12)
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The first term in the sum Ai1B1j is the outer product of the first column of A with the first
row of B . The second term is the outer product of the second column of A with the second
row of B . More generally for Am×nBn×p , we will have a sum of n matrices.

• Example to see elementary row operation. C = AB means A multiplies B from the left.
Now do the multiplication by rows, i.e. rows of C are linear combinations of rows of B , with
weights specified by the corresponding row of A . 1 0 0

−2 1 0
0 0 1


 1 2 3

2 5 7
−1 2 1

 =

 1 2 3
0 1 1
−1 2 1

 (13)

• Observe that left multiplying by A does the following elementary row operation: 1st and 3rd

rows of C are the same as those of B . But the second row of C is obtained by multiplying the
first row of B by −2 and adding it to the second row of B .

• Example that shows a product of non-zero matrices can be zero(
0 1
0 0

)(
0 1
0 0

)
=

(
0 0
0 0

)
(14)

• Multiplication of matrices is in general not commutative, i.e. AB need not equal BA . For
example, check this for

A =

(
0 1
1 0

)
, B =

(
1 0
0 −1

)
(15)

In this case you will find that AB = −BA . But this is not so in general, as the following
example indicates

A =

(
1 2
3 4

)
, B =

(
2 3
−1 −2

)
⇒ AB =

(
0 −1
−2 3

)
, BA =

(
11 16
−7 −8

)
. (16)

5 Linear combinations and Linear (in)dependence

• Let us formally define two concepts which we have already met a few times in the lectures.

• Given a collection of vectors v1, v2, · · · , vn , a linear combination is a weighted sum a1v1 +
a2v2 + · · · anvn , where ai are numbers (real or complex)

• For example, 3x̂+ 2ŷ is a linear combination of these two unit vectors.

• Vectors are linearly dependent if there is a non-trivial linear combination of them that vanishes.
i.e. the vectors satisfy a linear relation.

• For example x̂ and 3x̂ are linearly dependent since they satisfy the linear relation 3(x̂)−3x̂ = 0

• More formally, v1, v2, · · · , vn are linearly dependent if
∑n
i=1 aivi = 0 for some real numbers

ai not all zero.

• On the other hand, there is no non-trivial linear combination of u =

 1
0
0

 and v =

 0
1
0


that vanishes. We say that u, v are linearly independent.
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• Definition: v1, v2, · · · , vn are linearly independent if the following condition is satisfied: a1v1 +
a2v2 + · · · anvn = 0 ⇒ a1 = a2 = a3 = · · · = an = 0.

6 Gaussian elimination

• Now let us get back to a systematic procedure to solve systems of linear equations.

• Diagonal example: notice how easy it is to solve a system associated to a diagonal matrix 1 0 0
0 i 0
0 0 −3


 x
y
z

 =

 π
e

21.3

 (17)

• It will be fruitful to try to diagonalize matrices. Notice that it was important that the diagonal
entries were not zero in order to find a solution, i.e. for invertibility.

• Actually, it is almost as easy to solve an upper-triangular system

x− y + 3z = 0
y + 2z = 3

z = 1 (18)

• Back-substitute starting with the last equation to get

xy
z

 =

−2
1
1


• So it is worth reducing a matrix to upper triangular form. This is what Gaussian elimination
does.

• Gaussian elimination is a systematic way of solving linear systems. This is how you would do
it in practice and also how computer programs work.

• Cramer’s rule using determinants would take much longer, we mention it later.

• Forward elimination and back substitution

• Work out an example

A =

 1 2 3
1 0 2
2 6 8

xy
z

 =

 1
2
3

 . (19)

• Forward elimination by elementary row operations: We bring A to upper triangular form by
subtracting a multiple of one equation from another.

• For this we must carry along the rhs, so first form the augmented coefficient matrix

(A|b) =

 1 2 3 | 1
1 0 2 | 2
2 6 8 | 3

 (20)

• a11 = 1 is called the first pivot, it is important that it is non-zero. If it were zero we would
look for a row whose first entry is non-zero and swap it with the first row.
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• Then we want all entries below the first pivot to be zero, so subtract row-1 from row-2. Then
subtract twice row-1 from row-3

(A|b) =

 1 2 3 | 1
1 0 2 | 2
2 6 8 | 3

 E21−→

 1 2 3 | 1
0 −2 −1 | 1
2 6 8 | 3

 E31−→

 1 2 3 | 1
0 −2 −1 | 1
0 2 2 | 1


E32−→

 1 2 3 | 1
0 −2 −1 | 1
0 0 1 | 2

 = (U |

 1
1
2

) (21)

• Operation E21 makes the (2, 1) entry zero, and similarly E31 makes the (3, 1) entry zero.

• Thus A has been transformed into an upper triangular matrix U , with zeros below the
diagonal. U is called the row-echelon form of A .

• The word echelon refers to a staircase shape. Echelon should remind you of a hierarchy: ‘higher
echelons of government’. Echelon form is also a military term referring to an arrangement of
soldiers in rows with each row jutting out a bit more than the previous one.

• The pivots are the first non-zero entries in each row, when a matrix has been brought to row
echelon (upper triangular) form.

• If there is no pivot in a row, then that is a row of zeros. A row of zeros means that row of A
was a linear combination of other rows.

• Here, the pivot positions are the diagonal entries from the upper left, the pivots are 1,−2, 1.

• The rank r is the number of pivots. A has rank r = 3, which is the maximum possible for a
3× 3 matrix.

• A square n× n matrix is invertible if and only if the rank r = n .

• The rank is the number of linearly independent rows. In echelon form, the linearly independent
rows are precisely the ones with pivots.

• There is at most one pivot in each column. In echelon form, the linearly independent columns
are precisely the columns with pivots. The rank is also the number of linearly independent
columns.

• The method is simplest if we have a pivot in each row.

• If there is a zero in a pivot position, we exchange with a lower row if available.

• For a square matrix, if there is a zero in the pivot position which cannot be removed by row
exchanges, then we get a row of zeros, and the matrix is called singular or not invertible. For
example, if A33 = 7 in the above example, then the third row of U would be full of zeros. We
will deal with such situations later on.

• More precisely, we can define an elementary row operation as that of subtracting a multiple lji
of row i from row j . In other words, rj 7→ rj + ljiri while the remaining rows are left unaltered.

• In row echelon form, the equations are

 1 2 3
0 −2 −1
0 0 1

xy
z

 =

 1
1
2

 . Now it is easier to

solve the equations starting with z = 2 and back-substituting to get y = −3/2, x = −2.

• Better still, we could continue with elementary row operations upwards, to make all entries
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above the pivots zero as well, i.e. get a diagonal matrix 1 2 3 | 1
0 −2 −1 | 1
0 0 1 | 2

 r2→r2+r3−→

 1 2 3 | 1
0 −2 0 | 3
0 0 1 | 2

 r1→r1−3r3−→

 1 2 0 | −5
0 −2 0 | 3
0 0 1 | 2

 r1→r1+r2−→

 1 0 0 | −2
0 −2 0 | 3
0 0 1 | 2

 = (D|

−2
3
2

) (22)

and it is easy to read off the solution x = −2, y = −3/2, z = 2.

• The diagonal matrix D contains the pivots along the diagonal. However, in general these are
not the eigenvalues of A ! But they are related, we will see that the determinant of A , which is
the product of its eigenvalues, is also (upto a possible sign) the product of the pivots! Finding
the pivots is relatively easy for large matrices, but finding eigenvalues is much harder.

6.1 More examples of gaussian elimination

• Let us consider some examples where the rank is less than maximal.

• Example of singular matrix but compatible system with infinitely many solutions

2x− y = 1, 4x− 2y = 2; ⇒
(

2 −1 | 1
4 −2 | 2

)
→
(

2 −1 | 1
0 0 | 0

)
(23)

There is only one pivot, 2. Elimination leads to a row of zeros, so the matrix is not invertible.
Its rank is 1 which is less than the dimension 2. A system is compatible if each row of zeros in
echelon form is matched with a zero on the rhs. This is indeed the case here, indicating that the
second equation was redundant. We have only one linearly independent equation and infinitely
many solutions parameterized by one parameter, (x = 1

2(a+ 1), y = a).

• Example of singular matrix and incompatible system with no solutions

2x− y = 1; 4x− 2y = 3 ⇒
(

2 −1 | 1
4 −2 | 3

)
→
(

2 −1 | 1
0 0 | 1

)
(24)

There is only one pivot, 2. Elimination leads to a row of zeros, so the matrix is not invertible.
Its rank is 1 which is less than the dimension 2. A system is compatible if each row of zeros
in echelon form is matched with a zero on the rhs. That is not the case here, so we have an
incompatible system and no solutions.

6.2 Formulating elementary row operations using matrix multiplication

• Let us return to the above 3× 3 example.

• Formulation of elementary row operations using matrix multiplication from left. The pro-
cedure of subtracting row-1 from row-2 to make the(21)-entry vanish, can be achieved by
multiplying A by the elementary matrix E21 1 0 0

−1 1 0
0 0 1

 1 2 3
1 0 2
2 6 8

 =

 1 2 3
0 −2 −1
2 6 8

 (25)

11



• To see this recall how to multiply matrices row-by-row. That method pays off now!

• Similarly: E31 =

 1 0 0
0 1 0
−2 0 1

 subtracts row-1 from row-3 and makes the (3, 1) entry vanish.

• And E32 =

 1 0 0
0 1 0
0 1 1

 adds row-2 to row-3 and makes the (3, 2) entry vanish.

• Notice that the elementary matrices are always lower triangular (have zeros above the diagonal)
since we add a multiple of an earlier row to a later row. They are also called elimination matrices.

• More formally, an elementary row operation ri 7→ ri + mijrj , adds a multiple (mji) of row
j to row i . It leaves all rows other than row j fixed. It is represented by left multiplication
by the following elementary matrix E . E has 1’s along the diagonal. All other entries vanish
except for the (i, j)-entry, which is mij

1 0 · · · 0 0
0 1 0 · · · 0
...

...
...

...
...

· · · mij · · · 1 · · ·
...

...
...

...
...

0 0 0 0 1


(26)

• In terms of elementary matrices we have E32(E31(E21A)) = U . Using associativity to move
the brackets around, we have EA = U where E = E32(E31E21) and U is upper triangular
(echelon form).

• As a bonus we will get a decomposition of a matrix into a product of lower and upper triangular
matrices A = LU . U is in row echelon form, with pivots as the first non-zero entry in each row,
and L is a lower triangular matrix with 1′s as the last non-vanishing entry in each row. This is
a nice way of summarizing gaussian elimination. If A is square and invertible, then the pivots
and 1’s will be along the diagonal.

• From E32(E31E21)A = U , we move the elementary matrices Eij to the RHS by inverting
them: A = E−1

21 E
−1
31 E

−1
32 U = LU .

• The inverse of an elementary matrix is easy: E21 subtracts the first row from the second. So

E−1
21 =

 1 0 0
1 1 0
0 0 1

 adds the first row to the second.

• Similarly, E−1
31 =

 1 0 0
0 1 0
2 0 1

 and E−1
32 =

 1 0 0
0 1 0
0 −1 1

 .

• In particular, the inverse of a lower triangular elementary matrix is also lower triangular and
elementary.

• Now L = E−1
21 E

−1
31 E

−1
32 =

 1 0 0
1 1 0
2 −1 1

 , notice that it is lower triangular.
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• Check that EL = I and that A = LU =

 1 0 0
1 1 0
2 −1 1

 1 2 3
0 −2 −1
0 0 1

 as advertised.

• Show that the product of lower triangular matrices is again lower triangular.

6.3 Row exchanges and permutation matrices

• Consider the system

−y = 1, 4x− 2y = 3,⇒
(

0 −1 | 1
4 −2 | 3

)
→
(

4 −2 | 3
0 −1 | 1

)
(27)

Since there was a zero in the (1, 1) position, we exchanged the first two rows. And now the
matrix is already in row echelon form with two pivots 4,−1

• More generally, if there was a zero in a pivot position and we exchanged rows to bring A to
row echelon form U , then we have PA = LU , where P is the product of the row exchanges
performed, P is a permutation matrix.

• For example, P12 =

 0 1 0
1 0 0
0 0 1

 permutes the first two rows of A when multiplied from the

left PA . Check that it has the desired effect on the identity matrix. So the permutation matrix
is obtained by applying the desired permutation to the identity.

• What is the permutation matrix that cyclically permutes the rows 1→ 2→ 3?

• An invertible square matrix A has a unique decomposition PA = LDU with L lower tri-
angular with 1’s along the diagonal, D diagonal with pivots along the diagonal and U upper
triangular with 1’s along the diagonal. P is a permutation matrix needed to bring A to echelon
form.

6.4 Inverse of a square matrix

• A square matrix maps n-component column vectors in the domain to n-component column
vectors in the target.

• The inverse of A (when it exists) must go in the opposite direction.

• Picture A and A−1 as maps between sets.

• The problem of inverting a matrix A is related to the problem of solving Ax = b and
expressing the answer as x = Lb . But for this to be the case, we need LA = I . This motivates
the definitions that follow.

• If A has a left inverse LA = I and a right inverse AR = I , then they must be the same by
associativity (we can move brackets around)

(LA)R = L(AR) ⇒ IR = LI ⇒ R = L = A−1 (28)

• An n×n square matrix is defined to be invertible if there is a matrix A−1 satisfying A−1A =
AA−1 = I . If not, A is called singular.
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• In terms of maps, invertibility implies that A and A−1 must be 1-1. Moreover, the image of
A must be the domain of A−1 , and the image of A−1 must equal the domain of A .

• When the inverse exists, it is unique by associativity. Suppose A has two inverses B and C ,
then by definition of inverse,

AB = BA = I, CA = AC = I. (29)

Using associativity, (CA)B = C(AB) but this simplifies to B = C .

• A real number is a 1 × 1 matrix. It is invertible as long as it is not zero. Its inverse is the
reciprocal.

• A 2× 2 matrix A = (ab|cd) is invertible iff the determinant ad− bc 6= 0. Its inverse is

A−1 =

(
a b
c d

)−1

=
1

ad− bc

(
d −b
−c a

)
(30)

To get this result, use Gaussian elimination for the system

ax+ by = f, cx+ dy = g,

(
a b
c d

)(
x
y

)
=

(
f
g

)
(31)

The augmented matrix in row echelon form and finally diagonal form are(
a b | f

0 d− bc
a | g − cf

a

)
→
(
a 0 | f − ba

ad−bc(g −
cf
a )

0 ad−bc
a | g − c

af

)
(32)

• The solution may be read off as x = df−bg
ad−bc , y = −cf+ag

ad−bc . For the solution to exist for arbitrary
data f, g , we need ad− bc 6= 0. We can write the solution in matrix form and then read off the
inverse (

x
y

)
=

1

ad− bc

(
d −b
−c a

)(
f
g

)
= A−1

(
f
g

)
(33)

• We come to a very useful criterion for invertibility.

• A matrix is invertible iff An×n does not annihilate any non-zero vector. Vectors annihilated
by A are called its zero-modes and they form its kernel ker(A) or null space N(A).

• Indeed, if A is invertible, then Ax = 0 implies x = A−10 = 0, so A has a trivial kernel.

• The converse is harder to prove and can be skipped. The idea is that if the kernel of A is
trivial, then the columns of A are linearly independent. So the image of x 7→ Ax is the whole
of the target space of n-component vectors (i.e. A maps onto the target). Then we can use
the method given below to find the left inverse LA = I of A . Now if the columns of a square
matrix A are linearly independent, it also follows (say using gaussian elimination) that the rows
are linearly independent. So acting on row vectors yA , A maps onto the space of n-component
row vectors. Then we can use the method below to find the right inverse AR = I of A . Finally
by an earlier lemma, we know that L = R = A−1 , so we have shown that A is invertible.

• Remark: The kernel being trivial is equivalent to saying that the columns are linearly inde-
pendent. Indeed Av = v1c1 + v2c2 + · · · vncn is a linear combination of the columns of A . So if
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the columns are linearly independent, this vanishes only for the zero coefficients vi ≡ 0 and so
there is no vector annihilated by A .

• The point about invertibility of A is that it guarantees unique solutions to the n×n systems
Ax = b and yA = c for any column n-vector b and any row n-vector c

x = A−1b, and y = cA−1 (34)

• Conversely, suppose we can solve Ax = b, yA = c for any b, c . Then the left inverse LA = I
is the matrix L whose columns are the solutions x of Ax = b for the the n cartesian basis
vectors (bi)j = δij . L = (x1,x2, · · · ,xn, ). Similarly, the right inverse R has rows given by the
solutions y of yA = c for each of the cartesian basis vectors (ci)j = δij . We have already seen
that the left and right inverses are the same, so A−1 = L = R and A is invertible.

• But in practice inverting a matrix is not an efficient way of solving a particular system of
equations (i.e. for a specific b or c). Elimination is the way to go.

• An n× n matrix A is invertible iff row elimination produces n (non-zero) pivots.

• A is not invertible iff elimination produces a row of zeros.

• Square A is invertible iff the columns of A are linearly independent. (could also use rows).

• Example: Inverse of a diagonal matrix A = diag(λ1, · · · , λn) is again diagonal with entries
given by the reciprocals, A−1 = diag(λ−1

1 , · · · , λ−1
n ).

• Example of a singular matrix A =

(
1 1
0 0

)
• This matrix annihilates the vector x =

(
−1
1

)
. It has a row of zeros. It has only one pivot.

Its determinant vanishes. And finally, we can’t solve Ax =

(
1
2

)
for instance. What are the

only b′s for which we can solve Ax = b?

• A =

(
1 2
2 4

)
is also singular. The second row is twice the first. Check the other equivalent

properties.

• Elementary matrices are invertible because their columns are linearly independent.

• The inverse of an elimination matrix is easy to find. Suppose A is the matrix that subtracts
twice the first row from the second row of a 2× 2 matrix. Then its inverse must add twice the
first row to the second.

A =

(
1 0
−2 1

)
⇒ A−1 =

(
1 0
2 1

)
(35)

• Example: A =

−1 2 0
3 −4 2
6 −3 9

 . This matrix has a non-trivial kernel. Notice that the third

column is twice the first added to the second. So any vector of the form c

 2
1
−1

 is annihilated

by A . So it is not invertible.
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• The inverse of a product is the product of inverses in the reversed order, when they exist. To
see why, draw a picture of the maps.

(AB)−1 = B−1A−1 since B−1A−1AB = I (36)

• The sum of invertible matrices may not be invertible, e.g. I − I = 0 is not invertible.

• Gauss-Jordan elimination is a systematic procedure to find the inverse of an n×n matrix. It
is described in a later section.

• We will get a formula for the inverse after studying determinants.

• Remark: If A is an n×n matrix, we can express its inverse (when it exists) using its minimal
polynomial, which is a polynomial of minimal degree p(x) = p0 + p1x + · · · pkxk such that
p(A) = 0. A matrix is invertible iff p0 6= 0. In that case, A−1 = −p−1

0 (p1 + p2A+ · · · pnAn−1).
p(x) may have degree less than n and need not be the same as the characteristic polynomial,
though it is always a factor of the characteristic polynomial det(A− xI) = 0.

6.5 Transpose of a Matrix

• Transpose of an m× n matrix is the n×m matrix whose rows are the columns of A (in the
same order).

• In components, (AT )ij = Aji

• Transpose of a column vector is a row vector.

• (AT )T = A

• (AB)T = BTAT

• Fundamental transposition formula (xTAy)T = yTATx

• A square matrix which is its own transpose AT = A is called symmetric.

• Real symmetric matrices are a particularly nice class of matrices and appear in many physics
and geometric problems. They appear in quadratic forms defining the kinetic energy of a free
particle or a system of free particles.

