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2 Time-dependent hamiltonians and perturbation theory

• Suppose an atom is exposed to electromagnetic radiation for a certain duration (e.g. shine
monochromatic light (e.g. from a laser) on an atom). How does it affect the atom? The atom
is typically in a stationary state before the light was turned on. An interesting question is
whether the atom will make a transition to another given stationary state and the rate of such
transitions. In effect, from the time the laser is turned on, the hamiltonian of the atom has been
perturbed by a time-dependent interaction of the electron with the oscillating electromagnetic
field of the light beam1. Since the atom is neutral, this interaction energy is to leading order in
the multipole expansion, given by the electric dipole energy −~p · ~E where ~p is the electric dipole
moment of the atom and ~E = ~Eo cos(~k ·~r−ωt) is the electric field in the electromagnetic wave.
For a hydrogen atom, ~p = e~r where ~r is the position vector of the electron (with respect to the
nucleus) and e < 0 its charge. The magnetic force ev×B is smaller than the electric force eE by
a factor of v/c . This is because, in an EM wave with wave vector k = kẑ , E = Eo cos(kz−ωt)x̂
and B = B0 cos(kz − ωt). By Faraday’s law of induction ∇ × E = −∂B

∂t , the amplitudes are
related by kEo = ωBo or Bo = Eo/c and v/c ∼ α ∼ 1

137 � 1 for electrons in an atom2. So we
ignore the magnetic force to first approximation.

• The wavelength of visible light (∼ 400− 700nm) is much larger than the size of atoms (∼ 0.1
nm), so the electromagnetic field can be assumed spatially constant over the atom, but its time-
dependence cannot be ignored. Indeed, as we learned from atomic spectroscopy, the frequency
of visible (or UV/IR) light is such that hν is of the order of the (electron volt) energy differences
between atomic energy levels. What is more, atomic transitions occur in about a nano-second
(we will show this), while the time period of visible light is about T = 10−15 s, so the time
dependence of the electromagnetic wave cannot be ignored.

• Here we develop techniques to treat physical situations where a time-dependent perturbation
gH1(t) is applied to a system in a stationary state of its time-independent hamiltonian H0 . In

1We are treating the electron quantum mechanically but the light as a classical electromagnetic wave rather
than as photons. Later, we will treat the EM field quantum mechanically.

2To see this, put the radius of the nth Bohr orbit rn = n2~2
me2

in the quantization condition for angular

momentum L = mvnrn = n~ to get vn
c

= e2

n~c = α
n

. We worked in Gaussian units here. Divide e2 by 4πε0 to
go to SI units.
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the above example, we may treat the electric dipole interaction energy as a perturbation since
the electric field in the light beam is typically much smaller (in commercial lasers used in eye
surgery, it is about 107−108 V/m) than the electric field felt by the electrons due to the nucleus
∼ 13.6V

.053nm ∼ 1011V/m ∼ e
4πεoa2

o
.

• Time dependent perturbations can be of various sorts. E.g. (1) periodic as in the case of
monochromatic light shone on an atom. (2) adiabatic, where we have a perturbation which is
very slowly varying compared to the time scales associated with H0 , (3) impulsive, where the
perturbation lasts only a very short time as when an X-ray pulse is shone on an atom, possibly
ionising it, or when a fast charged particle passes by an atom (4) sudden, for example where a
sudden perturbation is applied resulting in a new time-independent hamiltonian. This happens
when a neutron in the nucleus of an atom beta decays leaving behind a new isotope with a
different atomic number.

• We will not solve these problems in detail, but will develop some of the formalism to treat
them and illustrate with simple examples. In all cases, the main quantity of interest is the
probability of transitions induced by the time-dependent perturbation.

2.1 Sudden perturbation: strong short-lived time dependence

A heavy isotope of hydrogen Tritium (nnpe) is unstable to beta decay n→ p+ + e− + ν̄e . The
resulting beta particle (electron) typically has a large kinetic energy (∼ 1000 eV) and escapes
from the atom in quick time3. The anti-neutrino also escapes very fast leaving behind a Helium-
3 ion (3

2 He+ nppe, He-3 is a very stable isotope of Helium, no decay has been observed). The
beta decay process happens almost instantaneously compared to atomic time-scales and in effect
the hamiltonian of the system has suddenly changed from that of Tritium to that of a Helium
ion. We are concerned with the electron wave function. Initially the Tritium atom was in one of
its stationary states ψTi (most often, its ground state). We would like to know the probability
of a transition to any of the stationary states of 3

2 He+ after the decay.

• Such a sudden and drastic perturbation to a system, which takes it from one time-independent
hamiltonian to another time-independent one can be modeled by