• Real symmetric matrices behave a lot like real numbers.

• The operations of transposition and inversion commute (A−1)T = (AT )−1 .

• Suppose A is an invertible square matrix (i.e., has two-sided inverse AA−1 = A−1A = I ).
Then AT is also invertible and (AT )−1 = (A−1)T . To see this just take the transpose of
A−1A = AA−1 = I to get AT (A−1)T = (A−1)TAT = I . But this is saying that (A−1)T is the
inverse of AT . In other words (A−1)T = (AT )−1 .

• The inverse of a symmetric invertible matrix AT = A is again symmetric. Suppose B = A−1

AB = BA = I ⇒ BTAT = ATBT = I ⇒ BTA = ABT = I (37)

So BT is also the inverse of A and by uniqueness of the inverse, BT = B .

• The inverse of a permutation matrix is its transpose. Show this first for row exchanges and
then for products of row exchanges. Work with the 3× 3 case first.
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7 Vector space, span, subspace, basis, dimension

1. The basic operation defining a vector space is that of taking linear combinations of vectors
av + bw . a, b are called scalars and v, w vectors.

2. A vector space is a space of vectors that is closed under linear combinations with scalar
coefficients.

3. The multiplication by scalars distributes over addition of vectors a(v + w) = av + aw .

4. The scalars a, b that we can multiply a vector by are either real or complex numbers and
give rise to a real or complex vector space. More generally, they can come from a field.

5. Examples of vector spaces: R2, R3, R, C2, Rn, Cn

6. Non-examples: the following are not closed under linear combinations

• A line not passing through the origin.

• A half plane or quadrant or the punctured plane.

• Unit vectors in R2

7. So a vector space is also called a linear space, it is in a sense flat rather than curved.

Span

• Given vectors v, w , say in R3 , we can form all possible linear combinations with real or
complex coefficients, {av + bw|a, b ∈ R or C} . This is their (real or complex linear) span. For
example, 3v−w is a linear combination. Unless otherwise specified, we will use real coefficients.

• span(v, w) is a two dimensional plane provided v and w were linearly independent. It is a
vector space by itself.

• Eg ax̂+ bŷ is the span of the unit vector in the x and y directions. Geometrically, we go a
units in the horizontal direction and b units in the vertical direction.

• For example, the span of the unit vector x̂ is the x-axis while the span of (1, 0, 0) and (0, 1, 0)
is the whole x− y plane R2 contained inside R3

Subspace

• A subspace W of a vector space V is a subset W ⊆ V that forms a vector space by itself
under the same operations that make V a vector space.

• The span of any set of vectors from a vector space forms a vector space. It is called the
subspace spanned by them.

• e.g., Any line or plane through the origin is a subspace of R3 . So is the point (0, 0, 0).

• On the other hand, notice that u = (1, 0, 0), v = (0, 1, 0), w = (1, 2, 0) span the same x − y
plane. There is a redundancy here, we don’t need three vectors to span the plane, two will do.

• In other words, w = (1, 2, 0) already lies in the span of u = (1, 0, 0) and v = (0, 1, 0), since
w − u− 2v = 0.
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• We say that u, v, w are linearly dependent if there is a non-trivial linear combination that
vanishes.

• On the other hand, u and v are linearly independent and they span the plane.

• We say u, v are a basis for the plane.

Basis

• A basis for a vector space is a linearly independent collection of vectors {v1, v2, · · · , vn} which
span the space.

• x̂, ŷ is the standard basis for R2 , but 3x̂ + 2ŷ, ŷ is also a basis. Notice that bases have the
same number of vectors (cardinality).

• The standard basis for Rn is the Cartesian one (ei)j = δij

e1 =


1
0
0
...
0

 ; e2 =


0
1
0
...
0

 ; · · · ; en =


0
0
0
...
1

 . (38)

• Every vector can be uniquely written as a linear combination of basis vectors x = xivi . We
say that we have decomposed x into its components xi in the basis. Proof: Suppose x has two
different decompositions x = xivi and x = x′ivi , then 0 = x−x = (xi−x′i)vi . But then we have
a linear combination of basis vectors that vanish, which is not possible since vi were linearly
independent. So xi = x′i .

Dimension

• The dimension of a vector space is the cardinality of any basis. Equivalently, it is the maximal
number of linearly independent vectors in the space.

• The dimension d of a subspace of an n-dimensional space must satisfy 0 ≤ d ≤ n . The
difference n− d is called the co-dimension of the subspace.

• The dimension of Cn as a complex vector space is n . But it is also a real vector space of
dimension 2n

• Note that the dimension of a vector space should not be confused with the number of vectors
in the space. The number of vectors is 1 for the trivial vector space and infinite otherwise.

• {(0)} is not a basis for the ‘trivial’ vector space consisting of the zero vector alone. This
is because the zero vector does not form a linearly independent set, it satisfies the equation
5(0) = 0 for instance. The dimension of the trivial vector space is zero.

7.1 Intersection, Sum, Direct sum and Quotient

• The intersection of a pair of sub-spaces is again a sub-space U ∩V . It is the largest subspace
contained in both.

• The set theoretic union U ∪ V of two sub spaces is not necessarily a vector space. When is
it?
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• On the other hand we can ask for the smallest sub-space that contains both U and V . This
is the sum U + V = {u+ v : u ∈ U, v ∈ V } . It is the smallest subspace containing both.

• Dimension formula for sum and intersection:

dim(U + V ) = dim(U) + dim(V )− dim(U ∩ V ) (39)

• This suggests a particularly interesting construction based on the case where U ∩V is trivial.

• The direct sum of vector spaces U ⊕ V is the vector space of pairs (u, v), u ∈ U, v ∈ V with
sum defined componentwise (u, v)+(u′, v′) = (u+u′, v+v′) and c(u, v) = (cu, cv). Every vector
in the direct sum is uniquely expressible as such a pair. Often we write u+ v for (u, v).

• R3 is the direct sum of the x− y plane and the z axis.

• The direct sum of the x-y plane and the x axis is a 3-dimensional vector space.

• The sum of the x-y plane and the x-axis is again the x-y plane.

• If U and V are sub-spaces of the same space, then the direct sum is isomorphic to the sum
provided the intersection is trivial.

• We cannot in general subtract vector spaces, but the quotient and orthogonal complement
come close to this notion.

• Quotient of a vector space V by a subspace W is a new vector space V/W . Its vectors are
equivalence classes of vectors in V under the relation v ∼ v′ if v− v′ ∈W . Notice that vectors
in W are all in the equivalence class of the zero vector. V/W is neither in V nor W .

• The dimension of the quotient is the difference of dimensions.

• We will see later that with a dot or inner-product, we can take the orthogonal complement of
W in V , i.e. W⊥ ⊆ V . The orthogonal complement is isomorphic to the quotient V/W .

• Eg. R2/span{(0, 1)} is isomorphic to R1 under the equivalence relation (x, y) ∼ (0, y) for all
x ∈ R .

7.2 More examples of vector spaces

• The space consisting of just the zero vector is a zero dimensional space. It is called the trivial
vector space.

• Consider the set of 2 × 2 real matrices. We can add matrices and multiply them by real
numbers and the results are again 2 × 2 real matrices. So this is a real vector space M2(R).
More generally we have the real vector space Mn(R)

• Note that if we consider the same set of 2 × 2 real matrices, it fails to be a complex vector
space. Multiplication by an imaginary number takes us out of the set.

• The dimension of M2(R) is 4. What is a basis?

• The dimension of Mn(R) is n2

• On the other hand, the set of 2×2 complex matrices forms a complex vector space of complex
dimension 4

• Interestingly M2(C) can also be thought of as a real vector space of twice the dimension, i.e.,
8. Give a basis.
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• What is the dimension of the space of real symmetric n × n matrices, and what is its codi-
mension as a subspace of Mn(R)?

• The vector space of solutions of a homogeneous linear differential equation: For example
consider the differential equation for the motion of a free particle on a line x(t) ∈ R

m
∂2x

∂t2
= 0 (40)

If x(t) and y(t) are solutions, then so is any real linear combination of them. This is a two
dimensional real vector space, spanned by 1 and t .

• We should think of the differential operator m ∂2

∂t2
as a 2× 2 matrix acting on this space. It

is just the zero matrix.

• Vector space spanned by the words in an alphabet: Given the English alphabet of 26 letters,
we can form all words (with or without meaning) by stringing letters together. Now consider
all real linear combinations of these words, such as the vectors

v = 10 a + 23 cat− π xyz + dog
w = pig − 7 xyz + 4dog (41)

Then v+w = 10 a + 23 cat− (7 + π) xyz + 5 dog + pig− 7 xyz This is a real vector space. But
it is infinite dimensional since there are an infinite number of (largely meaningless!) words. A
basis consists of all possible words.

• We see that vector spaces are often specified either by giving a basis or as the solution space
to a system of linear equations.

• A geometric example of a vector space is the space vectors tangent to a curve or surface at a
point. For example, the tangent space to the sphere at the north pole is a two dimensional real
vector space.

8 Linear transformations between Vector spaces, Isomorphism

• Given vector spaces D and T , a linear transformation from domain D to codomain or target
T is a linear map

L : D → T, L(au+ bv) = aL(u) + bL(v) (42)

• You can either form linear combinations before applying L or afterwards, the result is the
same. So L morphs D into T . Sometimes we say that L is a linear morphism.

• Importantly, L(0) = 0.

• Both D and T must be real vector spaces or both must be complex vector spaces, no mixing
up.

• A pair of vector spaces D and T are said to be isomorphic if there is a linear map L between
them that is invertible (1-to-1 and onto). Then we say that D ∼= T are the same abstract vector
space and that L is an isomorphism.

• A basic result is that any real vector space V of (finite) dimension n is isomorphic to Rn .
The isomorphism maps a basis of V to the standard basis of Rn and extends to all of V by
linearity. Write this out in symbols.
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• All complex vector spaces of dimension n are isomorphic to Cn .

• An example of a linear transformation from R2 to R2 is Rπ/2 a clockwise rotation by a right
angle. Check this.

• Rπ/2 is an isomorphism, its inverse is a counter-clockwise rotation by a right angle.

• But a translation of every vector to the right by two units is not a linear transformation, since
L(0) 6= 0

• A linear map from V → V is called an endomorphism. If it is invertible, then it is called an
automorphism.

• A reflection about any line through the origin is an automorphism of R2

• A projection that projects every vector in the plane to its horizontal component is an endo-
morphism of R2 . It is not 1-1 or invertible, since all vertical vectors are annihilated.

• Composition: Given L1 : U → V and L2 : V → W we can compose these to get a linear
transformation (L2 ◦ L1) : U → W . It is important that the target of L1 is the same as the
domain of L2 . L2 follows (acts after) L1 .

• Note that this composition is not in general a commutative operation, and indeed we cannot
even define L1 ◦ L2 if the target of L2 is not the same as the domain of L1 .

8.1 Matrix of a Linear map

• An m × n matrix A defines a linear transformation from Rn → Rm , since we know it acts
linearly on n-vectors to produce m-vectors A(bv + cw) = bAv + cAw

• The converse is also true.

• Every linear transformation L : D → T between finite dimensional (real or complex) vector
spaces can be represented by a (real or complex) matrix. But there may be more than one such
matrix representation.

• For this we need to pick a basis for the domain and target spaces. Different bases may give
different matrix representations.

• But notice that we specified all the above linear transformations without any matrix or basis.
So a linear transformation exists as a geometric entity, and a matrix is just a very useful algebraic
representation of it.

• So let e1 · · · en be a basis for D and f1 · · · fm be a basis for T .

• To specify a linear map, it suffices to say how it acts on each of the basis vectors for the domain
space, L(e1), L(e2) · · · , L(en). We can extend it to the rest of the vectors in D by taking linear
combinations of the ei

• Now L(e1) is a vector in the target T , so it must be a linear combination of the f1, · · · fm .

• So suppose

L(e1) = a11f1 + a21f2 + · · · am1fm
L(e2) = a12f1 + a22f2 + · · · am2fm

...
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L(en) = a1nf1 + a2nf2 + · · · amnfm. (43)

• We can already see a matrix emerging.

• The matrix of L in this pair of bases is then an m× n matrix

L =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

... · · ·
...

am1 am2 · · · amn

 (44)

• The aij are called the matrix elements of L in this basis.

• ~ei are vectors. They are geometric entities in their own right. Now e1 can be written in
any convenient basis. But since ei themselves form a basis, it is most convenient to write e1 in
the ei basis, where e1 = 1e1 + 0e2 + · · · 0en . Therefore, in the ei basis, e1 can be regarded as
a vector with components (1, 0, · · · 0). Doing the same for the others, we may write the basis
vectors ei in their own basis as the following column vectors of length n ,

e1 =


1
0
0
...
0


e

n×1

, e2 =


0
1
0
...
0


e

n×1

, · · · en =


0
0
0
...
1


e

n×1

. (45)

Similarly the ~fj in the the f -basis are columns of length m

f1 =


1
0
0
...
0


f

m×1

, f2 =


0
1
0
...
0


f

m×1

, · · · fm =


0
0
0
...
1


f

m×1

. (46)

Note that there is no special choice being made here, these are forced upon us if we want to
express a basis vector in the self-same basis.

• We see that Le1 picks out the first column of the matrix as desired

Le1 =


a11

a21

· · ·
am1

 = a11f1 + a21f2 + · · · am1fm (47)

• In short, the ith column of L is the image of the ith basis vector ei .

• The matrix of a linear transformation will generally be different in different bases. Only very
special linear maps have the same matrix in all bases, these are the identity map L(ei) = ei and
the zero map L(ei) = 0.

• The transformation of matrix elements under changes of bases is treated later on.

• The composition of linear maps corresponds to multiplication of their matrix representatives.
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• In the special case where the domain and target are the same vector space, then L is a square
n× n matrix, and it is convenient to use the same basis for both domain and target ei = fi .

L(e1) = a11e1 + a21e2 + · · · an1en
L(e2) = a12e1 + a22e2 + · · · an2en

...
L(en) = a1ne1 + a2ne2 + · · · annen. (48)

• In this case, if it is invertible, L can itself be regarded as a change of basis: from the ei basis
to the L(ei) basis whose basis vectors are the columns of L .

• The inverse of a linear map is represented by the inverse matrix.

• We see that L basically scrambles up the basis vectors into linear combinations. A major
goal of linear algebra is to find bases adapted to the linear map that make the rhs look simpler,
especially those in which as many as possible matrix elements vanish.

• A particularly convenient basis (when it exists) is the eigenvector basis. This is a basis that
belongs to an endomorphism, and is usually kept well-hidden. A major goal of linear algebra is
to determine it when it exists. In the eigenvector basis,

L(e1) = λ1e1, L(e2) = λ2e2, · · · , L(en) = λnen (49)

so that L is the diagonal matrix

L =


λ1 0 0 · · · 0
0 λ2 0 · · · 0
0 0 λ3 · · · 0
...

...
... · · ·

...
0 0 0 · · · λn

 (50)

• The diagonal elements are called the eigenvalues or characteristic values.

• Example: Find the matrix elements of the counter clockwise rotation by a right angle in the
standard basis for R2

8.2 Matrix of a linear transformation in different bases

• Example: The projection P : R2 → R2 that projects every geometric vector to its horizontal
component. Check that this is a linear transformation. Here the domain and target are the
same vector space, so we can use a single basis. If f1 and f2 are the standard cartesian basis
vectors in the horizontal and vertical directions, then Pf1 = f1 and Pf2 = 0. In the f -basis,
the columns of the matrix representation of P are the images of f1 and f2 , so

f1 =

(
1
0

)
f

, f2 =

(
0
1

)
f

, Pf =

(
1 0
0 0

)
. (51)

Since P is diagonal in the f -basis, we say that the f -basis is an eigenbasis for P . f1, f2 are
eigenvectors of P with eigenvalues 1 and 0.

• Notice that P 2
f = Pf , this is common to all projection matrices: projecting a vector for a

second time does not produce anything new.
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• But we are not obliged to work in the standard cartesian basis. So let us pick another basis
consisting of e1 = f1 and e2 = f1 +f2 . So geometrically, e1 is the standard cartesian horizontal
basis vector, but e2 is a vector that points north-east. In the f -basis we have

e1 =

(
1
0

)
f

, e2 =

(
1
1

)
f

(52)

But {e1, e2} are also a basis in their own right. So we can also write e1, e2 in the e-basis

e1 =

(
1
0

)
e

, e2 =

(
0
1

)
e

(53)

So we see that the same geometric vector may have different representations in different bases!
Now the matrix of the projection P in the e-basis is the matrix whose columns are the images
of e1 and e2 in the e-basis. Since Pe1 = e1 and Pe2 = e1 , we have

Pe =

(
1 1
0 0

)
(54)

P is not diagonal in the e-basis, so the ei are not an eigenbasis for P . Nevertheless, the e-basis
is a legitimate basis to use.

• Moreover, even in the e-basis, we see that P 2
e = Pe

• We see that the same linear transformation P can have different matrix representations in
different bases. However, Pe and Pf are related by a change of basis. First observe that the
two bases are related by e1 = f1, e2 = f1 + f2 which may be written in matrix form as

e ≡
(
~e1

~e2

)
=

(
1 0
1 1

)( ~f1
~f2

)
≡ ST

( ~f1
~f2

)
where S =

(
1 1
0 1

)
(55)

In short e = ST f . Calling it ST is a matter of convenience so that the columns (rather than
rows) of S are the components of ei in the f -basis. S is called a change of basis. Notice that S
is invertible, which is guaranteed since its columns form a basis and so are linearly independent.

• Now we can state the change of basis formula for a matrix: Pe = S−1 Pf S , which can be
checked in our case

S−1 Pf S =

(
1 −1
0 1

)(
1 0
0 0

)(
1 1
0 1

)
=

(
1 1
0 0

)
= Pe (56)

• But you may ask, Why does a matrix transform in this way? To understand this, begin with
a geometric vector x . It may be represented in the e-basis as well as in the f -basis, and in
general has the components x(e)i and x(f)j (the notation is not optimal, but we are continuing
with the notation used in the example above, for clarity)

x = x(e)i ~ei = x(e)T e, x = x(f)j ~fj = x(f)T f (57)

But since e = ST f , we have

x = x(f)T f = x(e)T e = x(e)TST f = (Sx(e))T f ⇒ x(f) = Sx(e) (58)

So we have derived the change of basis formula for the components of a vector. If basis vectors
transform according to e = ST f then the components of any vector x transform according to
x(e) = S−1 x(f).
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• Now let us see how a matrix transforms. Suppose in the f -basis a linear map A acts on
vectors according to Afx(f) = b(f), where x(f) and b(f) are components of ~x and ~b in the
f -basis. Then,

Af S x(e) = S b(e) ⇒ (S−1AfS)x(e) = b(e) (59)

We define Ae by Ae x(e) = b(e) so we conclude that

Ae = S−1AfS, as advertised! (60)

We say that the transformation from Af to Ae = S−1AfS is a ‘similarity’ or general linear
transformation. We say that we conjugate Af by S to get Ae

• In particular, Pe = S−1PfS for the projection of the previous example.

9 Gauss-Jordan elimination to find A−1

• Gauss-Jordan elimination is a systematic procedure to find the inverse of an n× n matrix.

• Recall that A−1 allows us to solve Ax = b for any rhs. So to find A−1 we will basically solve
Ax = b for any target b . But in fact, it suffices to do it for a target space basis, such as

{ei} = {


1
0
0
...
0

 ,


0
1
0
...
0

 , · · · ,


0
0
0
...
1

} (61)

For, suppose we had solved A~xi = ~ei . Then we can decompose/analyse the desired output b in
the ei -basis ~b = bi~ei . Finally, the solution to Ax = b is given by ~x = bi~xi . Here, we sum over
the repeated index i .

• These e′is are the columns of I . We will augment A by these columns and form the augmented
matrix (A|I). The word augment means to add on.

• Then we perform elementary row operations and row exchanges to the augmented matrix till
A is reduced to echelon form and then eliminate upwards to bring it to reduced row echelon
form (diagonal form) and finally divide by the pivots to reach the identity I . Automatically, I
will be turned into A−1 .

• In effect we are multiplying (A | I) by A−1 from the left to get (A−1A | A−1I) = (I | A−1).

• Note that we must use elimination to clear the entries both above and below the diagonal to
reach the reduced row echelon form and finally divide by the pivots to reduce A to I

• If there aren’t n pivots, then elimination will produce a row of zeros and A is not invertible.

• Example, perform Gauss-Jordan elimination to find the inverse of the tridiagonal (discretized
second derivative) matrix (Notice that the inverse is also symmetric.)

A =

 2 −1 0
−1 2 −1
0 −1 2

 (62)
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• Example find the inverse of the matrix Q . How is Q−1 related to QT ?

Q =

(
cos θ sin θ
− sin θ cos θ

)
(63)

• Find the inverse of the cyclic permutation matrix and comment on its relation to the transpose

σ =

 0 1 0
0 0 1
1 0 0

 (64)

• Find the inverse of the elementary matrix

A =

(
1 0
−2 1

)
⇒ A−1 =

(
1 0
2 1

)
(65)

10 Vector spaces associated to a matrix Am×n

10.1 Column space

• An m × n real matrix is a linear transformation from Rn → Rm , from the domain space to
the target space.

• Consider the 4× 3 matrix A as a linear transformation from R3 → R4 .
1 2 3
2 4 6
5 1 6
3 2 5


x1

x2

x3

 (66)

• The column space C(A) is the space of linear combinations of the columns of A .

• Recall that Ax is a linear combination of the columns of A . So C(A) is the space of all
possible outputs Ax .

• C(A) is a subspace of the target space. It is also called the range or image of the linear map.

• The significance of the column space: If b ∈ C(A), then we can solve Ax = b .

• So if b ∈ Rm does not lie in the Column space, we cannot solve the equation Ax = b

• The dimension of C(A) is the number of linearly independent columns, which is also the
number of pivots or the rank of A , dimC(A) = rank = r . In this example, it is 2. Since C(A)
is a subspace of the target, we must have dimC(A) ≤ m . And since there are only n columns,
we also have dimC(A) ≤ n .

• If the rank is equal to the dimension of the target, r = m then we can solve Ax = b for any
b ∈ Rm .

• Elementary row operations change the column space in general, but not its dimension, since
elementary row transformations are invertible. For example, A and A′ below have different
1-dimensional column spaces.

A =

(
1 0
1 0

)
r2 7→r2−r1−→ A′ =

(
1 0
0 0

)
(67)
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10.2 Row space

• The row space of a matrix Am×n is the space spanned by the rows.

• R(A) is a subspace of the domain R(A) ⊆ Rn

• The dimension of R(A) is the number of independent rows. It is the same as the number of
pivots in the row echelon form of A

• Thus dimR(A) = r = rank of the matrix = dimC(A) and 0 ≤ r ≤ n and 0 ≤ r ≤ m .

• Elimination (elementary row operations) does not change the row space of a matrix.

• In echelon form, the row space is spanned by the pivot rows. Eg, the first two rows of U in
this example:  1 2 3 4

0 −2 −4 −6
0 0 0 0

 (68)

• Here the row space is a 2 dimensional subspace of R4

• Observe that R(A) is the same as the column space of AT . So R(A) is the space of possible
outputs of the transposed matrix, AT y as y ranges over Rm .

• The dimension of the row space is the number of truly independent equations in Ax = 0.

• Later, we will see that the row space and the kernel have only the zero vector in common.
Moreover, every vector in the domain is either in the row space or in the kernel.

10.3 Null space or kernel or space of zero modes of Am×n

• An important vector space is the space of solutions of the system of homogeneous linear
equations Ax = 0. If x, y are solutions, then so is any linear combination.

• This space is called the null space N(A) or the kernel ker(A). It is the space of vectors that
are annihilated by A .

• N(A) ⊆ Rn is a subspace of the domain, i.e., the inputs.

• The kernel contains vectors that are annihilated by A .

• The dimension of the kernel is called the number of zero modes in physics.

• If the kernel is zero dimensional we say it is trivial.

• For an n× n matrix, recall that A is invertible iff the kernel is trivial. This is one reason it
is very important.

• Though the kernel was defined using the homogeneous equation Ax = 0, it is very useful to
solve inhomogeneous equations Ax = b . More precisely, any two solutions of Ax = b differ by
a vector in the null space.

Ax = b, Ay = b ⇒ A(x− y) = 0 ⇒ x− y ∈ ker(A) (69)

• If we had one solution to Ax = b we can produce a new one by adding any vector in the
kernel. So suppose xpar is any particular solution of Ax = b . Then the ‘general’ solutions are
given by x = xpar + xnull where xnull is any vector in the null space.
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• Unlike the solutions to a homogeneous equation, the solutions to the inhomogeneous equation
Ax = b 6= 0 do not form a vector space. To start with, the zero vector is not a solution. And
we can’t add solutions x, y to get a new solution A(x+ y) = 2b 6= b .

• Nevertheless, the solutions to Ax = b form what is called an affine space, eg. a line or a plane
that does not pass through the origin.

• We will show later that dimN(A) = n− r and that N(A)∩R(A) is the trivial vector space.

10.4 Left null space or N(AT ) and cokernel

• The left null space is the space of solutions to yA = 0.

• Transposing we see that it is essentially the same as the kernel of the transpose ATx = 0
where we denote yT = x . Here we are identifying the row vectors in the left null space with
their transposes which are the columns vectors annihilated by AT

• N(AT ) is a subspace of the Target space, Rm .

• We will show later that dimN(AT ) = m− r . We will also see that the column space and the
left null space intersect at the zero vector and moreover, every vector in the target is either in
the column space or in N(AT ).

• A space closely related (isomorphic) to N(AT ) is the co-kernel of A . It is the quotient of
codomain by image. i.e. Target/C(A) i.e. Rm/C(A).

10.5 Dimension of the kernel and rank-nullity theorem

• To actually find N(A) we must find all solutions to Ax = 0. We do this by elimination.

• Let us illustrate this by an example

A3×4 =

 1 2 3 4
3 4 5 6
4 6 8 10

 (70)

• Here m = 3, n = 4

• Elimination does not change the null space or the solutions of a linear equation. 1 2 3 4
3 4 5 6
4 6 8 10

→
 1 2 3 4

0 −2 −4 −6
0 −2 −4 −6

→
 1 2 3 4

0 −2 −4 −6
0 0 0 0

 = U (71)

• The equation in echelon form is Ux = 0

 1 2 3 4
0 −2 −4 −6
0 0 0 0



x1

x2

x3

x4

 =

 0
0
0

 (72)

• We have only two pivots, 1 and −2, so the rank r = 2. We have only two rows with pivots,
so we have only two independent equations.
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• The row of zeros means that the third equation was a linear combination of the earlier ones.

• The first two (= r ) columns are pivot columns and the last two (=4 − r ) are called free
columns (they are free of pivots). The free columns are linear combinations of earlier columns.
The equations in echelon form are

x1 + 2x2 + 3x3 + 4x4 = 0
−2x2 − 4x3 − 6x4 = 0 (73)

• The r = 2 variables in the pivot columns are called the pivot variables (x1 and x2 ).

• The n− r = 4− r = 2 variables in the pivot-free columns are the free variables x3 and x4 .

• Notice that no matter what value we assign to the free variables, we can always solve for the
pivot variables uniquely.

• Pivot variables are constrained variables and we can solve for them uniquely.

• Free variables are unconstrained. So we can assign any value to them. Here we have two
free variables which can be assigned any real values. So let us pick the standard basis for them(
x3

x4

)
=

(
1
0

)
,

(
0
1

)
. Any other values for the free variables are linear combinations of these.

• Solving for the pivot variables for each of these choices of the free variables gives the two
linearly independent ‘special’ solutions, which lie in the kernel

x1

x2

x3

x4

 =


1
−2
1
0

 and


x1

x2

x3

x4

 =


2
−3
0
1

 (74)

• The null space is the space spanned by these special solutions.

N(A) = ker(A) = {a


1
−2
1
0

+ b


2
−3
0
1

 |a, b ∈ R} (75)

Check that A annihilates the vectors in N(A).

• The key point is that every variable is either a free variable or a pivot variable. The number
of pivot variables is the rank. The number of free variables is the dimension of the null space
(n − r): it is the difference between the dimension of the domain and the rank. This is the
rank-nullity theorem rank(A) + dimN(A) = n

• Replacing Am×n with (AT )n×m we find that dimN(AT ) = m− r .

• Let us summarize the list of dimensions of the 4 subspaces associated to a rank r matrix
Am×n

dimC(A) = r, dimN(AT ) = dim coker(A) = m− r
dimR(A) = dimC(AT ) = r, dimN(A) = dim ker(A) = n− r (76)

• The rank-nullity theorem and these results are sometimes included in the fundamental theorem
of linear algebra.
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11 Inner product, norm and orthogonality

• The standard inner or dot product on Rn is x · y = (x, y) = xT y =
∑
i xiyi . Here we think of

x, y as a column vectors.

• The inner product is symmetric (x, y) = (y, x).

• The norm or length of a vector ||x|| is the square-root of its inner product with itself.

• ||x||2 = xTx = x2
1 + x2

2 + · · ·x2
n . Notice that this is automatically positive being the sum of

squares.

• The norm is the positive square-root, ||x|| = (xTx)1/2 , which is seen to be the usual Euclidean
length of the vector.

• Suppose x and y are a pair of vectors at right angles. The hypotenuse of the right triangle
formed by them has length ||x+ y|| , so ||x+ y||2 = ||x||2 + ||y||2 . The LHS-RHS must vanish,

||x+ y||2 − ||x||2 − ||y||2 = (x+ y)T (x+ y)− xTx− yT y = xT y + yTx = 2(x, y) = 0 (77)

• So if a pair of vectors are orthogonal, their inner product vanishes x · y = (x, y) = xT y = 0.
The converse is also true, a2 + b2 = c2 implies that a, b, c are the lengths of the sides of a right
triangle. This follows from the cosine formula in trigonometry: a2 + b2− 2 a b cosθ = c2 , where
a, b, c are the lengths of the sides of a triangle.

• So a pair of vectors are orthogonal iff their inner product vanishes.

• Cauchy-Schwarz Inequality: For a pair of n-dimensional vectors x, y , the Cauchy-Schwarz
inequality is

|(x, y)|2 ≤ (x, x)(y, y) or |(x, y)| ≤ ||x|| ||y|| (78)

It merely says that the cosine of the angle between a pair of vectors is of magnitude ≤ 1. The
angle between a pair of vectors is

cos θ =
(x, y)

||x|| ||y||
(79)

• The triangle inequality states that ||x+ y|| ≤ ||x||+ ||y|| . It says that the length of a side of a
triangle is always ≤ the sum of the lengths of the other two sides. Draw a picture of this. We
have equality precisely if x = λy (i.e. they are collinear).

• The proof of the triangle inequality uses the Cauchy-Schwarz inequality. Begin by considering

||x+ y||2 = (x+ y)T (x+ y) = xTx+ yT y + xT y + yTx = ||x||2 + ||y||2 + 2x · y
≤ ||x||2 + ||y||2 + 2||x|| ||y|| = (||x||+ ||y||)2 (80)

Taking the square root, ||x+ y|| ≤ ||x||+ ||y|| .
• For complex vectors in Cn , the standard (hermitian) inner product is (z, w) = z̄Tw = z†w ,
where z̄ denotes the complex conjugate vector.

• For a complex number z = x+ iy with real x, y , the complex conjugate z̄ = z∗ = x− iy . The
absolute value of a complex number is its length in the complex plane |z| =

√
|z̄z| =

√
x2 + y2
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• The notation z̄ is more common in the mathematics literature while z∗ is more common in
physics to denote the complex conjugate.

• The complex conjugate transpose, z† is called the (Hermitian) adjoint of the vector z . For
complex vectors, the hermitian adjoint plays the same role as the transpose does for real vectors.

• This is the appropriate inner product since it ensures that (z, z) = ||z||2 = z†z = |z1|2+· · · |zn|2
is real and non-negative and so its positive square-root (z†z)1/2 is the length of the vector z .

• The only vector with zero norm is the zero vector.

• The hermitian inner product is not symmetric but satisfies (z, w)∗ = (w, z).

• (z, w) = z†w is linear in the second entry and anti-linear in the first: (λz, µw) = λ∗µ(z, w)
and (z + z′, w) = (z, w) + (z′, w), (z, w + w′) = (z, w) + (z, w′).

• A pair of vectors are orthogonal if their inner product vanishes z†w = 0

• In the language of quantum mechanics, a vector is a possible state of a system and a (hermitian)
matrix is an observable.

• Expectation value of a matrix observable A in the state x is defined as the complex number
x†Ax

• A vector space with an inner product is also called a Hilbert space.

11.1 Orthonormal bases

• A basis {qi}ni=1 for a vector (sub)space is orthogonal if the basis vectors are mutually orthog-
onal, qi ⊥ qj or qTi qj = 0 for i 6= j .

• In addition it is convenient to normalize the basis vectors to have unit length, ||qi|| = 1. Then
we say the basis qi is orthonormal or o.n.

• A convenient way of packaging an orthonormal basis is to collect the basis vectors as the
columns of a matrix Q . Then the columns of Q are orthonormal

qTi qj = δij or QTQ = I (81)

• Example, the standard cartesian x − y basis is o.n. But so is any rotated version of it. The
columns of Q and Q′ below are both o.n. bases for R2

Q =

(
1 0
0 1

)
, Q′ =

(
cos θ sin θ
− sin θ cos θ

)
(82)

• Check the o.n. conditions.

• The basis (1, 0, 0) and (0, 1, 0) is an orthonormal basis for the x− y plane contained in R3 .
In this case Q is a rectangular 3× 2 matrix,

Q =

 1 0
0 1
0 0

 (83)

yet it satisfies QTQ = I2×2 . Note that QQT 6= I , in fact it is a projection matrix!
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• But if Qn×n is a square matrix, then QTQ = I implies that Q has a left inverse. Does it
have a right inverse? Being a basis, we know that the columns of Q are linearly independent.
Being square, the rows must also be linearly independent as the rank is n . But if the rows are
linearly independent, it means the rows span the domain or equivalently, c = yQ has a unique
solution for any c . This means Q has a right inverse. By the equality of left and right inverses,
we conclude that Q−1 = QT and that QQT = QTQ = I . Such a matrix is called an orthogonal
matrix.

11.2 Orthogonality of subspaces:

• A pair of subspaces V,W ⊆ U are orthogonal if every vector in V is perpendicular to every
vector in W

• Orthogonal complement of span(a) is the space of all vectors b that are orthogonal to it:
bTa = 0. Check that it is a subspace.

• More generally the orthogonal complement V ⊥ of a subspace V is the space of all vectors
that are orthogonal to every vector in V

• For example, the orthogonal complement of the x-axis in R2 is the y axis. The orthogonal
complement of the x− y plane in R3 is the z -axis.

• Note that the orthogonal complement of a subspace is quite different from its complement as
a subset.

Orthogonal direct sum

• If U, V are orthogonal complements of each other as subspaces of W (U⊥ = V, V ⊥ = U ),
then every vector in W can be written uniquely as a sum w = u + v with u ∈ U and v ∈ V .
We say that W is the orthogonal direct sum of U and V . W = U + V and W ∼= U ⊕ V .

11.3 Components of a vector in an orthonormal basis

• A vector x ∈ Rn can be decomposed or analyzed or expanded in any basis

x = x1q1 + · · ·xnqn =
∑
j

xjqj (84)

• The components xi are uniquely determined. Indeed suppose x = xiqi = x′iqi , then
∑
i(xi −

x′i)qi = 0 which is possible iff xi = x′i since qi (being a basis) are linearly independent.

• But what are the components xi? If qi form an orthonormal basis ((qi, qj) = δij ), we can
find the xi easily by taking inner products with the basis vectors. Indeed, (x, qi) = xi so

x =
∑
j

(x, qj)qj (85)

11.4 General inner products on vector spaces

• More generally an inner product on a vector space is a way of speaking of lengths and angles
between vectors, but having the same basic properties as the standard inner product.
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• These basic properties are the axioms of an inner product

• Inner product on a real vector space (x, y) is a symmetric, non-degenerate bilinear form.
Symmetry means (x, y) = (y, x). Non-degenerate means (x, y) = 0 for all y implies x = 0.
This is saying that the only vector that is perpendicular to all vectors is the zero vector. Bilinear
means (ax+ by, u) = a(x, u) + b(y, u) and similarly for linear combinations in the second entry.

• In the complex case (z, w), bilinearity is replaced with linearity in the second entry w and anti-
linearity in the first entry due to the complex conjugation (λz+ ζ, µw+ω) = λ̄µ(z, w) + (ζ, ω).

• Also for complex vector spaces, we speak of a hermitian inner product in the sense that
symmetry is replaced by (z, w)∗ = (w, z)

• Example, given any symmetric strictly positive matrix A , we can define the inner product
(x, y) = xTAy . The standard case arises from the choice A = I .

• Given a hermitian strictly positive matrix H , we get a hermitian inner product (z, w) = z†Hw .
The standard choice is H = I

• A vector space with an inner product is called a Hilbert space. Hilbert spaces are the basic
playground of quantum mechaincs.

11.5 Norm of a matrix

• Just as you can assign a length to a vector, one can also assign a length to a matrix.

• For A : V → W , the operator norm measures how much A magnifies a unit vector: ||A|| =
sup||x||=1 ||Ax||
• The Hilbert-Schmidt norm of a matrix is obtained from the sum of the squares of all its entries

||A||H−S = (
∑
i,j

|aij |2)1/2 (86)

11.6 Orthogonality of Row space and Null space and of Col(A) and N(AT )

• The row space R(A) = C(AT ) is orthogonal to the null space N(A)

• Suppose x ∈ N(A), then Ax = 0, but this equation just says that every row of A has zero
dot product with x 

−− r1 −−
−− r2 −−

...
−− rm −−



x1

x2
...
xn

 =


r1 · x
r2 · x

...
rm · x

 = 0 (87)

• Thus the null space is orthogonal to the row space.

• The column space C(A) is orthogonal to N(AT )

• This follows by applying the previous argument to AT , since the columns of AT are the rows
of A . AT y = 0 implies y is orthogonal to the rows of AT and hence to the columns of A .

• Thus, the row space and the null space are orthogonal subspaces of the domain space Rn .
But we have already seen that their dimensions dimR(A) = r , dimN(A) = n − r add up to
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that of the the domain. So in fact N(A) and R(A) are orthogonal complements of each other
in the the domain Rn

• R(A) ∩N(A) = {0} , R(A) ⊥ N(A)

• Similarly, C(A) and N(AT ) are orthogonal subspaces of the target space Rm . But we have
already seen that their dimensions dimC(A) = r , dimN(AT ) = m − r add up to that of the
the domain. So in fact N(AT ) and C(A) are orthogonal complements of each other in the the
target Rm

• C(A) ∩N(AT ) = {0} , C(A) ⊥ N(AT )

• Draw the picture of the orthogonal decomposition of the domain Rn and range Rm .

• These facts are sometimes included in the fundamental theorem of linear algebra.

12 Compatibility and general solution of Ax = b

12.1 Compatibility of Ax = b and the adjoint equations

• Consider a system of m equations in n unknowns Ax = b . A is an m × n matrix and x is
an n component column vector and b is an m component column vector.