H(t) =

{
H0 = p2

2m −
e2

4πεor
for t < 0

H1 = p2

2m −
2e2

4πεor
for t > 0

(1)

So the hamiltonian operator behaves a bit like a step function with a finite discontinuity at
t = 0. We wish to find the wave function after the sudden change (i.e. at t = 0+ ), given
that the system was in a stationary state of H0 prior to the perturbation i.e., at t = 0− . The
Schrödinger equation i~∂ψ∂t = H(t)ψ(t) can be usefully written as an integral equation

|ψ(t)〉 = |ψ(0−)〉 − i

~

∫ t

0
H(t′)|ψ(t′)〉 dt′ (2)

Now we wish to take t → 0+ . Though the hamiltonian suffers a sudden change, the change in
each of its matrix elements is finite at t = 0, so the integral should vanish as t→ 0+ (provided

3The beta particle is not mono-energetic, there is a continuous distribution of electron energies and neutrino
energies up to about 18 KeV. On rare occasions, where the beta particle has very low energy, it may be captured
by the He-3 ion to form a He-3 atom resulting only in a mono-energetic ν̄e escaping.
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the wave function itself does not suffer an infinite discontinuity at t = 0). Thus we have

lim
t→0+

|ψ(t)〉 = lim
t→0−

|ψ(t)〉 (3)

and the wave function is continuous at t = 0. Taking the projection on |x〉 , for any fixed x ,
the wavefunction cannot have a finite discontinuity as t crosses 0. In other words, the change
to the nucleus happened so fast that the electron wave function did not have time to change
from its initial state ψTi . Now, after the decay, the electron finds itself near a He-3 nucleus

and if a measurement of the energy is made, one of the energy levels E
He+3
n of He+

3 is obtained,

and the electron wave function collapses to the corresponding eigenstate ψ
He+3
n . The transition

probability is
Pi−tritium→n−He+3

= |〈ψHen |ψTi 〉|2 (4)

Note that the energy difference between initial and final electronic states contributes to the
energies of the emitted beta particle and anti-neutrino. To evaluate these transition probabilities
we need to know the corresponding wave functions of Tritium and He+

3 . We know them since
they are both hydrogenic atoms with Z = 1 and Z = 2. For example, the ground state wave
functions are ψ(r) = 2√

a3

1√
4π
e−r/a where a = 4πε0~2

mZe2
. The He-3 nucleus (npp, Z = 2) has twice

the nuclear charge as the Tritium nucleus (nnp, Z = 1), so the Tritium atom (in its ground
state) is much larger than the Helium ion (in its ground state). Indeed, the Bohr radius of a

hydrogenic atom is a = 4πεo~2

mZe2
. So though the g.s. of He-3 is the most likely final state, it is also

likely to make a transition to an excited state of He-3. The electronic energy difference (along
with the nuclear mass defect) is carried away by the β -electron and ν̄e .

• A sudden perturbation of this sort resulting in an abrupt and permanent change in the hamil-
tonian was not analyzed by treating the perturbation as small. But there are many situations
where the perturbation may be treated as small. Let us develop a method to deal with such
perturbations.

2.2 First order time-dependent perturbation theory

• Suppose a quantum system is initially in a stationary state |ψ(0)〉 = |ui〉 of the hamiltonian
H0 . A time dependent perturbation gH1(t) is turned on at time t = 0 so that the total
hamiltonian for t ≥ 0 is

H(t) = H0 + gH1(t) θ(t > 0) (5)

We want to solve the time-dependent Schrödinger equation

i~
∂ψ

∂t
= H(t)ψ(t) with initial condition ψ(x, t = 0) = ui(x). (6)

We assume the stationary states of H0 are known

H0|un〉 = E(0)
n |un〉, and are orthonormal 〈un|um〉 = δnm, (7)

and form a complete set. By completeness, we may expand the wave function at subsequent
times as

ψ(t) =
∑
n

cn(t) un where normalization requires
∑
n

|cn|2 = 1. (8)
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In general, the coefficients cn(t) are complex and time-dependent. In the absence of the per-
turbation (g = 0), we know cn(t) = cn(0)e−iEnt/~ . So we expect for g 6= 0 a correction of the
form

cn(t) = cn(0)e−iEnt/~ (1 +O(g)) (9)

In the presence of the perturbation, the SE becomes for t > 0,

i~
∑
m

ċm(t)|um〉 = (H0 + gH1)
∑
m

cm(t)|um〉. (10)

Taking the inner product with un we get

i~ċn(t) = cn(t)En + g
∑
m

〈un|H1(t)|um〉 cm(t). (11)

This is a system of coupled first order ODEs for the coefficients cn(t). We know how they behave
in the absence of the perturbation, so let us absorb the unperturbed harmonic time dependence
and define

dn(t) = cn(t)eiEnt/~. (12)