• The vector on the rhs b is often called the data or the inhomogeneity.

• A commonly used terminology is

1. Under-determined: less equations than unknowns m < n

2. Over-determined: more equations than unknowns m > n

3. Even determined or balanced: same number of equations and unknowns m = n .

• One should bear in mind that this terminology may bear little relation to the actual number
of solutions. But it is still a reasonable terminology. Generically, an under-determined system
has infinitely many solutions, an over-determined system no solutions and an even-determined
system a unique solution. What does ‘generically’ mean?

• An under-determined system may have no solutions as below:

x1 + x2 + x3 = 1
2x1 + 2x2 + 2x3 = 0 (88)

But by making an arbitrarily small change to the matrix we get a new system

x1 + x2 + x3 = 1
(2.0001)x1 + 2x2 + 2x3 = 0 (89)

whose matrix A now has rank 2 rather than 1 since the rows are independent. The new
system now has a 1-parameter family of solutions, i.e. infinitely many solutions as is typical of
under-determined systems.

• An over-determined system may have infinitely many solutions as these three equations in
two unknowns shows. Find the solutions

x1 + x2 = 3
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2x1 + 2x2 = 6
3x1 + 3x2 = 9 (90)

But by making a small change, say in the rhs 9→ 9.01, the system ceases to have any solution,
which is typical of over determined systems.

• An even-determined system may have no solutions:

x1 − x2 = 1 and 2x1 − 2x2 = 3 has no solution (91)

But by making a small change −1→ −1.001 the system has a unique solution, which is typical.
An even-determined system may have infinitely many solutions

6x+ 8y = 0 and 3x+ 4y = 0 has many solutions (92)

But by a small change 3→ 3.1 it becomes a system with just one solution, which is typical.

• The actual number of solutions is determined by the rank r of A in relation to m and n as
well as the data on the rhs b

• Ax = b is called incompatible or inconsistent if the system admits no solution for the data b .

• Ax = b is called compatible if it admits 1 or more solutions. A necessary and sufficient
condition for compatibility is for b to lie in the column space. But this is not a useful condition
in practice since it is just a restatement of the definition.

• A more useful compatibility condition is formulated in terms of N(AT ), in fact we already
have it. We found that C(A) and N(AT ) are orthogonal and that their sum is the target space
Rm . So a vector b in the target is in C(A) iff it is orthogonal to every vector in N(AT ). So
Ax = b is compatible iff

yT b = 0 for every solution to AT y = 0 (93)

• For every linearly independent solution of AT y = 0, i.e. for every independent vector in
N(AT ) we have one compatibility condition yT b = 0. Since dimN(AT ) = m−r , we have m−r
compatibility conditions. So there are m − r compatibility conditions to be checked. If they
are all satisfied, then and only then, Ax = b is a consistent system and will have at least one
solution.

• Remark: A homogeneous system Ax = 0 is always compatible since b = 0 has zero dot
product with any y . Indeed, x = 0 is always a solution.

12.2 General solution to inhomogeneous system Am×nxn×1 = bm×1

• The most general solution to Ax = b is of the form x = xparticular + xnull , where xnull is an
arbitrary vector in the null space N(A) and xparticular is any specific solution of Ax = b . This
is because the difference between any two solutions is a solution of the homogeneous system.

• N(AT ) provides the compatibility conditions b·N(AT ) = 0. Once the compatibility conditions
are satisfied, there will be at least one (particular) solution.

• A convenient choice for the particular solution is the one obtained by setting all the free
variables to zero and solving for the pivot variables. To this we must add an arbitrary vector in
the null space to get the most general solution.
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• The kernel parameterizes the space of solutions. If the kernel N(A) is trivial, there is a unique
solution. In general there is an n− r(= dimN(A)) parameter family of solutions.

• Some special cases:

• For an n×n system Ax = b with rank(A) = n maximal, there is a unique solution x = A−1b .

• For an n×n system Ax = b with rank(A) = r < n , there are n− r compatibility conditions
to be satisfied. If they are satisfied, there is then an n−r parameter family of solutions otherwise
there are no solutions.

• If Am×n has full column rank, r = n < m , there are no free variables, N(A) is trivial, so there
is at most one solution. The solution exists provided the m − r(= dimN(AT )) compatibility
conditions b ·N(AT ) = 0 are satisfied.

• If Am×n has full row rank, r = m < n , N(AT ) is trivial, so there are no compatibility
conditions. There is an n− r = dimN(A) parameter of solutions (i.e. infinitely many).

• If Am×n has less than maximal rank, r < n, r < m , then there are m − r compatibility
conditions. If they are satisfied, then there is an n− r parameter family of solutions.

• In practice, to solve Ax = B we use elimination to reduce the augmented matrix (A|x) to
reduced row echelon form (R|d). In this form we have used elimination to eliminate entries both
above and below the pivots and finally divided by the pivots. Let us suppose the first r columns
are the pivot columns and the remaining n − r columns are the free columns for simplicity
(this is not always the case, though with the help of row exchanges and columns exchanges in
conjunction with reordering of variables we can reach this form)

Rx =

(
I F
0 0

)(
xpivot
xfree

)
=

(
d
0

)
(94)

We identify the null space matrix, whose columns are a basis for N(A).

N =

(
−Fr×n−r
In−r×n−r

)
(95)

Check that RN = −IF + FI = 0. This means R annihilates each column of N . The columns
of N are linearly independent since the lower block contains the identity matrix. So the columns
of N form a basis for N(A).

• Then we find the particular solution obtained by setting all the free variables to zero, this is
very easy in reduced row echelon form, the pivot variables are just the components of d .

xparticular =

(
d
0

)
(96)

• Then the general solution is the particular solution plus any linear combination of the columns
of N

xn×1 =

(
dr×1

0n−r×1

)
+Nn×n−r xfreen−r×1 (97)

• The n− r free variables are not determined and parameterize the space of solutions.

• Work out the example  1 3 0 2
0 0 1 4
1 3 1 6



x1

x2

x3

x4

 =

 1
6
7

 . (98)
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13 Projection matrices

• Projections are an important class of matrices, not least because the density matrix of a pure
state of a quantum system is a projection matrix.

Orthogonal projection onto a line through the origin

• Example of projection of a vector onto a rectangular coordinate axis

• A line through the origin is just a 1-d vector space spanned by a vector a .

• We seek to project a vector v onto the span of a . Let us call the projection Pv = aξ , since
it must be a multiple of a .

• Then the orthogonality of the projection means that the difference between v and its projection
Pv , i.e. the error vector e = v − Pv must be perpendicular to a

e ⊥ a⇒ aT e = 0⇒ aT (v − Pv) = 0⇒ aT v = ξaTa⇒ ξ =
aT v

aTa
(99)

• So Pv = aξ = aaT

aT a
v

• Another way to find the projection Pav is to observe that Pv = ξa is the vector along a that
is closest to v . So ξ must be chosen so that the error vector e = v − Pv has minimal length.

||e||2 = (v − ξa)T (v − ξa) = vT v − 2ξaT v + ξ2aTa⇒ ∂||e||2

∂ξ
= −2aT v + 2ξaTa = 0⇒ ξ =

aT v

aTa
(100)

• Projection map v 7→ Pv is a linear transformation, since it is linear in v .

• The matrix of the projection onto the subspace spanned by a is

Pa =
aaT

aTa
or Pij =

aiaj∑
k akak

(101)

• The product of a column vector by a row vector with the same number n of components is
called the outer product, it is an n × n matrix. So Pa is the outer product of a with itself
divided by the inner product of a with itself.

• Notice that Paa = 1, i.e., the projection of ~a onto itself is the identity matrix.

• Notice that if v ⊥ a , then Pav = 0.

• It is easy to check that Pa satisfies the following two properties: it is symmetric and squares to
itself P 2 = P, P T = P . We will see that more general projections also satisfy these properties
and they can be taken as the defining properties of projections. (caution: P T = P is true only
in orthonormal bases)

• Notice that I − Pa also satisfies these conditions. It is the projection onto the orthogonal
complement of a . Indeed, it is just the error vector (I − Pa)v = v − Pav , which we know to be
orthogonal to ~a .

• For example, the projection matrix onto the line spanned by the unit column vector a =
(1, 0, 0) is

Pa =

 1
0
0

( 1 0 0
)

=

 1 0 0
0 0 0
0 0 0

 (102)
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• From this example, we see that Pa is a rank-1 matrix, since it has a single pivot, or equivalently,
a single independent column or row.

• However, not all rank-1 matrices are projections.

• A rank-1 matrix can always be be written as an outer product A = uvT . Multiplying by
columns we see that uvT is the matrix whose columns are (v1u, v2u, · · · , vnu), so it has only
one linearly independent column. Conversely, any matrix with only one linearly independent
column is of this form.

• Among rank-1 matrices, uvT , only if u, v point in the same direction and have reciprocal
lengths is the result a rank-1 projection.

• Notice also that the trace tr Pa = 1 is its rank. This is generally true of projections onto
1-dimensional subspaces.

• Consider another example, projection onto a =

(
1
2

)

Pa =
1

5

(
1 2
2 4

)
, tr Pa = 1 (103)

• Since Pa = Pλa , Pa is independent of the particular vector a . Pa only depends on the
subspace spanned by a .

• If a ⊥ b , i.e. bTa = 0, then PaPb = PbPa = 0 as can be seen from the formula. Projections
to orthogonal directions commute.

• Projection to orthonormal basis vectors: A virtue of orthonormal bases is that it is very easy to
find the projection onto a basis vector in an orthonormal basis,

• If ~x =
∑
i xi
~bi where ~bi are an o.n. basis, then Pbix = xi~bi (no sum on i) where xi = (x, bi)

are the components.

• To see this use the above formula and orthonormality ~bTi
~bj = δij

Pbix =
bib

T
i

bTi bi
x = bib

T
i x = bixi (no sum on i) (104)

• In particular, any vector can be expanded in an orthonormal basis ~bi as a =
∑
i Pbia

13.1 Orthogonal projection to a subspace

• More generally we can consider orthogonal projection of v onto a subspace of a vector space.

• A subspace is often specified by a collection of basis vectors a1 · · · ad . So it is convenient to
think of these as the columns of a matrix An×d . Then our problem is to find the orthogonal
projection onto the column space of A .

• Pv is a linear combination of columns of A , Pv = a1ξ1 + a2ξ2 + · · ·+ adξd , so let Pv = Aξ
for some column vector ξ .

• The error vector e = Pv− v = Aξ− v must be perpendicular to every vector in the subspace
and so AT e = 0, i.e., e ∈ N(AT ) or equivalently, e ⊥ C(A). Thus

AT (Aξ − v) = 0 ⇒ ATAξ = AT v ⇒ ξ = (ATA)−1AT v (105)
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• So Pv = Aξ = A(ATA)−1AT v . Thus the projection matrix is P = A(ATA)−1AT .

• We have used the fact that ATA is invertible if the columns of A are linearly independent
(columns of A are linearly independent as they are a basis for the subspace onto which we wish
to project).

• Proof: Let us show that ATA has trivial kernel. Suppose there was a vector x 6= 0 such that
ATAx = 0. Columns of A are linearly independent, so Ax = 0 iff x = 0. So let Ax = y 6= 0.
We see that y ∈ C(A). Now we know that N(AT ) is orthogonal to C(A). So y could not be in
the kernel of AT , so AT y 6= 0. In other words, ATAx 6= 0, and this contradicts the assumption.
So ATA must have trivial kernel and therefore be invertible.

• On the other hand, if A was square, and invertible, then P = I . In this case, the columns of
A span the whole space and Pv = v for every vector.

• If v lies in C(A), we expect Pv = v , Indeed, v = Aη for some column vector η . So
Pv = A(ATA)−1ATAη = Aη = v .

• We check that P 2 = P and P T = P

• Invariance of PA under change of basis for C(A). The basis given by the columns of A was
merely a convenient way to specify the subspace. The projection onto a subspace should depend
only on the subspace and not the particular basis we choose for it.

• Suppose we choose a different basis whose basis vectors b1, · · · , bn are some (invertible) linear
combinations of the columns of A . The new basis vectors can be assembled in the columns of
a new matrix

b1 = c11a1 + c21a2 + · · ·+ cd1ad
b2 = c12a1 + c22a2 + · · ·+ cd2ad

... (106)

(
b1 b2 . . bd

)
=
(
a1 a2 . . ad

)

c11 c12 . . c1d

c21 c22 . . c2d
...

cd1 cd2 . . cdd

 (107)

• So the transformation of bases is B = AC . Note that A and B are both n× d matrices and
C is a d× d matrix.

• C is invertible. Why? Observe that the i-th column of C is just the vector bi expressed in
the a-basis. Since the bi are a basis, they are linearly independent and so the columns of C are
linearly independent. So C has trivial kernel and is invertible.

• Now we show that PB = PA provided C is invertible. We use the fact that ATA is invertible:

PB = B(BTB)−1BT = AC((AC)TAC)−1(AC)T = AC(CTATAC)−1CTAT

= ACC−1(ATA)−1(CT )−1CTAT = A(ATA)−1AT = PA (108)

• Example, projection onto the x−y plane in R3 . In this case it is convenient to take the usual
cartesian o.n. basis for the x− y plane so that

A =

 1 0
0 1
0 0

 , ATA =

(
1 0
0 1

)
, PA = AAT =

 1 0 0
0 1 0
0 0 0

 (109)
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• Notice that PA projects to a 2-dimensional subspace and its rank and trace are also 2.

• In general I − PA is the projection to the orthogonal complement of the subspace spanned
by the columns of A .

• The rank of a projection matrix d is the dimension of the subspace to which it projects and
this equals its trace. (But the rank is not related to the trace in this way for an arbitrary
matrix.)

• To see this, just pick an o.n. basis of d vectors for the subspace as in the above example and
in this basis, PA is a block matrix with d pivots all equal to unity. Its trace is also d

PA =

(
Id×d 0

0 0

)
(110)

• Density matrix in quantum mechanics of fermions (e.g. electrons) is a projection matrix.

• The number of fermions is the rank of the projection.

13.2 Best possible solution of overdetermined systems

• When an m × n system Ax = b has no solution (incompatible equations) we can still look
for the vector x̂ that comes closest to being a solution.

• The point about an incompatible system is that b does not lie in the column space of A .

• To make it compatible, we must replace b by a vector in C(A), not any old vector but the
one closest to b . But this is precisely the projection of b on to C(A).

• So we replace our system with a new system Ax̂ = PAb , where PA = A(ATA)−1AT .

• Thus we must solve Ax̂ = A(ATA)−1AT b which is the same as

ATAx̂ = AT b (111)

• This is the equation obtained by multiplying the incompatible one by AT from the left. We
can forget how we derived it and consider the equation ATAx̂ = AT b in its own right. This
equation is called the normal equation.

• The n× n matrix ATA is obviously symmetric.

• The remarkable thing about the normal equation is that it always has at least one solution,
no matter how over determined the original system Ax = b was. Indeed, ATA may not even
be invertible, it may have a non-trivial kernel and the formula for PA may not make sense, but
the normal equations always have a solution!

• Proof: We want to show that ATAx̂ = AT b always has a solution, which is the same as
showing that AT b ∈ C(ATA). But this is the same as showing that AT b ⊥ N((ATA)T ), which
is the same as AT b ⊥ N(ATA). But N(AT ) is orthogonal to C(A). SoN(ATA) = N(A). So
we need to show that AT b ⊥ N(A) which is the same as C(AT ) ⊥ N(A), i.e. R(A) ⊥ N(A),
which is true!

• Moreover, ATA is a positive (semi-definite) matrix in the sense that all expectation values
are ≥ 0

xTATAx = (xA)TAx = ||Ax||2 ≥ 0 (112)
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• ATA is invertible iff A has linearly independent columns.

• Proof: ATA invertible ⇒ it has trivial kernel. But its kernel is the same as that of A since
N(AT ) is orthogonal to C(A). In more detail, the only ways x 6= 0 can lie in N(ATA) is for x
to be annihilated by A or for AT to annihilate Ax . The second possibility cannot happen since
N(AT ) ⊥ C(A). So N(ATA) = N(A). So the rectangular matrix A must have trivial kernel,
which means its columns are linearly independent.

• Conversely, if A has independent columns, then its kernel is trivial and since N(AT ) ⊥ C(A),
ATA also has trivial kernel and being square, is invertible.

• Alternate proof of converse: If A has linearly independent columns, A has trivial kernel. Now
suppose ATAx = 0 for some x 6= 0. For this x , Ax 6= 0 since N(A) = {0} and so ||Ax|| > 0,
i.e., xT (ATAx) > 0. But this contradicts the assumption that ATAx = 0. So ATA has trivial
null space and is therefore invertible and also strictly positive.

• Also draw the picture with dim(C(A)) = r = n and dim(R(A)) = r = n , dim(N(A)) = 0,
dim(N(AT )) = m− r .

13.3 Example of least-squares fitting

• Suppose we apply a potential difference V across a wire or other circuit element and measure
the current I that flows through it to get the table(

V oltage(V ) V1 V2 V3 · · · Vm
Current(Amps) I1 I2 I3 · · · Im

)
(113)

Ohm’s law says that for some wires, the current generated is proportional to the applied voltage
I = 1

RV , where the proportionality constant is called the conductance G = 1
R and R is called the

resistance. Of course, the wire may not obey Ohm’s law exactly and there could be deviations.
We want to fit a curve to the data and to allow for some simple deviations from Ohm’s law let
us try to fit a straight line I(V ) = GV +C or a parabola I = FV 2 +GV +C passing through
the data points

I1 = FV 2
1 +GV1 + C

I2 = FV 2
2 +GV2 + C

...
Im = FV 2

m +GVm + C (114)

We want to find the values of F,G,C . Of course, if we find that F and C are very small, we
would say that the wire obeys Ohm’s law closely. The above can be written as a matrix equation
Ax = b for x = (F,G,C)T 

V 2
1 V1 1
V 2

2 V2 1
...
V 2
m Vm 1


FG
C

 =


I1

I2
...
Im

 (115)

For m > 3 this is an over-determined system and generically will not have any solution F,G,C .
In other words, the column of currents b will not be in the column space of A .
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The problem then is to find the values of F,G,C that best describe the data. By best fit we
mean that we want to minimize the error, E =

∑m
j=1(Ij − I(Vj))

2 , which is the square of the
difference between the measured current and that given by the curve. This is called least-squares
fitting. But this error is just the norm of the error vector e = b−Ax i.e., E(x) = eT e .

So we will replace the system Ax = b which has no solution with a new system where b is
replaced by a vector in C(A). Minimizing the norm of the error vector means we must replace
b with its orthogonal projection to C(A). This leads to the new system of ‘normal equations’

Ax̂ = PAb, or Ax̂ = A(ATA)−1AT b or ATAx̂ = AT b (116)

The solution of the normal equations x̂ = (F̂ , Ĝ, Ĉ)T always exists and minimizes the error
Emin = E(x̂) = ||b−Ax̂||2 .

• In the special case where we wish to fit a straight line (F = 0),

ATA =

(∑
i V

2
i

∑
i Vi∑

i Vi m

)
, AT b =

(∑
j VjIj∑
j Ij

)
(117)

where m is the number of data points. Notice that ATA is symmetric. The normal equations
are below, solve them in a specific example(∑

i V
2
i

∑
i Vi∑

i Vi m

)(
Ĝ
Ĉ

)
=

(∑
j VjIj∑
j Ij

)
(118)

14 Operators on inner-product spaces

• An inner product space is a vector space V with an inner product (x, y) for x, y ∈ V . For
example, Rn with the standard dot product (x, y) = xT y is an inner product space. Inner prod-
uct spaces are also called Hilbert spaces and are the arena for geometric discussions concerning
lengths and angles.

• Suppose A : U → U is a linear transformation from the inner product space U to itself, then
we call A an operator on the inner product space U . This concept also applies to A : U → V .

• Dirac Bra-Ket notation: Suppose ei are a basis for a vector space, say Rn . Think of these
as column vectors. Dirac’s notation for them is |ei〉 . Indeed any column vector x is called
a ket-vector, and may be written as a linear combination |x〉 =

∑n
i=1 xi|ei〉 . On the other

hand, the basis of row vectors eTi are denoted 〈ei| . Any row vector y is a linear combination
〈y| =

∑
i yi〈ei| .

• Moreover, the inner product is written as (x, y) = 〈x|y〉 =
∑
i,j xiyj〈ei|ej〉 . If ei are an

orthonormal basis, then 〈ei|ej〉 = δij , and 〈x|y〉 =
∑
i xiyi .

• The matrix elements Aij of a linear transformation A : V → V in the basis ei is given by

Aij = eTi Aej = (ei, Aej) = 〈ei|A|ej〉 (119)

To see this note that Aej is the jth column of A and eTi A is the ith row of A or equivalently,
the ith column of AT . Combining these, eTi Aej is the entry in the ith row and jth column.
Alternatively, write ej in the e-basis as the column vector with zeros everywhere except for a
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1 in the jth slot and similarly eTi as the row vector with a 1 in the ith slot and zeros elsewhere
and perform the matrix multiplication.

• More generally, A could be rectangular. Suppose A : U → V , then the matrix element Aij
in the ej basis for U and fi basis for V is given by Aij = fTi Aej = (fi, Aej) = 〈fiAej〉 .

14.1 Orthogonal Transformations

• A rotation of the plane about the origin is a linear transformation that preserves distances
and angles. A reflection about a line through the origin also preserves lengths and angles.
Orthogonal transformations generalize this concept to other dimensions. Transformations that
preserve inner products are also called isometries.

• An orthogonal transformation on, say a real vector space Rn with inner product is one which
preserves the inner product, i.e. (u, v) = (Qu,Qv) for all u, v . The reason it is called orthogonal
is because it is represented by an orthogonal matrix.

• Bear in mind that to define an orthogonal transformation our vector space must have an inner
product.

• In particular, an orthogonal transformation u → Qu preserves the length of u : (u, u) =

||u||2 = (Qu,Qu) = ||Qu||2 and the angle between u and v : (u,v)
||u||||v|| = (Qu,Qv)

||Qu||||Qv||

• For the standard inner product (u, v) = uT v , we have uT v = uTQTQv . Since this is true for
all u and v , it follows that QTQ = I .

• In more detail, take u and v to be any orthonormal basis eTi ej = δij , then uT v = uTQTQv
becomes eTi Q

TQej = eTi ej = δij . This merely says that the matrix elements of QTQ , (QTQ)ij =
eTi Q

TQej are the same as the matrix elements of the unit matrix:

• So an orthogonal matrix is an n × n matrix that satisfies QTQ = I . In other words, the
columns of Q are orthonormal.

• So the left inverse of Q is QT . But we showed in an earlier section that if the columns of
Q are orthonormal, then the right inverse is also QT . In other words QQT = QTQ = I . This
means the rows of Q are also orthonormal.

• The inverse and transpose of an orthogonal matrix are also orthogonal.

• Check that the product of two orthogonal matrices is also orthogonal.

• The identity matrix and −I are obviously orthogonal.

• The reflection in the x axis in R2 is orthogonal

Q =

(
1 0
0 −1

)
(120)

• A 2 × 2 real matrix

(
a b
c d

)
is orthogonal provided the rows are orthonormal: a2 + b2 =

c2+d2 = 1 and ac+bd = 0. These conditions can be ‘solved’ in terms of trigonometric functions.

• 2× 2 orthogonal matrices are either rotations by θ

Q =

(
cos θ sin θ
− sin θ cos θ

)
(121)
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or rotations by θ composed with a reflection (x, y)→ (x,−y)

Q =

(
cos θ sin θ
sin θ − cos θ

)
(122)

• Permutation matrices are matrices obtained from permutations of the columns (rows) of the
identity matrix. But permuting the columns (rows) does not change the fact that the columns
(rows) of I are orthonormal. So permutation matrices are also orthogonal.

Q(132) =

 0 0 1
1 0 0
0 1 0

 (123)

• So the inverse of a permutation matrix is just its transpose QT132Q132 = I

14.2 Unitary Transformations

• A unitary transformation preserves the inner product on a complex vector space (z, w) =
(Uz, Uw) for all z, w . For the standard hermitian inner product on Cn , (z, w) = z†w this
becomes z†w = (Uz, Uw) = z†U †Uw . Repeating the steps used for orthogonal matrices, unitary
matrices are those square matrices that satisfy

U †U = UU † = I (124)

Here the hermitian adjoint of any matrix or vector is the complex conjugate transposed: A† =
(AT )∗ . Notice that (z,Aw) = z†Aw = (A†z)†w = (A†z, w) where we used (A†)† = A .

• For a general inner product space the adjoint A† of a matrix A is defined through its matrix
elements using the above relation (A†z, w) ≡ (z,Aw).

• We notice that the inverse of a unitary matrix U is its adjoint U † .

• All real orthogonal matrices are automatically unitary, since complex conjugation has no
effect.

• A 2× 2 complex matrix

(
a b
c d

)
is unitary provided the rows are orthonormal |a|2 + |b|2 =

|c|2 + |d|2 = 1, ac̄+ bd̄ = 0.

• Define the matrix exponential as the matrix eAx =
∑∞
n=0

Anxn

n! . The sum is absolutely
convergent for any square matrix and defines eAx . We can use it to find more unitary matrices.

• Example: σ1

(
0 1
1 0

)
is the first Pauli matrix, it is hermitian. It turns out that U = eiσ1x

is a unitary matrix for any real x . To see this, use the formula for the matrix exponential to
show that U = eiσ1x = I cosx + iσ1 sinx . It follows that U † = I cosx − iσ1 sinx and that
U †U = UU † = I .

15 Gram-Schmidt orthogonalization and QR decomposition

• We have seen that orthonormal bases qTi qj = δij are very convenient, The components of any
vector in an orthonormal basis are just its inner products with the basis vectors

x = xiqi ⇒ xi = (qi, x) (125)
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• So given any basis, it is useful to convert it into an orthonormal basis.

• This is what the Gram-Schmidt procedure of successive orthogonalization does.

• Another reason to be interested in it is the following.

• It is generally hard to invert a matrix A . But there are two classes of matrices that are fairly
easy to invert.

• Orthogonal matrices are trivial to invert. QTQ = QQT = I ⇒ Q−1 = QT .

• And inverting a triangular matrix with non-zero diagonal elements is also quite simple (use
successive eliminations (since it is already in echelon form). The inverse of a triangular matrix
is again triangular.

• For example(
a 0 | 1 0
c d | 0 1

)
→
(
a 0 | 1 0
0 d | −c/a 1

)
→
(

1 0 | 1/a 0
0 1 | −c/ad 1/d

)
(126)

• So it is very interesting that any matrix can be factorized as a product A = QR of an orhogonal
matrix and an upper triangular matrix. Upper triangular is also called right triangular, so the
letter R .

• The successive orthogonalization procedure actually produces the QR decomposition of a
matrix.

• It begins with independent vectors a1, a2 · · · an which are the columns of A . From them, it
produces an orthonormal basis for C(A), q1, q2, · · · qn .

• Suppose first that the ai are orthogonal but not necessarily of length 1. Then we can get an
orthonormal basis by defining qi = ai

||ai|| . So the key step is to get an orthogonal basis of vectors.

• To start with, let q1 = a1/||a1|| . The next vector is a2 , but it may not be orthogonal to a1 ,
so we subtract out its projection on a1 , and then normalize the result. We continue this way:

q̃1 = a1, q1 = q̃1/||q1||
q̃2 = a2 − Pq1a2, q2 = q̃2/||q2||
q̃3 = a3 − Pq1a3 − Pq2a3, q3 = q̃3/||q3||

...
q̃n = (1− Pq1 − Pq2 − · · · − Pqn−1)an−1, qn = q̃n/||qn||

(127)

• By construction, for each r , qr is orthogonal to all the q ’s before it, and it is normalized.
So we have an orthonormal system of vectors which may be assembled as the columns of an
orthogonal matrix Q = (q1q2 · · · qn), QTQ = I

• But we also see the triangular character of the construction. a1 is along q1 , a2 is a combination
of q1 and q2 , ar is a combination of q1 · · · qr etc. But precisely which combinations?

• To find out, we just reap the benefit of our construction. Since qi are an orthonormal basis,
the components of any vector in this basis are just the inner products:

a1 = (q1, a1)q1

a2 = (q1, a2)q1 + (q2, a2)q2

a2 = (q1, a3)q1 + (q2, a3)q2 + (q3, a3)q3
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...
an = (q1, an)q1 + (q2, an)q2 + · · ·+ (qn, an)qn (128)

• In matrix form this is A = QR

( a1 a2 · · · an ) = ( q1 q2 · · · qn )


qT1 a1 qT1 a2 · · · qT1 an

0 qT2 a2 · · · qT2 an
0 0 · · · · · ·
0 0 · · · q2

nan

 (129)

• As an example, let us find the orthonormal basis arising from and the corresponding QR
decomposition

a1 =

 1
0
0

 , a2 =

 1
2
0

 , a3 =

 1
2
3

 (130)

In this case you can guess the answer easily.

• Apply the Gram-Schmidt procedure to the following basis for R3

a1 =

 1
−1
0

 , a2 =

 2
0
−2

 , a3 =

 3
−3
3

 (131)

• Use the QR decomposition to invert A .

• 2 dimensional example

a1 =

(
sin θ
cos θ

)
, a2 =

(
0
1

)
(132)

• Consider the vector space of real polynomials in one variable −1 ≤ x ≤ 1 with the inner
product (f, g)

∫ 1
−1 f(x)g(x)dx . A basis is given by the monomials 1, x, x2, x3 , . . . . However the

basis is not orthogonal or even normalized, for example (1, 1) = 2. Use the Gram-Schmidt pro-
cedure to convert it to an orthonormal basis. The corresponding polynomials are the Legendre
polynomials.

16 Invariance of matrix equations under orthogonal/unitary and
general linear changes of basis

• Suppose we have an o.n. basis ei , e
T
i ej = δij and a vector ~x with components xi in this basis

~x = xiei = xT e

• Then we make a change of basis to a new orthonormal system ēi :

ē1 = q11e1 + q21e2 + · · ·+ qn1en
ē2 = q12e1 + q22e2 + · · ·+ qn2en
· · ·

ēn = q1ne1 + q2ne2 + · · ·+ qnnen (133)
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• Let e =


e1

e2

· · ·
en

 denote the column vector whose rows are the ei and similarly ē =


ē1

ē2

· · ·
ēn


denote column vector whose rows are ēi . In matrix form ē = QT e or ēT = eTQ where Q =
q11 q12 · · · q1n

q21 q22 · · · q2n
...

...
...

...
qn1 qn2 · · · qnn

 . The columns of Q are the components of the new basis in the old basis.

Since the new basis is orthonormal, these columns are orthonormal and so Q is an orthogonal
matrix QTQ = QQT = I .

• So we can write ē = QT e or e = Qē .

• The physical vector ~x of course does not change, but it has new components in the new basis
~x = xT e = x̄T ē . Thus

~x = xTQē = (QTx)T ē⇒ x̄ = QTx. (134)

• So the new and old components are related by x = Qx̄ or x̄ = QTx .

• Now suppose we had a matrix equation Ax = b . Since both x and b are vectors, they
transform in the same way

AQx̄ = Qb̄ ⇒ QTAQx̄ = b̄ (135)

• Thus the equation takes the same form in the new reference frame if we let Ā = QTAQ . This
is the transformation rule for a matrix under an orthonormal change of basis.

• It follows that Ā + B̄ = QT (A + B)Q and ĀB̄ = QTABQ . So any polynomial (algebraic
function) in matrices transforms in the same way as a single matrix.

F (Ā, B̄, · · · , P̄ ) = QTF (A,B, · · · , P )Q (136)

• So if we have an algebraic relation among matrices F (A,B, · · ·P ) = 0 then we have the same
algebraic relation among the orthogonally transformed matrices

F (Ā, B̄, · · · , P̄ ) = 0 (137)

• Thus we have the invariance of matrix equations under orthogonal transformations.

• Moreover, the inverse of an (invertible) matrix transforms in the same way Ā−1 = QTA−1Q .

• Furthermore, the transpose of a matrix transforms in the same way: ĀT = QTATQ . So
any algebraic matrix equation involving matrices, their inverses and their transposes is invariant
under orthogonal transformations.

• For example A − AT = 0 becomes Ā − ĀT = 0. So a matrix that is symmetric in one o.n.
frame is symmetric in any other o.n. frame.

• For example, if R is orthogonal in one orthonormal frame, RTR = I , then the transformed
matrix R̄ = QTRQ is also orthogonal R̄T R̄ = I .

• If we replace orthogonal by unitary and transpose by conjugate-transpose † , then all of the
above continues to hold. So a matrix that is hermitian in one o.n. frame is hermitian in every
other o.n. basis for Cn .
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• While components of vectors and matrices generally transform as above, some special vectors
and matrices, have the same components in every o.n. frame. These are the zero vector, zero
matrix and identity matrix.

• The angle between two vectors, length of a vector and inner product of a pair of vectors are
also invariant under orthogonal and unitary transformations as discussed earlier.

• The trace and determinant of a matrix are also orthogonally and unitarily invariant as dis-
cussed in the next section.

• Under a general linear transformation S (invertible but not necessarily orthogonal or unitary),
under which the basis vectors transform as ē = ST e , the components of a vector transform as
x = Sx̄ or x̄ = S−1x and those of a matrix transform as Ā = S−1AS or A = SĀS−1 . A and
Ā are called similar matrices.

• Algebraic equations in matrices (not involving the transpose) are again invariant under general
linear transformations. General linear transformations are also called similarity transformations.

17 Determinant and Trace

17.1 Invertibility and Volume

• Consider the 2× 2 system

ax+ by = f, cx+ dy = g,

(
a b
c d

)(
x
y

)
=

(
f
g

)
(138)

• To be solvable for arbitrary data f, g , we need the solution x = fd−bg
ad−bc , y = ag−cf

ad−bc to exist,
i.e., ad− bc 6= 0. The augmented matrix in row echelon form is(

a b | f

0 d− bc
a | g − cf

a

)
(139)

• So for a 2× 2 matrix (ab|cd) to be invertible we need its determinant ad− bc 6= 0.

• Notice that the determinant is the product of pivots a , d− bc
a

• We seek the analogue of this number that determines when an n× n matrix is invertible.

• Recall that an An×n is invertible iff it has independent rows (columns). This suggests a
geometric interpretation of the rows (columns) of A , think of them as edges of a parallelepiped
that emanate from a vertex that is located at the origin.

• Then the rows (columns) are independent iff the volume of the parallelepiped is non-zero. If
they are dependent, the parallelepiped becomes degenerate and lies within a hyperplane and
does not occupy any n-dimensional volume.

• So the volume of the parallelepiped is a natural candidate for the determinant of a matrix.

• Check that area of a parallelogram with vertices at (a, b) and (c, d) has area ad − bc . First
consider a rectangle, then a parallelogram with base along the x-axis. In general,the area of a
parallelogram is the base times the height. For simplicity both points are in the first quadrant

Area =
√
a2 + b2 × h, sin θ =

h√
c2 + d2

,
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cos θ =
ac+ bd√

a2 + b2
√
c2 + d2

, sin θ =
√

1− cos2 θ =
ad− bc√

a2 + b2
√
c2 + d2

(140)

So Area = ad− bc . We could also use the formula that the magnitude of the area is the norm of
the cross-product of the two vectors, which would lead to |Area| =

√
a2 + b2

√
c2 + d2| sin θ| =

|ad− bc|

17.2 Postulates or axioms of determinant

• Axioms of detA motivated via (signed) volume of parallelepiped

1. det I = 1, since the volume of a cube is 1.

2. detA→ −detA if a pair of different rows of A are exchanged. For example, the signed-area
of a parallelogram flips sign if we change the orientation. The rows form either a right handed
or left handed coordinate system in three dimensions.

• So we now know the determinant of permutation matrices, for example det

(
0 1
1 0

)
= −1.

• Recall that a permutation matrix is obtained by permuting the rows of the identity matrix.
Every permutation is a product of row exchanges (exchanges are sometimes called transpositions,
nothing to do with transpose!). The determinant of a permutation P is 1 if an even number
of row exchanges are made and −1 if an odd number of exchanges are made. detP is also
sometimes called the sign of a permutation sgn P or the parity of the number of transpositions
that P is a product of.

3. detA is linear in each row separately (holding other rows fixed). eg. the volume doubles if
we double the length of one edge.

• This means for instance that for an n× n matrix, det rA = rn detA and for 2× 2 matrices,

det

(
λa λb
c d

)
= λdet

(
a b
c d

)
, det

(
a+ e b+ f
c d

)
= det

(
a b
c d

)
+ det

(
e f
c d

)
(141)

• Note that det(A+B) 6= detA+ detB in general.

• For example, in the 2 × 2 case, we can get the formula detA = ad − bc using these three
axioms.

• These three axioms define the determinant uniquely, i.e., for any matrix, there is only one
number detA satisfying these properties. This can be shown using elimination and the pivot
formula (see next section).

• One should really think of the determinant as a function of the rows detA = det(r1, r2, · · · , rn).

• It is the unique complex-valued anti-symmetric multilinear function of the rows that is nor-
malized to det I = 1. Later we will see that ‘rows’ can be replaced with ‘columns’.

17.3 Properties of determinants

• To get a formula it helps to derive some properties of the determinant from these axioms
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• If a row of A vanishes, detA = 0

• If two different rows are the same, then detA = 0

• detA is unchanged if we subtract a multiple of a row from another row. This follows from
linearity.

det

(
a b

c− λa d− λb

)
= det

(
a b
c d

)
(142)

• So detA does not change under elementary row operations (without row exchanges).

• Recall that PA = LU summarizes gaussian elimination, where P is a permutation of the
rows, L is lower triangular with 1’s on the diagonal and U is upper triangular (row echelon
form) with the pivots in the diagonal. All matrices here are square.

• If U is an upper (or lower) triangular matrix, detU is the product of its diagonal entries.

• Proof: If the pivots are non-zero, we can use elimination to eliminate all non-diagonal entries
of U and then reduce to the identity by dividing by the pivots. In case a diagonal entry of U
is zero, then U is singular and we can use elimination to get a row of zeros.

• So detE = 1 for any elementary (elimination) matrix E that implements row elimination.

• So detA is the product of its pivots times (−1)number of row exchanges which is the sign of the
permutation (row exchanges) that is needed to bring A to echelon form.

• In particular for a diagonal matrix, det diag(λ1, · · · , λn) = λ1λ2 · · ·λn .

• If A is singular, then detA = 0, since elimination will produce a row of zeros. So if A has
non-trivial kernel, then its determinant vanishes.

• If A is invertible, then detA 6= 0, since elimination will produce n non-vanishing pivots
whose product is non-zero.