Then dn satisfy a simpler system of ordinary differential equations

ḋn(t) = − i
~
∑
m

〈
un

∣∣∣∣gH1(t)

∣∣∣∣um〉 e−i(Em−En)t/~dm(t) (13)

with initial conditions dn(0) = cn(0) = δni (since the system was initially in the eigenstate |ui〉
of H0 ). We will solve this system of equations for dn(t) essentially in a series in powers of g ,
dn(t) = δni + O(g). To do so, it is convenient to write this as a system of integral equations.
Integrating once in time from 0 to t and using dn(0) = δni ,

dn(t) = δni −
i

~

∫ t

0
dt′
∑
m

〈
un

∣∣∣∣gH1(t′)

∣∣∣∣um〉 e−i(Em−En)t′/~dm(t′) (14)

So far we haven’t made any approximation. The advantage of this formulation is that dn is
expressed as a zeroth order part plus a term of order g . We may solve this by iteration.

• To get a sense for what an iterative solution is, let us look at a toy version of this. Consider
the equation x = 1 + gx whose solution is x = (1 − g)−1 . For |g| < 1, we may expand the
solution in a series x = 1+g+g2 + · · · . We could have obtained this series solution by iteration.
The nth iterate is given by

x(n) = 1 + gx(n−1). (15)

In favorable cases, the first few iterates already give a good approximation. In this case, the
first few iterative approximations are

x(0) = 1, x(1) = 1+g, x(2) = 1+g(1+g) = 1+g+g2, x(3) = 1+g(1+g+g2) = 1+g+g2+g3.
(16)

We see that we can recover the power series solution by iteration.

• Returning to (14), the first iterate involves putting the zeroth order solution dm = δmi on the
rhs. Thus to first order in g we have

dn(t) = δni −
gi

~

∫ t

0
dt′
〈
un

∣∣∣∣H1(t)

∣∣∣∣ui〉 e−i(Ei−En)t′/~ +O(g2). (17)
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This tells us how the initial state ψ(0) = ui evolves in time, since

ψ(t) =
∑
n

cn(t)un =
∑
n

dn(t)e−iEnt/~un and ψ(0) = ui. (18)

dn(t)e−iEnt/~ is the component of the state at time t that is in the direction of the unperturbed
eigenstate un . If the perturbation is switched off at time t , and a measurement of energy H0

is made, then |dn(t)|2 is the probability of getting the value En . So |dn(t)|2 is the probability
that the system makes a transition from initial state i to final state n due to the perturbation.
If i 6= n , this transition probability is just the absolute square of the above time-integral of the
matrix element of the perturbing hamiltonian between initial and final states

P (i→ n 6= i; t) =
g2

~2

∣∣∣∣∫ t

0
dt′
〈
un

∣∣∣∣H1(t′)

∣∣∣∣ui〉 e−i(Ei−En)t′/~
∣∣∣∣2 +O(g3) (19)

The probability that the final state is the same as the initial state i = n can be estimated to
order g2 by using the normalization of the wave function

∑
n |cn(t)|2 =

∑
n |dn|2 = 1. So4

P (i→ i; t) = 1−
∑
n6=i

P (i→ n, t). (21)

• To go further, we must specify the perturbing hamiltonian H1(t). We will study some special
cases.

2.3 Impulse approximation

• Here we consider a system in a stationary state subject to a sudden effect that is withdrawn
quickly. For example, a fast electron may pass near a hydrogen atom, or an X-ray pulse may
be shone on an atom for a short duration of time. These impulsive perturbations may end up
ionizing the atom or exciting it to a new stationary state. We model an impulse at t = 0 by the
hamiltonian

H = H0 + gH1δ(t) (22)

H1 could be quite a big change compared to H0 , so one wonders if perturbation theory is appli-
cable. But the change only lasts a short time and it is the integrated effect that enters the formula
for the transition probability, so perturbation theory could serve as a good approximation. For
t > 0 we find

df (t > 0) = δfi −
ig

~
〈uf |H1|ui〉+ · · · ⇒ P (i→ f 6= i, t) =

g2

~2
|〈uf |H1|ui〉|2 + · · · (23)

In particular, there can be no transition to final state f in the impulse approximation, if the
perturbing hamiltonian has zero matrix element (H1)fi between the initial and final states.