• Uniqueness: There is a unique function D(A) that satisfies the axioms of a determinant.
Sketch of Proof: Suppose there were two functions D1 and D2 both satisfying the axioms of a
determinant. Suppose further that there is a square matrix A with D1(A) 6= D2(A), in other
words, the determinant is not unique. We will end up in a contradiction. We showed above
that row operations do not change the determinant as defined by the three axioms (except
that row exchanges change the sign). So suppose R is the row echelon form of A . Then
D1(R) = D2(R). Suppose A is singular. Then R has a row of zeros and the axioms imply
that |D1(A)| = |D1(R)| = 0 and |D2(A)| = |D2(R)| = 0. This is a contradiction. So either
the assumptions are wrong or A must not be singular. If A is not singular, R has n non-zero
pivots along the diagonal and zeros elsewhere. The axioms imply that D1(A) = (−1)eD1(R)
and (−1)eD2(R) = D2(A), both being the product of pivots (multiplied by ±1 where used e
row exchanges). Again we have a contradiction. So our assumption that the determinant is not
unique is false and detA is unique.

• In many applications, the most important property of the determinant is the product rule
detAB = detAdetB .

• Check the product rule for 2× 2 and 3× 3 matrices by explicit calculation.

• It follows that detAp = (detA)p

• detAB = detAdetB . If detB = 0, then AB and B are singular and this is trivially true.
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If detB 6= 0, then we check that D(A) = detAB
detB satisfies the same 3 axioms as detA and by

uniqueness, D(A) = detA

• Caution: The pivots of AB need not equal the products of the pivots of A and those of

B . For example, A = B =

(
0 1
0 0

)
each have a single pivot equal to 1. But AB = 0

has no pivots. So one has to be careful when multiplying pivots of matrices. Also, if RA is
the row echelon form of A and RB is the echelon form of B , AB 6= RARB in general! For

example, let A = B =

(
1 2
3 4

)
. Then AB =

(
7 10
15 22

)
. But RA = RB =

(
1 2
0 −2

)
and

RARB =

(
1 −2
0 4

)
6= AB . Nevertheless, detAB = detRARB .

• detA−1 = 1/ detA since det(AA−1) = det I = 1

• The determinant of a permutation P is the same as that of its transpose P T . This is because
permutations are orthogonal PP T = I . Applying the product rule, and using detP = ±1
implies detP T = detP .

• detAT = detA . If A is singular, so is AT and then both sides vanish. Otherwise use
elimination to write PA = LU and transpose to ATP T = UTLT and use the product formula.
U is upper triangular with non-zero pivots along the diagonal. L is lower triangular with all
pivots equal to 1. Note that the determinant of such a triangular matrix only involves the
diagonal elements (the other entries can be killed off by elimination) which are unchanged by
transposition. So detL = detLT , detU = detUT . Moreover, detP = detP T . So we conclude
that detAT = detA .

• detA∗ = (detA)∗

• detA† = (detA)∗

• The determinant of an orthogonal matrix QTQ = I is ±1

1 = detQTQ = (detQ)2 (143)

This is a generalization of what we found for permutation matrices detP = ±1.

• The determinant of a unitary matrix U †U = I is a complex number of unit magnitude

1 = detU detU † = detU(detU)∗ = | detU |2 (144)

• Basis independence of determinant. The determinant is unchanged by a similarity transforma-
tion A′ = SAS−1 ⇒ detA′ = detSAS−1 = detS detAdetS−1 = detA

• Orthogonal and unitary transformations are special cases of similarity transformatons. So the
determinant is invariant under unitary and orthogonal transformations

det(U †HU) = detU detH detU † = detH|detU |2 = detH, and detA = detQTAQ (145)

• The determinant of a projection matrix (other than the identity) is 0. This is because
a projection onto a proper subspace always has less than maximal rank and therefore is not
invertible.

• Consider the homogeneous n × n system Ax = 0. We have seen that the following are
equivalent
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1. There is a non-trivial solution x

2. A has non-trivial kernel

3. A is not invertible

4. detA = 0

5. Rows of A are dependent

6. Columns of A are dependent

7. A has a zero eigenvalue

• The formula for the cross product of vectors in R3 can be formally expressed in terms of a
determinant using the usual cartesian components

~b× ~c = det

 î ĵ k̂
b1 b2 b3
c1 c2 c3

 (146)

• Triple product of vectors a ·(b×c) is the volume of a parallelepiped determined by the vectors
a, b, c , it may be expressed as a determinant, which makes clear that a · (b× c) = −b · (a× c)

a · (b× c) = det

 a1 a2 a3

b1 b2 b3
c1 c2 c3

 (147)

17.4 Formulas for determinants of n× n matrices

• Pivot formula: detA is the product of its pivots times the sign of the permutation (row
exchange) that is needed to bring A to echelon form. If A does not have n pivots, detA = 0.
This is how determinants are calculated numerically.

• But there is no explicit formula for the pivots in terms of the original matrix elements aij . If
we want an explicit formula for detA we proceed as below.

• Sum over permutations: This basically reduces the problem to determinants of permuta-
tion matrices but involves n! terms.

• Repeatedly use linearity to write detA as the sum of n! determinants of matrices which have
at most one non-zero element in each row and each column. But the latter are just multiples of
permutation matrices whose determinant are just the signs of the permutations.

• For example in the 2× 2 case (also work out the 3× 3 case.)

det

(
a b
c d

)
= det

(
a 0
c d

)
+ det

(
0 b
c d

)
= det

(
a 0
c 0

)
+ det

(
a 0
0 d

)
+ det

(
0 b
c 0

)
+ det

(
0 b
0 d

)
= det

(
1 0
0 1

)
ad+ det

(
0 1
1 0

)
bc
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= A11A22 sgn (1)(2) +A12A21 sgn (12) (148)

• Here the permutation matrix

(
0 1
1 0

)
exchanges the first two rows, so we call it the permuta-

tion (12) and its determinant is denoted sgn (12) = −1. The identity matrix is the permutation
(1)(2) sending the first row to itself and the second to itself, sgn (1)(2) = +1. (1342) is the

permutation P =


0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

 .
• To begin with there are nn = 22 terms in the sum (linearity in each row produces n terms).
But those terms that have a column of zeros do not contribute. We are left with terms that
have precisely one non-zero entry in each row and precisely one non-zero entry in each column.
Their determinants are multiplies of the determinant of permutation matrices. There are n!
permutation matrices and so we have a sum of n! = 2 terms. Each of these surviving terms is
a multiple of the determinant of a permutation matrix. Here the identity is also a permutation,
which does not permute anything.

• Thus we have a sum over all permutations of the rows (or columns).

detA =
∑

permutations P

det(P )A1P (1)A2P (2) · · ·AnP (n) (149)

Here we define P (i) = j if the ith row is sent to the jth row by the permutation matrix P .

• So any determinant is a linear combination of determinants of permutation matrices. Half
(= n!/2) the detP ’s are +1 and half −1.

• Laplace’s cofactor expansion: This expresses detA as an n-term linear combination of
determinants of n− 1× n− 1 matrices, which are the minors of A .

• In the 2× 2 case we have seen that∣∣∣∣( a b
c d

)∣∣∣∣ =

∣∣∣∣( a 0
0 d

)∣∣∣∣+ ∣∣∣∣( 0 b
c 0

)∣∣∣∣ = ad

∣∣∣∣( 1 0
0 1

)∣∣∣∣+ bc

∣∣∣∣( 0 1
1 0

)∣∣∣∣ = a det(d)− bdet(c) (150)

• It is instructive to consider the 3× 3 case. By linearity and avoiding columns of zeros we get∣∣∣∣∣∣
 a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ =

∣∣∣∣∣∣
 a11 0 0

0 a22 a23

0 a32 a33

∣∣∣∣∣∣+ det

 0 a12 0
a21 0 a23

a31 0 a33

+ det

 0 0 a13

a21 a22 0
a31 a32 0


= a11

[
a22a33 det

 1 0 0
0 1 0
0 0 1

+ a23a32 det

 1 0 0
0 0 1
0 1 0

]

+a12

[
a21a33 det

 0 1 0
1 0 0
0 0 1

+ a23a31 det

 0 1 0
0 0 1
1 0 0

]

+a13

[
a21a32 det

 0 0 1
1 0 0
0 1 0

+ a22a31 det

 0 0 1
0 1 0
1 0 0

]
= a11 detM11 − a12 detM12 + a13 detM13 = a11C11 − a12C12 + a13C13 (151)
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• More generally, expanding along the ith row of an n× n matrix,

detA =
∑
j

AijCij , no sum on i. (152)

where the cofactor Cij = (−1)i+j detMij is the signed determinant of the minor Mij . The
minor Mij is the sub-matrix obtained by omitting the row and column containing Aij .

• It can be obtained by judiciously collecting terms in the sum over permutations formula
involving each entry in any given row (or column). For example, expanding along the 1st row,

detA =
∑
j

A1jC1j (153)

This comes from writing

detA =
∑
P

(detP ) A1P (1)A2P (2) · · ·AnP (n) = A11

∑
P :P (1)=1

(detP ) A2P (2) · · ·AnP (n)

+A12

∑
P :P (1)=2

(detP ) A2P (2) · · ·AnP (n) + · · ·

+A1n

∑
P :P (1)=n

(detP ) A2P (2) · · ·AnP (n) (154)

We observe that the coefficient of A11 is itself a determinant, indeed it is the determinant of
the minor M11 . Similarly the coefficient of A12 is a sum of products of the entries of the minor
M12 and some work shows that it is in fact equal to −detM12 . Proceeding this way we get the
cofactor expansion formula.

• Applying the cofactor formula to AT and using detA = detAT we see that we could expand
along columns rather than rows.

• Example: Determinant of a tri-diagonal matrix: useful in calculating determinants of differ-
ential operators.

• Product of eigenvalues: If A has eigenvalues λ1 · · ·λn listed according to algebraic multi-
plicity then detA = λ1λ2 · · ·λn is the product of eigenvalues.

• This comes from the constant term in the characteristic polynomial

det(A− λI) = (λ1 − λ)(λ2 − λ) · · · (λn − λ) = 0 (155)

17.5 Cramer’s rule for solving n× n linear systems

• When A is invertible, Ax = b has solution x = A−1b . This can be expressed as a ratio of
determinants. Below, Bi is the matrix A with the ith column replaced by b , (Bi)kl = Akl if
l 6= i and (Bi)ki = bk .

xi =
detBi
detA

(156)

• There is a trick to get this formula. Let us illustrate it in the 3× 3 case. We being with the
identity obtained by multiplying by columns a11 a12 a13

a21 a22 a23

a31 a32 a33

x1 0 0
x2 1 0
x3 0 1

 =

 b1 a12 a13

b2 a22 a23

b3 a32 a33

 (157)
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Taking determinants, detA · x1 = detB1 , so that x1 = detB1
detA . Similarly, a11 a12 a13

a21 a22 a23

a31 a32 a33

 1 x1 0
0 x2 0
0 x3 1

 =

 a11 b1 a13

a21 b2 a23

a31 b3 a33

 (158)

taking determinants, (detA)x2 = detB2 . In this manner we find the solution of Ax = b

(x1 x2 · · · xn )T =
1

|A|
( detB1 detB2 · · · detBn )T (159)

• Cramers rule is not a computationally efficient way of solving a system, elimination is much
faster.

17.6 Formula for the inverse

We can write the above formula for the solution of Ax = b in terms of cofactors. We expand
detBi along column i using the cofactor formula detBi = (Bi)jiCji = bjCji . Thus

xi =
detBi
detA

=
1

detA
bjCji ⇒ x =

CT b

detA
(160)

But we know that x = A−1b . So we conclude that if A is invertible, then a formula for the
inverse in terms of the transposed cofactor matrix C is

A−1 =
1

detA
CT (161)

• This formula is not a computationally efficient way of inverting a matrix, Gauss-Jordan
elimination is quicker.

17.7 Volume element: Change of integration variable and Jacobian determi-
nant

• An important application of determinants is in the change of volume element when (non-
linearly) changing integration variables in multi-dimensional integrals.

• An invertible square matrix A can be regarded as a linear change of variable from the standard
o.n. basis (xi)j = δij to a new basis yi given by the columns of A :

I =

 | · · · |
x1 · · · xn
| · · · |

 ;A =

 | · · · |
y1 · · · yn
| · · · |

 ; (162)

yi = Axi or (yi)j = Ajk(xi)k = Aji . (Thus A is the derivative of y with respect to x evaluated

at (xi)j = δij : Ajk =
∂(yi)j
∂(xi)k

). Under this change of variable, the unit hypercube (whose edges

are xi ) is transformed into a parallelepiped whose edges are the columns yi of A . So the volume
of the parallelepiped formed by the basis vectors is multiplied by detA .

• Now we would like to apply this idea to differentiable non-linear changes of variable. This is
given by a function from Rn → Rn : (x1 · · ·xn) 7→ (y1(x), · · · yn(x))
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• A non-linear change of variable can be approximated by an affine (linear + shift) one in a small
neighbourhood of any point x′ , yi(x) = yi(x

′) + Jij(x− x′)j + · · · . Up to an additive constant

shift, this linear transformation is the linearization of y , or the Jacobian matrix Jij = ∂yi
∂xj

where

the derivatives are evaluated at x = x′ . So near each point, the unit hyper cube is transformed
to a parallelepiped whose volume is det J

• The Jacobian matrix is Jij(x) = ∂yi
∂xj

and the Jacobian determinant is det Jij

• The change of variable formula for volume elements is

|det J | dx1 · · · dxn = dy1 · · · dyn (163)

So that ∫
dy1 · · · dyn f(y) =

∫
dx1 · · · dxn |det J(x)| f(y(x)) (164)

• Jacobian determinant for transformation from cartesian to polar coordinates on the plane
x = r cos θ, y = r sin θ

dx dy = dr dθ det

( ∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

)
= dr dθ det

(
cos θ −r sin θ
sin θ r cos θ

)
= r dr dθ. (165)

• Ex. Work out the Jacobian determinant for transformation from cartesian to spherical polar
coordinates. z = r cos θ, x = r sin θ cosφ, y = r sin θ sinφ.

• Note: The Jacobian matrix of the gradient of a function is the Hessian matrix which we will
encounter when studying positive definite matrices.

17.8 Trace

• The trace of a matrix is the sum of its diagonal entries, tr A = Aii

• The trace is cyclic: tr AB = tr BA , since tr AB = AijBji = BjiAij = tr AB ,
tr ABC = tr CAB = tr BCA .

• Basis independence of trace under similarity transformation: tr S−1AS = tr SS−1A = tr A .
In particular the trace is invariant under orthogonal and unitary transformations tr QTAQ =
tr A , tr A = tr U †AU .

18 Diagonalization: Eigenvalues and Eigenvectors

• For an n × n matrix, the domain and target space are both Rn or both Cn and may be
identified. So x 7→ Ax transforms x ∈ Cn to another vector in Cn . The vectors that behave
in the simplest manner are those x sent to a multiple of themselves. i.e., Ax = λx does not
change the direction of x .

• The subspace spanned by x is called an invariant subspace under A . This is a particularly
useful feature if we want to apply A again, for then A2x = λ2x,A3x = λ3x, · · · . In a sense x
does not mix with other vectors under application of A .

56



• This is very useful in solving time-evolution problems. Eg systems of differential equations
∂u
∂t = Au , where we need to apply A repeatedly to evolve u(t) forward in time.

• For an n× n matrix, the equation Ax = λx is called the eigenvalue problem.

• The scalars λ1, λ2, · · · , λn for which the eigenvalue problem can be solved non-trivially are
called the eigenvalues and the corresponding non-zero vectors x1, x2, · · ·xn are the eigenvectors
or principal axes. The zero vector x = 0 is not considered an eigenvector of any matrix, since
it trivially solves Ax = λx for any λ .

• Eigen-vector is a German word meaning own-vector, the eigenvectors of a matrix are like its
private property.

• Note that if x is an eigenvector of A with eigenvalue λ , Ax = λx , then so is any non-zero
multiple, A(cx) = λ(cx). So eigenvectors are defined up to an arbitrary normalization (scale)
factor. Often, it is convenient to normalize eigenvectors to have length one, ||x|| = 1.

• Consider Ax = λx which is the homogeneous system (A − λI)x = 0. We know that a
non-trivial solution (eigenvector) exists iff det(A− λI) = 0.

• So the eigenvalues λi are precisely the solutions of det(A− λI) = 0.

det(A− λI) = det


a11 − λ a12 · · · a1n

a21 a22 − λ α23 · · ·
...

...
...

...
an1 an2 · · · ann−λ

 = 0 (166)

• This is an nth order polynomial equation in λ . It is called the characteristic equation.

• For example, the characteristic equation of the real symmetric matrix A =

(
1 2
2 4

)
is

det

(
1− λ 2

2 4− λ

)
= (1− λ)(4− λ)− 4 = λ2 − 5λ = λ(λ− 5) = 0 (167)

The eigenvalues are λ = 0, 5 and the corresponding eigenvectors are

(
2
−1

)
and

(
1
2

)
. Notice

that the eigenvalues are real, we will see that had to be the case because A is symmetric. The
determinant is 1× 4− 2× 2 = 0 which is the same as the product of eigenvalues, 5× 0. Notice
that the trace is 1 + 4 = 5 which is the same as the sum of eigenvalues.

• The characteristic polynomial det(A−λI) has n complex roots. These are the n eigenvalues
of any n × n matrix. Some of them may be repeated roots, which should be counted with
multiplicity.

• So the characteristic polynomial may be written as

det(A− λI) = (λ1 − λ)(λ2 − λ) · · · (λn − λ) (168)

• Actually, it is convenient to multiply by (−1)n so that the polynomial is monic, i.e. coefficient
of λn is 1. Expanding out the product, the characteristic equation may be written as

(−1)n det(A− λI) = λn + cn−1λ
n−1 + cn−2λ

n−2 + · · · c1λ+ c0 = 0 (169)

• Setting λ = 0 we see that the constant term is the determinant upto a possible sign and this
may also be identified with the product of eigenvalues

(−1)n detA = c0; detA = λ1λ2 · · ·λn (170)
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• Moreover −cn−1 , the coefficient of −λn−1 is the sum of the eigenvalues λ1 + λ2 + · · · + λn .
It turns out that this is the trace of A .

• A polynomial equation of nth order has n (in general complex) roots. The zeros of the
characteristic polynomial are the n eigenvalues λ1, λ2, · · · , λn . Generically, they are distinct.
But it may happen that some of the eigenvalues coincide.

• The eigenvalues are also called characteristic values.

• The eigenvalues of AT are the same as the eigenvalues of A . This is because det(AT −λI) =
det(A− λI). So A and AT have the same characteristic polynomial.

• To any given eigenvalue λ1 , there is a solution to the eigenvalue problem A~u1 = λ1~u1 , giving
the eigenvector ~u1 = (x1 x2 · · · xn ). Thus the spectrum consists of

eigenvalues : λ1, λ2, · · · , λn
eigenvectors : ~u1, ~u2, · · · , ~un (171)

• For example, for the 3×3 identity matrix, the roots of the characteristic equation (λ−1)3 = 0
are λ = 1, 1, 1, and we would say that 1 is an eigenvalue with (algebraic) multiplicity three. We
also say that 1 is an eigenvalue with degeneracy 3

• If eigenvalue λ has multiplicity 1 we say it is a non-degenerate eigenvalue.

• The identity matrix In×n , satisfies Ix = x for every vector. So every non-zero vector is
an eigenvector. The characteristic equation is (λ − 1)n = 0, so the only eigenvalue is 1, with
an algebraic multiplicity n . Moreover, since every non-zero vector is an eigenvector, there are
n-linearly independent eigenvectors corresponding the the eigenvalue 1.

• The space spanned by the eigenvectors corresponding to a given eigenvalue is called the λ-
eigenspace of A . This is because it is closed under linear combinations and forms a vector space
Ax = λx,Ay = λy ⇒ A(cx+ dy) = λ(cx+ dy).

• For the identity matrix In×n , the 1-eigenspace is the whole of Rn .

• The dimension of the λ-eigenspace is called the geometric multiplicity of eigenvalue λ . It is al-
ways ≤ algebraic multiplicity. For the identity matrix, the algebraic and geometric multiplicities
of eigenvalue 1 are both equal to n .

• A matrix is deficient if the geometric multiplicity of some eigenvalue is strictly less than its
algebraic multiplicity. This means it is lacking in eigenvectors. Analysis of such matrices is
more involved. They will be dealt with later. Fortunately, the matrices whose eigen-systems we
encounter most often in physics ((anti)symmetric, orthogonal, (anti)hermitian and unitary) are
not deficient.

• The eigenvectors of non-deficient n× n matrices span the whole n-dimensional vector space.

• An example of a deficient matrix is

N =

(
0 1
0 0

)
⇒ det(N − λI) = λ2 = 0 ⇒ λ1 = 0, λ2 = 0 (172)

The eigenvectors are then the non-trivial solutions of

(
0 1
0 0

)(
x1

x2

)
= 0. So there is only one

independent eigenvector

(
1
0

)
. So the 0-eigenspace is 1-dimensional, though the eigenvalue 0

has algebraic multiplicity two. In this case, the eigenvectors do not span the whole of R2 .
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• On the other hand, the eigenvectors corresponding to a pair of distinct eigenvalues are always
linearly independent.

• Proof: So we are given Ax = λx and Ay = µy , with λ 6= µ and eigenvectors x, y 6= 0.
Now suppose x, y were linearly dependent, i.e. cx + dy = 0 with c, d 6= 0. We will arrive at a
contradiction. Applying A ,

cAx+ dAy = 0 ⇒ cλx+ dµy = 0 ⇒ λ(cx+ dy) + (µ− λ)dy = 0 ⇒ (µ− λ)dy = 0(173)

But µ 6= λ and d 6= 0, so y = 0, which contradicts the fact that y is a non-zero vector. So
we conclude that eigenvectors corresponding to a pair of distinct eigenvalues are always linearly
independent.

• This can be extended to any number of distinct eigenvalues: Eigenvectors corresponding to a
set of distinct eigenvalues are linearly independent. One can prove this inductively.

• It follows that if an n × n matrix has n distinct eigenvalues, then the corresponding n
eigenvectors are linearly independent and span the whole vector space.

• So matrices with n distinct eigenvalues are not deficient.

• When eigenvalues coincide, their corresponding eigenvectors may remain independent or be-
come collinear. Deficiencies arise in the latter case.

18.1 More examples of eigenvalues and eigenvectors

• The zero matrix 0n×n annihilates all vectors 0x = x , so every non-zero vector is an eigenvector
with eigenvalue 0. The characteristic equation is λn = 0, so 0 is an eigenvalue with multiplicity
n .

• Consider the diagonal matrix D = diag(λ1, λ2, · · · , λn). Let us take n = 3 for definiteness.
The eigenvalue equation becomes λ1x1

λ2x2

λ3x3

 = λ

x1

x2

x3

 . (174)

The solutions are λ = λ1 with x2 = x3 = 0 and x1 arbitrary (in particular we could take
x1 = 1 to get an eigenvector of length 1) and similarly two more. So the eigenvectors can be

taken as

 1
0
0

 with eigenvalue λ1 ,

 0
1
0

 with eigenvalue λ2 and finally

 0
0
1

 with eigenvalue

λ3 . Notice that the normalized eigenvectors are just the columns of the identity matrix. The
characteristic equation is (λ− λ1)(λ− λ2)(λ− λ3) = 0. So the eigenvalues of a diagonal matrix
are just its diagonal entries, and the eigenvectors are the corresponding columns of the identity
matrix. The determinant is just the product of the diagonal elements.

• The eigenvalues are not always real, consider the rotation matrix

A =

(
cos θ sin θ
− sin θ cos θ

)
, det(A− λI) = det

(
cos θ − λ sin θ
− sin θ cos θ − λ

)
= λ2 − 2λ cos θ + 1 = 0(175)

The roots of the characteristic polynomial are λ = cos θ ± i sin θ = e±iθ , which are generally
complex, but lie on the unit circle.
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• The set of eigenvalues is called the spectrum of the matrix. It is a subset of the complex
plane.

• Consider the projection from R3 to the sub-space spanned by the vector a =

 1
0
0

 , i.e.

to the x-axis. Pa = aaT =

 1 0 0
0 0 0
0 0 0

 . Geometrically, Px = x for precisely those vectors

along the x-axis. So a is itself a normalized eigenvector with eigenvalue 1. The 1-eigenspace
of P is one-dimensional. Only vectors v orthogonal to the x-axis are annihilated Pv = 0. So
non-zero vectors in the y -z plane are the eigenvectors with eigenvalue 0. So the 0-eigenspace
of A consists of all vectors orthogonal to a . Of course, Pa is a diagonal matrix, so we could
have read off its eigenvalues: {1, 0, 0} .
• The characteristic equation for PA is det(P − λI) = 0, or λ2(λ− 1) = λ(λ2 − λ) = 0. Recall
that for a projection matrix, P 2 = P . So we make the curious observation that P satisfies its
own characteristic equation P (P 2 − P ) = 0.

18.2 Cayley Hamilton Theorem

• One of the most remarkable facts about matrices, is that every matrix satisfies its own char-
acteristic equation. This is the Cayley-Hamilton theorem.

• Let us first check this in the above example A =

(
1 2
2 4

)
. The characteristic equation is

λ2 − 5λ = 0. The Cayley-Hamilton theorem says that A2 − 5A = 0. It is easy to check that

A2 =

(
5 10
10 20

)
= 5A .

• Any matrix An×n satisfies its own characteristic equation

(A− λ1)(A− λ2) · · · (A− λn) ≡ 0 (176)

• Proof of the Cayley-Hamilton theorem. We will indicate the proof only for non-deficient
matrices, i.e., those whose eigenvectors span the whole n-dimensional space. This is the case
for matrices with n distinct eigenvalues.

• Essentially, we will show that every vector is annihilated by the matrix given by the char-
acteristic polynomial P (A) = (A − λ1)(A − λ2) · · · (A − λn). It follows that P (A) is the zero
matrix.

Now (A − λ1), annihilates the first eigenvector x1 , (A − λ1)x1 = 0. Now consider (A −
λ2)(A−λ1), this matrix annihilates any linear combination of the eigenvectors x1 and x2 since
the first factor annihilates x2 and the second annihilates x1 (the order of the factors does not
matter, they commute). Continuing this way

P (A)(a1x1 + a2x2 + · · ·+ annn) = 0. (177)

But for a non-deficient matrix, the eigenvectors span the whole space, so P (A) annihilates every
vector and must be the zero matrix.
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• The Cayley-Hamilton theorem states that a matrix satisfies an nth order polynomial equation

An + cn−1A
n−1 + cn−2A

n−2 + · · ·+ c1A+ c0 = 0. (178)

In other words, we can express An in terms of lower powers of A . Similarly any power Ak with
k ≥ n , can be reduced to a linear combination of I, A,A2, · · · , An−1 .

• Returning to the example A =

(
1 2
2 4

)
, let us use the Cayley-Hamilton theorem to calculate

A20 . Here the characteristic equation satisfied by A reads A2 = 5A . This implies A3 = 5A2 =
52A , A4 = 52A2 = 53A , An = 5n−1A for n ≥ 2. Thus we have without having multiplied 20
matrices,

A20 = 519A = 519
(

1 2
2 4

)
(179)

18.3 Diagonalization of matrices with n distinct eigenvalues

• If An×n is not deficient (as when it has n distinct eigenvalues), by a suitable invertible
change of basis, we can bring it to diagonal form Λ with the diagonal entries of Λ given by the
eigenvalues λi .

A = SΛS−1 or S−1AS = Λ. (180)

This process is called the diagonalization of the matrix. The invertible change of basis is called
a general linear transformation S . If A is symmetric or hermitian, it turns out that the change
of basis can be chosen to be an orthogonal or unitary transformation, which are special cases of
general linear transformations.

• It is important to emphasize that the resulting diagonal matrix of eigenvalues Λ is in general
different from the diagonal matrix D that might be obtainable through row elimination in the
case when A has n (non-zero) pivots. The pivots are in general different from the eigenvalues.
Row elimination involves left multiplication of A by elementary matrices while diagonalization
involves left and right multiplication of A by S−1 and S .

• We can collect the n eigenvalues of A in the diagonal matrix

Λ =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
...

...
0 0 · · · λn

 . (181)

• And collect the corresponding n eigenvectors xi satisfying Axi = λixi as the columns of a
matrix S

S =

 | | · · · |
x1 x2 · · · xn
| | · · · |

 . (182)

Then notice that multiplying by columns

AS = (Ax1 Ax2 · · · Axn ) , and SΛ = (λ1x1 λ2x2 · · · λnxn ) . (183)
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Then the n solutions of the eigenvalue problem, may be summarized as

AS = SΛ. (184)

Similarly we can consider the left eigenvalue problem for A , ytA = µyt with row eigenvectors
yt . But taking the transpose, this is just the eigenvalue problem for the transpose Aty = µy .

• But we know that the eigenvalues of At are the same as those of A , so we can write Atyi = λiyi
for the n eigenvectors of AT . The eigenvectors of A and At are in general different, but we
will see that they are related. Let us collect the eigenvectors of At as the columns of a matrix
T = ( y1 y2 · · · yn ). Then

At T = TΛ and AS = SΛ. (185)

Taking the transpose of these, we can calculate T tAS in two different ways to get

T tAS = ΛT tS and T tAS = T tSΛ. (186)

Now let W = T tS , then combining, we conclude that W commutes with Λ

ΛW = WΛ. (187)

In other words, 
0 (λ1 − λ2)w12 · · · (λ1 − λn)w1n

(λ2 − λ1)w21 0 · · · (λ2 − λn)w2n
...

...
...

...
(λn − λ1)wn1 (λn − λ2)wn2 · · · 0

 = 0. (188)

Now since the λ ’s are distinct, we must have wij = 0 for i 6= j . Thus W = T tS is the diagonal
matrix

W =


w11 0 · · · 0
0 w22 · · · 0
...

...
...

...
0 0 · · · wnn

 . (189)

But W = T tS is merely the matrix of dot products of the eigenvectors of At and A , wij = ytixj .
So we have shown that the left and right eigenvectors of A corresponding to distinct eigenvalues
are orthogonal! We say that the xi and yj are in a bi-orthogonal relation to each other.

• But the normalization of the eigenvectors was arbitrary. By rescaling the xi 7→ xi
wii

we can
make W the identity matrix.

W = T tS = I, ytixj = δij . (190)

Now we showed earlier that if A has distinct eigenvalues, its eigenvectors form a linearly in-
dependent set. So the columns of S are linearly independent and it is invertible. The same
holds for T . So with this normalization, we find that T t = S−1 . Putting this in the formula for
T tAS = we get

S−1AS = Λ or A = SΛS−1. (191)
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In other words, A may be diagonalized by the general linear transformation (similarity trans-
formation) given by the invertible matrix S whose columns are the (appropriately normalized)
eigenvectors of A !

• Now suppose At = A is a symmetric matrix. Then there is no difference between left and
right eigenvectors and S = T . But since T tS = I , we must have StS = I i.e., S is an
orthogonal matrix. In other words, a symmetric matrix may be diagonalized by an orthogonal
transformation. But the columns of an orthogonal matrix are orthonormal, so we conclude that
the eigenvectors of a symmetric matrix may be chosen orthonormal. (Actually we have only
proved this if the eigenvalues are distinct, though the result is true even if the symmetric matrix
has repeated eigenvalues)

• Similarly, a hermitian matrix H may be diagonalized by a unitary transformation U whose
columns are the eigenvectors of H . Moreover the eigenvectors are orthogonal and may be taken
orthonormal by rescaling them

H = UΛU †, with U †U = I. (192)

• More generally, a normal matrix is one that commutes with its adjoint, A†A = AA† or
[A†, A] = 0. Essentially the same proof as above can be used to show these two statements:
If the eigenvectors of a matrix A with distinct eigenvalues are orthogonal, then A is a normal
matrix. Conversely, the eigenvectors of a normal matrix with distinct eigenvalues may be taken
orthonormal. In fact, more is true A may be diagonalized by a unitary transformation iff A
is normal. Examples of normal matrices include but are not restricted to (anti)-symmetric,
orthogonal, (anti)-hermitian and unitary matrices.

• A matrix A is diagonalizable if there is a basis where it is diagonal. In other words, it
may be diagonalized by some similarity transformation S , i.e. S−1AS = Λ, where Λ is the
diagonal matrix with eigenvalues for the diagonal entries. The columns of S are then n linearly
independent eigenvectors.

• If a matrix is diagonalizable, the basis in which it is diagonal is called the eigen-basis. The
eigen-basis consists of n linearly independent eigenvectors. We have shown above that every
matrix with n distinct eigenvalues is diagonalizable. Every hermitian or symmetric matrix

is diagonalizable. For example σ2 =

(
0 −i
i 0

)
is diagonalizable. Find its eigenvalues and

eigenvectors and the unitary transformation that diagonalizes it.

• Deficient matrices are not diagonalizable. Proof: Suppose a deficient matrix N were diagonal-
izable, S−1NS = Λ. Then the columns of S would be n linearly independent eigenvectors of N .
But a deficient matrix does not possess n linearly independent eigenvectors! Contradiction. Eg:

The matrix N =

(
0 1
0 0

)
is not diagonalizable. 0 is an eigenvalue with algebraic multiplicity

2 but geometric multiplicity one. N has only one eigenvector.

• Simultaneous diagonalizability: A pair of matrices A,B : V → V are said to be simul-
taneously diagonalizable if the same similarity transformation S diagonalizes them both i.e.
S−1AS = ΛA and S−1BS = ΛB . Here ΛA and ΛB are the diagonal matrices with eigenvalues
of A and B along the diagonal respectively. Now the invertible matrix S contains the eigen-
vectors of A and B , so A and B share the same eigenvectors (though they may have different
eigenvalues). Since S is invertible, the eigenvectors span the whole vector space V .
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• If A and B are simultaneously diagonalizable, then they commute. S−1AS = ΛA and
S−1BS = ΛB . Now [ΛA,ΛB] = 0 as can be checked using the fact that they are diagonal. By
the invariance of matrix equations under similarity transformations we conclude that [A,B] = 0.
If they commute in one basis, they commute in any other basis.

• Sufficient criterion for simultaneous diagonalizability. Suppose A has n distinct eigen-
values and that a matrix B commutes with A , [A,B] = 0. Then B and A are simultaneously
diagonalizable.

• Proof: Suppose x is an eigenvector of A with eigenvalue λ , Ax = λx . Then we will show that
x is also an eigenvector of B . Consider λBx , which can be written as λBx = BAx = ABx .
So A(Bx) = λ(Bx). x was already an eigenvector of A with eigenvalue λ . Now we found
that Bx is also an eigenvector of A with eigenvalue λ . Since A has distinct eigenvalues, its
eigenspaces are one dimensional and therefore Bx must be a multiple of x , i.e., Bx = µx . So
we have shown that any eigenvector of A is also an eigenvector of B . Since the eigenvectors of
A span the whole vector space we conclude that A and B have common eigenvectors and are
simultaneously diagonalizable.

• Remark: We can replace the assumption that A have n distinct eigenvalues with some other
hypotheses. For example we could assume that A and B both be hermitian and commuting.
Then it is still true that they are simultaneously diagonalizable.

• Eg: Pauli matrices do not commute and they are not simultaneously diagonalizable. For exam-

ple [σ2, σ3] = iσ1 with σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. Check that the unitary transformation

that makes σ2 diagonal forces σ3 to become non-diagonal.

• Suppose A is invertible (in particular 0 is not an eigenvalue of A). Then eigenvalues of A−1

are the reciprocals of the eigenvalues of A . This is why:

Ax = λx ⇒ A−1Ax = λA−1x ⇒ A−1x =
1

λ
x (193)

In fact, this shows that the eigenvector corresponding to the eigenvalue 1
λ of A−1 is the same as

the eigenvector x of A corresponding to the eigenvalue λ . They have the same corresponding
eigenvectors. In particular, if A was diagonalizable, then A−1 is diagonalizable simultaneously.

• Caution: An invertible matrix may not be diagonalizable. For example N =

(
1 1
0 1

)
is

invertible but not diagonalizable. It has only one linearly independent eigenvector,

(
1
0

)
cor-

responding to the twice repeated eigenvalue λ = 1. λ = 1 has algebraic multiplicity two but
geometric multiplicity only one. N is deficient. There is no basis in which N is diagonal.

18.4 Quadratic surfaces and principle axis transformation

• There is a geometric interpretation of the diagonalization of a symmetric matrix. It is called
the principal axis transformation.

• In analytic geometry, the equation for an ellipse on the plane is usually given as

x2

a2
+
y2

b2
= 1 (194)
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In this form, the major and minor axes are along the cartesian coordinate axes. Similarly, the
equation of an ellipsoid embedded in 3d Euclidean space is often given as

x2

a2
+
y2

b2
+
z2

c2
= 1 (195)

Since it is defined by a quadratic equation, the ellipsoid is called a quadratic surface. The lhs
involves terms that are purely quadratic in the variables. Such an expression (lhs) is called a
quadratic form.

• More generally, an ellipsoid in n-dimensional space with axes along the cartesian coordinate
axes is given by

λ1x
2
1 + λ2x

2
2 + · · ·+ λnx

2
n = 1 (196)

This can be regarded as a matrix equation xTΛx = I for the column vector x = (x1, x2, · · · , xn)t

and diagonal matrix Λ = diag(λ1, λ2, · · · , λn). xtΛx is called the quadratic form associated to
the matrix Λ.

However, often we are confronted with quadratic surfaces that are not aligned with the
coordinate axes, but are in an arbitrarily rotated position. The equation for such a surface is
again quadratic but with cross-terms of the form xixj . For example

ax2 + by2 + cxy + dyx = 1 (197)

But since xy = yx , only c+ d contributes, so we could have taken the coefficients of xy and yx
to both equal c+d

2 . More generally we have a quadratic equation

xiAijxj = 1 or xtAx = 1 (198)

where we may assume that Aij = Aji is a real symmetric matrix.

• At each point P on the surface we have a normal direction to the surface, one that is normal
(perpendicular) to the tangential plane to the surface through P .

• There is also the radius vector x of the point P .

• In general, the position vector and normal do not point along the same direction.

• The principal axes are defined as those radius vectors which point along the normal.

• In general, the normal to the surface at x points along Ax .

• To see this we first observe that if x lies on the surface, then a neighboring vector x+ δx also
lies approximately on the surface if (x + δx)tA(x + δx) = 1 up to terms quadratic in δx . In
other words, xtAδx+δxTAx = 0, or δxtAx = 0. Such δx are the tangent vectors to the surface
at x . But this is just the statement that δx must be normal to Ax . So the normal vector must
be along Ax .

• So the condition for x to be a principal axis is that it must be proportional to the normal
Ax , or Ax = λx , which is just the eigenvalue equation.

• Moreover, the eigenvalue has a geometric interpretation. Suppose x is a principal axis of A ,
then xtAx = λxtx = 1 So xtx = 1

λ . But xtx is the square of the length of the position vector.
So 1

λ is the square of the length of the semi-axis through P .
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• Since A is symmetric, from the last section, we know that its eigenvectors are orthogonal. In
other words, the principal axes are orthogonal. However, the principal axes may not point along
the original cartesian coordinate axes. But if we take our new coordinate axes to point along
the principal axes, then A is diagonal in this new basis. More precisely, A is diagonalized by
an orthogonal transformation

QtAQ = Λ (199)

where the columns of Q are the eigenvectors, QtQ = I and Λ is the diagonal matrix of eigen-
values. So if we let y = Qtx then the equation of the surface xTAx = 1 becomes xTQΛQTx = 1
or simply yTΛy .

• In this geometric interpretation, we have implicitly assumed that the eigenvalues are real and
that the eigenvectors are real vectors (for a real symmetric matrix). This is indeed true, as we
will show in the next section.

• Finally, we point out the geometric meaning of coincidence of eigenvalues. Suppose n = 2,
and suppose we have transformed to the principal axes. Then we have an ellipse λ1x

2 +λ2y
2 = 1

whose principal axes are along the x and y axes. Now if the eigenvalues gradually approach
each other, λ1, λ2 → λ the ellipse turns into a circle. At the same time the diagonal matrix

Λ =

(
λ1 0
0 λ2

)
tends to the multiple of the identity Λ →

(
λ 0
0 λ

)
. But every vector is an

eigenvector of λI . In particular, we are free to pick any pair of orthogonal vectors and call them
the principal axes of the circle.

• So when eigenvalues of a symmetric matrix coincide, the matrix does not become deficient in
eigenvectors. It still possesses a system of n orthogonal eigenvectors, but some of them are no
longer uniquely determined.

18.5 Spectrum of symmetric or hermitian matrices

• A real symmetric matrix is a real matrix A : Rn → Rn which equals its transpose A = AT

• A hermitian matrix is a complex matrix H : Cn → Cn whose transpose is its complex
conjugate: (HT )∗ = H , also written as H† = H .

• A special case is a real symmetric matrix. So every real symmetric matrix is also hermitian.

• Example: The Pauli matrix σ2 =

(
0 −i
i 0

)
is hermitian but not symmetric.

• The Pauli matrix σ1 =

(
0 1
1 0

)
is hermitian and symmetric.

• The diagonal matrix elements of H in any basis are real. In other words, let z ∈ Cn be any
vector, then (z,Hz) = z†Hz ∈ R .

• To see this, take the complex conjugate of zTHz , which is the same as the hermitian adjoint
of the 1× 1 matrix z†Hz ,

(z†Hz)∗ = (z†Hz)† = z†H†z = z†Hz (200)

So z†Hz is a number that equals its own complex conjugate. So it must be real!

• In quantum mechanics, (z,Hz)
(z,z) is called the normalized expectation value of H in the state z .
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• Example: The three dimensional representation of angular momentum matrices in quantum
mechanics are these hermitian matrices

Lx =
1

2

(
0
√

2 0√
2 0

√
2

0
√

2 0

)
; Ly =

1

2i

(
0

√
2 0

−
√

2 0
√

2
0 −

√
2 0

)
; Lz =

(
1 0 0
0 0 0
0 0 −1

)
(201)

• The eigenvalues of a hermitian matrix are real. Suppose z is an eigenvector with eigenvalue
λ , i.e., Hz = λz . Taking the inner product with z ,

(z,Hz) = z†Hz = z†λz = λ||z||2 ⇒ λ =
(z,Hz)

||z||2
(202)

z†z = |z1|2 + · · · |zn|2 is real. Being the ratio of two real quantities, the eigenvalue λ is also real.

• Example check that the eigenvalues of σ2 are real.

• Eigenvectors of a hermitian matrix corresponding to distinct eigenvalues are orthogonal. We
have shown this previously but there is no harm in proving it again more directly.

• Proof: Suppose z, w are two eigenvectors, Hz = λz and Hw = µw , with eigenvalues λ 6= µ ,
which are necessarily real. Then w†Hz = λw†z and z†Hw = µz†w . But the lhs are complex
conjugates of each other, (w†Hz)∗ = (w†Hz)† = z†Hw . So λw†z = (µz†w)∗ . Or we have
w†z(λ− µ) = 0. By distinctness, λ 6= µ , so w†z = 0 and w, z are orthogonal.

• Find the eigenvectors of σ2 and show they are orthogonal.

• More generally, even if H has a repeated eigenvalue, we can still choose an orthogonal basis for
the degenerate eigenspace so that eigenvectors of a hermitian matrix can be chosen orthogonal.

• Eigenvectors of a real symmetric matrix may be chosen real. This is important for the
geometric interpretation of the eigenvectors as the principal axes of an ellipsoid. We will assume
that the eigenvalues are distinct.

• Proof: We are given a real (A∗ = A) symmetric matrix, so its eigenvalues are real. Suppose z
is a possibly complex eigenvector corresponding to the eigenvalue λ = λ∗ , i.e., Az = λz . Taking
the complex conjugate, A∗z∗ = λ∗z∗ or Az∗ = λz∗ , so z∗ is also an eigenvector with the same
eigenvalue. So x = z + z∗ is a real eigenvector with eigenvalue λ . So for every eigenvalue we
have a real eigenvector. (Note: Moreover, the eigenspaces of A are one dimensional since we
have n distinct eigenvalues and the corresponding eigenvectors must be orthogonal. So z and
z∗ are (possibly complex) scalar multiples of x .)

• Remark: Check that if H is hermitian, iH is anti-hermitian.

18.6 Spectrum of orthogonal and unitary matrices

• Orthogonal matrices are those real matrices that satisfy QTQ = QQT = I .

• The columns of an orthogonal matrix are orthonormal.

• Unitary matrices are complex matrices satisfying U †U = 1. If a unitary matrix happens to
be real, then it is necessarily orthogonal.

• The columns of a unitary matrix are orthonormal.

• A rather simple example of an orthogonal matrix is a reflection in the x axis, Q =

(
1 0
0 −1

)
.
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This happens to be diagonal. so the eigenvalues are +1 and −1, and the corresponding eigen-
vectors are the columns of the 2× 2 identity matrix.

• Another example of an orthogonal matrix is the rotation matrix

A =

(
cos θ sin θ
− sin θ cos θ

)
,det(A− λI) = det

(
cos θ − λ sin θ
− sin θ cos θ − λ

)
= λ2 − 2λ cos θ + 1 = 0(203)

The roots of the characteristic polynomial are λ = cos θ ± i sin θ = e±iθ , which are generally
complex, but lie on the unit circle.

• Eigenvalues of orthogonal and unitary matrices lie on the unit circle in the complex plane.

• This follows from the fact that orthogonal QTQ = I and unitary U †U = I matrices are
isometries. They preserve the lengths of vectors: ||Qx|| = ||x|| and ||Ux|| = ||x|| . So if we
consider an eigenvector Qv = λv , we have ||λv|| = ||v|| or |λ| ||v|| = ||v|| , which implies
|λ| = 1. The same works for unitary matrices as well.

• To see that orthogonal transformations are isometries starting from QTQ = I , consider
||Qx||2 = (Qx)TQx = xTQTQx = xTx = ||x||2 since QTQ = I . Taking the positive square
root, ||Qx|| = ||x|| for all vectors x .

• Eigenvectors of unitary matrices corresponding to distinct eigenvalues are orthogonal.

• Proof: Suppose z, w are eigenvectors corresponding to distinct eigenvalues λ 6= µ , Uz = λz
and Uw = µw . Then we want to show that z†w = 0. So take the adjoint of the first equation
z†U † = λ∗z† and multiply it with the second and use U †U = I

z†U †Uw = λ∗µz†w or (1− λ∗µ)z†w = 0 (204)

But since λ∗λ = 1 and λ 6= µ we have that λ∗µ 6= 1. So the second factor must vanish, z†w = 0
and z and w are orthogonal.

• Remark: If H is hermitian, U = eiH is unitary.

18.7 Exponential and powers of a matrix through diagonalization

• Powers of a matrix are easily calculated once it is diagonalized. If A = SΛS−1 , and n =
0, 1, 2, . . . is a positive integer

An = (SΛS−1)n = SΛnS−1 (205)

Moreover, Λn is just the diagonal matrix with the nth powers of the eigenvalues along its
diagonal entries.

• Exponential of a matrix through diagonalization. If a matrix can be diagonalized by a simi-
larity transformation A = SΛS−1 , then calculating its exponential eA is much simplified

eA = eSΛS−1
=
∞∑
n=0

(SΛS−1)n

n!
=
∑
n

SΛnS−1

n!
= SeΛS−1 (206)

So we just apply the similarity transformation to eΛ to get eA . Moreover, since Λ is a diagonal
matrix, its exponential is easy to calculate. If Λ = diag(λ1, · · · , λn), then

eΛ = diag(eλ1 , eλ2 , eλ3 , · · · , eλn) (207)
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18.8 Coupled oscillations via diagonalization

• Small displacements of a system about a point of stable equilibrium typically lead to small
oscillations due to restoring forces. They are described by linearizing the equations of motion,
assuming the departure from equilibrium is small. Hookes law for a slightly elongated spring
is an example. If δx is the small displacement, Newton’s law in Hooke’s approximation says
mδ̈x = −k δx . This is a linear equation for one unknown function δx(t).

• Similarly, suppose we have a pair of equally massive objects in one dimension connected by a
spring to each other and also by springs to walls on either side in this order: wall spring mass
spring mass spring wall. Let δx1, δx2 be small displacements of the masses to the right. Draw a
diagram of this configuration. Newton’s equations in Hooke’s approximation (when the springs
have the same spring constant k ) are

m ¨δx1 = −kδx1 + k(δx2 − δx1)
m ¨δx2 = −kδx2 − k(δx2 − δx1) (208)

This is a pair of coupled differential equations; it is not easy to solve them as presented. But

we can write them as a single matrix differential equation ẍ = Ax were x =

(
δx1

δx2

)
d2

dt2

(
δx1

δx2

)
=

k

m

(
−2 1
1 −2

)(
δx1

δx2

)
. (209)

Let A = k
m

(
−2 1
1 −2

)
. The off-diagonal terms in A are responsible for the coupled nature

of the equations. But A is real symmetric, so it can be diagonalized, which will make the
equations uncoupled. Upon performing the principal axis transformation, A = QΛQT where

Λ = k
m

(
−1 0
0 −3

)
is the diagonal matrix of eigenvalues and Q is the orthogonal eigenvector

matrix (which is independent of time, since A is). The equations become

ẍ = QΛQTx ⇒ QT ẍ = ΛQTx (210)

So let y = QTx , then we get ÿ = Λy which are the pair of uncoupled equations

ÿ1 = −(k/m)y1, ÿ2 = −3(k/m)y2 (211)

If the initial condition was that the masses started from rest, then ẏ(0) = 0 and the solutions
are

y1(t) = y1(0) cos(

√
k

m
t)y2(t) = y2(0) cos(

√
3k

m
t) (212)

The method of solving these differential equations will be treated in the second part of this
course. To get back x(t) we just use x(t) = Qy(t). So it only remains to find the eigenvector
matrix Q , of A , which is left as an exercise.
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19 Hilbert spaces and Dirac bra-ket notation

• A finite dimensional Hilbert space H is a finite dimensional vector space with an inner product
(u, v) that is linear in v and anti-linear in u satisfying

(u, v) = (v, u)∗ and (u, u) > 0, for u 6= 0 (213)

• We will work with the example Cn with the standard inner product (z, w) = z†w . This is a
Hilbert space. Notice that (z, w) = (w, z)∗ . Moreover, for scalars a, b , (az, w) = ā(z, w) while
(z, bw) = b(z, w). Finally, (z, w + u) = (z, w) + (z, u). These properties ensure linearity in the
second entry and anti-linearity in the first.

• Dirac notation: If we think of V = Cn as made of column vectors, we denote the column
vector v as the ket-vector |v〉 . The space of ket-vectors form the vector space V . Similarly
the n-component row vectors with complex entries are called the bra-vectors 〈v| . Moreover,
〈v| = |v〉† and 〈v|† = |v〉 are adjoints of each other. For example

|v〉 =

 1
i

−2i+ 3

 , 〈v| = |v〉† = ( 1 −i 2i+ 3 ) (214)

The space of bra-vectors form a so-called dual space V ∗ to V . V and V ∗ are isomorphic vector
spaces. Indeed any row vector 〈w| defines a linear function on V , given by

f〈w|(|v〉) = 〈w|v〉 (215)

The dual space V ∗ is defined as the space of linear functions on V . 〈w|v〉 is called the pairing
between the dual spaces.

• If |v〉 =
∑
i vi|φi〉 is expressed as a linear combination of |φi〉 , then 〈v| = |v〉† =

∑
i〈φi|v∗ .

• If ei are a basis, v ∈ H a vector and A : H → H a linear transformation, then we can write
Aej =

∑
iAijei and v =

∑
j vjej and Av =

∑
j vjAej =

∑
ij vjAijei =

∑
ij(Aijvj)ei . In other

words (Av)i = Aijvj . Now let us assume that ei are an orthonormal basis, so 〈ei|ej〉 = δij .
Then we have

A|ej〉 = Aij |ei〉 ⇒ 〈ek|A|ej〉 =
∑
i

Aij〈ek|ei〉 =
∑
i

Aijδki = Akj (216)

We conclude that Aij = 〈ei|ej〉 in any orthonormal basis {ei} .
• Similarly, in an orthonormal basis, |v〉 =

∑
i vi|ei〉 implies that vj = 〈ej |v〉 .

• In a finite dimensional Hilbert space, we have seen that any vector can be decomposed in an
o.n. basis as |v〉 =

∑
i〈ei|v〉|ei〉 or rearranging, |v〉 =

∑
i |ei〉〈ei|v〉 . So we see that the linear

transformation
∑
i |ei〉〈ei| takes every vector to itself, in other words, it must be the identity

transformation, which is represented by the identity matrix in any basis. So∑
i

|ei〉〈ei| = I (217)

This is called the completeness relation or property. We see that it is the sum of outer products
of the orthonormal basis vectors eie

†
i = I . It says that the sum of the projections to the one-

dimensional subspaces spanned by the o.n. basis vectors ei is the identity. We say that ei are
a complete o.n. basis.
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• For example,

(
1
0

)
,

(
0
1

)
form a complete o.n. basis for R2 . One checks that the completeness

relation is satisfied (
1
0

)
( 1 0 ) +

(
0
1

)
( 0 1 ) =

(
1 0
0 1

)
(218)

• For a finite dimensional Hilbert space, every o.n. basis is complete.

• More precisely, a sequence of vectors ui ∈ H is complete if there is no non-zero vector in H
that is orthogonal to all of them.

• Similarly, for the bra-vectors, completeness of the o.n. basis ei allows us to write

〈v| =
∑
i

〈v|ei〉〈ei| =
∑
i

v∗i 〈ei| (219)

• Let is see some more uses of the completeness relation of an orthonormal basis

〈v|w〉 =
∑
i

〈v|ei〉〈ei|w〉 =
∑
i

v∗iwi (220)

We say that we have inserted the identity between 〈v| and |w〉 .
• 〈v|v〉 = ||v||2 =

∑
i〈v|ei〉〈ei|v〉 =

∑
i〈v|ei〉〈v|ei〉∗ =

∑
i |〈v|ei〉|2 . This expresses the norm2 of

v as the sum of the absolute squares of its components in a complete o.n. basis.

• Note that for brevity, sometimes the basis-kets are denoted |i〉 instead of |ei〉 .
• We can recover the formula for matrix multiplication: (AB)ij = 〈i|AB|j〉 =

∑
k〈i|A|k〉〈k|B|j〉 =∑

k AikBkj .

• The completeness relation says I =
∑
i |i〉〈i| =

∑
i Pi where Pi = |i〉〈i| (no sum on i) is the

projection to the subspace spanned by |i〉 .
• PiPj = |i〉〈i|j〉〈j| = |i〉δij〈j| = δijPj (no sum on i or j ). This says for instance that
projections to orthogonal subspaces is zero P1P2 = 0 while P1P1 = P1 .

• A hermitian matrix H† = H is also called self-adjoint. (H†)ij = Hij can be written as
〈i|H†|j〉 = 〈i|H|j〉 . Now notice that 〈j|H|i〉∗ = 〈j|H|i〉† = 〈i|H†|j〉 . So the condition of
hermiticity can be expressed

〈i|H|j〉 = 〈j|H|i〉∗ (221)

19.1 Function spaces and Hilbert spaces

• An important example of a vector space is the set of functions, say real-valued, on an interval
f : [0, 1]→ R . We can add such functions and multiply them by real constants to get back such
functions (f+g)(x) = f(x)+g(x) and (cf)(x) = cf(x). Being closed under linear combinations,
they form a vector space called a function space F . These formulae are to be compared with
(v + w)i = vi + wi and (cv)i = cvi for vectors in Rn . So the value of a function f at the point
x is analogous to the ith component of the vector v .

• For example the functions f(x) = 23 and g(x) = x are linearly independent elements of F .
This is because the only way in which af + bg = 0, i.e. a 23 + b x = 0 for all x ∈ [0, 1] is for
a = b = 0
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• On the other hand, f = x and g = 2x are linearly dependent since 2f + g = 0 for every
x ∈ [0, 1].

• In this manner we see that the functions 1, x, x2, x3, · · · are linearly independent elements of
F . So this function space is infinite dimensional!

• One can regard this infinite dimensional vector space as obtained by a limiting procedure
applied to n-dimensional vector spaces of increasing dimension. These finite dimensional vector
spaces could consist of vectors whose components fi are the values f(xi) on an increasingly
finer mesh of points lying in the interval [0, 1], such as xi = i/(n− 1) for i = 0, · · · , n− 1.

• Another example of an infinite dimensional vector space is the space of complex-valued func-
tions f(x) : [0, π] → C satisfying f(0) = f(π) = 0. This is a vector space, since it is closed
under linear combinations. We can turn it into a Hilbert space by specifying an inner product
such as

(f, g) =

∫
dx f(x) g(x) (222)

This formula is to be compared with (v, w) =
∑
i viwi . Sum over i is replaced with integration.

However, we have to be careful to admit only those functions for which these integrals are finite.
Functions for which

∫
|f(x)|2 dx < ∞ are called square integrable. Also, we need to admit all

such functions while also preserving closure under linear combinations. This is a subtle issue in
an infinite dimensional Hilbert space and beyond the scope of this course. We merely mention
the definition of a (possibly infinite dimensional) Hilbert space. A vector space with an inner
product is called an inner product space.

• Definition: A Hilbert space H (possibly infinite dimensional) is defined as a complete inner
product space. Completeness means that every Cauchy sequence of vectors in H converges to a
vector in H . A sequence of vectors f1, f2, f3, · · · is called a Cauchy sequence if ||fm−fn|| → 0 if
m,n→∞ . This condition ensures that H is not missing any vectors that the process of taking
linear combinations may generate.

• A sequence of vectors {fi}∞i=1 in H is orthonormal if (fi, fj) = δij . An o.n. sequence is
called complete if there is no non-zero vector in H that is orthogonal to all the fi . A complete
orthonormal sequence plays the same role as an o.n. basis does in a finite dimensional Hilbert
space. This is because of the following theorem

• {fi} is a complete o.n. sequence in H iff any one of the following are satisfied

1. f =
∑∞
i=1(φi, f)fi for every f ∈ H

2. (f, g) =
∑∞
i=1(f, fi)(fi, g) for all f, g ∈ H

3. ||f ||2 =
∑∞
i=1 |(f, φi)|2 for all f ∈ H

• Example: Let us return to the Hilbert space of square integrable functions on [0, π] vanishing

at 0, π . Consider the sequence of vectors in H given by fn(x) =
√

2
π sin(mx), for m = 1, 2, 3, . . . .

We see that the fn satisfy the condition of vanishing at 0, π and are also square integrable as they
are bounded functions. Moreover, a trigonometric calculation shows that

∫ π
0 dx f∗n(x)fm(x) =

δn,m . Thus fn is an orthonormal sequence. The factor of
√

2
π is needed to ensure that ||fn|| = 1,

since the average value of the square of the sine function over a period is one half.
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