4Merely squaring the approximate formula for di(t) (17) does not give the correct answer, as the term of order
g2 (say γg2 ) in di that we have not computed, also contributes! Let I =

∫ t
0
dt′〈ui|H1(t)|ui〉 ∈ R , then

di(t) = 1− igI

~
+ γg2 + · · · ⇒ |di|2 = 1 +

g2I2

~2
+ 2g2<γ +O(g3). (20)

In fact, if we do not account for this term γg2 , it would even appear that the probability to remain in the state
i exceeds 1! Stated differently, normalization puts a constraint on what <γ can be.
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2.4 Harmonic perturbation

The effect of electromagnetic radiation on an atom is primarily due to the electric dipole inter-
action between the oscillating electric field of the EM wave and the dipole moment of the atom.
For monochromatic light, the electric field ~E = ~Eo cosωt varies sinusoidally with time but is
roughly constant over the dimensions of the atom (whose hamiltonian is H0 ), so

gH1 = −e~r · ~E0 cosωt (24)

Note that the electromagnetic wave may be due to light that is shone on the atom or could
also arise from light emitted by the atom. Even if light isn’t shone on the atom by an external
agency, there are virtual photons present due to quantum fluctuations of the vacuum and these
could interact with the atom. We will deal with this case later when we quantize the EM field.

• We will consider a general sinusoidal perturbation of the form

H = H0 + gH ′1 cosωt where H ′1 is time independent. (25)

If we denote the energies of the initial and final eigenstates of H0 as Ei,f = ~ωi,f , then

df = δfi −
ig

~
〈
uf
∣∣H ′1∣∣ui〉 ∫ t

0
e−i(ωi−ωf )t′ cosωt′ dt′ +O(g2)

= δfi +
g

2~
〈
uf
∣∣H ′1∣∣ui〉

[
e−i(ωi−ωf+ω)t − 1

ωi − ωf + ω
+
e−i(ωi−ωf−ω)t − 1

ωi − ωf − ω

]
+O(g2). (26)

To understand this result of perturbation theory, we ask for what angular frequency of the
perturbation ω > 0 (e.g. what color of incident light) the transition probability from initial
state i to final state f is significant. This happens if the denominator of one of the two terms is
nearly zero. If ω ≈ ωf − ωi , this corresponds to stimulated absorption of a photon by the atom
in making a transition to an excited state. If ω ≈ ωi−ωf , this corresponds to decay of the atom
from an excited state to a lower energy level while emitting a photon (stimulated emission).

• In either case, one of the two terms dominates and we have the transition probability from
state i to state f 6= i given by (± refer to absorption and emission respectively)

Pi→f (t) ≈ g2

4~2
|〈uf |H1|ui〉|2

∣∣ei(∆ω∓ω)t − 1
∣∣2

(∆ω ∓ ω)2
=
g2

~2
|〈uf |H1|ui〉|2

sin2
(

∆ω∓ω
2 t

)
(∆ω ∓ ω)2

for ω ≈ ±∆ω.

(27)
We used |eiθ− 1|2 = 4 sin2(θ/2) and denoted the change in angular frequency as ∆ω = ωf −ωi .
• P is a probability in the sense that

∑
f Pi→f = 1. However, P is not in general a probability

distribution in the t or ω variables.
∫
dtP (t) =∞ and

∫
P (ω)dω 6= 1 in general.

• An interesting feature of this formula is the possibility of stimulated emission. Suppose there
are two levels at energies ~ω1 < ~ω2 (say the g.s. and an excited state) and we shine light
of frequency nearly equal to ω2 − ω1 on a population of such atoms which are mostly in the
g.s. Atoms that are in state E1 are then likely (with probability P1→2 ) to absorb photons
and get excited to state E2 . On the other hand, suppose many of the atoms were originally in
the ‘population inverted’ excited state E2 and we stimulate them by shining light of frequency
ω ≈ ω2 − ω1 . Then with the same probability as before, P2→1 = P1→2 , those atoms are likely
to emit photons of frequency ω2−ω1 . So the emitted photons have roughly the same frequency
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as the stimulating photons. This is called stimulated emission. It leads to a cascade since a
single photon can stimulate an atom to emit a photon of the same frequency and we have two
photons. These two photons can stimulate two other atoms to emit, producing 4 photons, all
of the same frequency ω2 − ω1 . The maser (microwave amplification by stimulated emission of
radiation) and laser is based on this phenomenon of stimulated emission [See the autobiography
of a co-inventor of the laser, Charles Townes, How the laser happened, The adventures of a
scientist].

• It is very interesting to study the dependence of the probability of transition on the duration
of exposure t and the frequency ω of incident EM radiation. Suppose we hold ω fixed near
±∆ω (the resonant frequency). The above formula says that the probability of the system being
found in final state f at time t oscillates slowly in time with a frequency ∆ω ∓ ω , which by
assumption is much smaller than ω . So we may maximize our chances of finding the atom in
state f by waiting till time Tn given by one of

Tn =
(2n+ 1)π

∆ω ∓ ω
, n = 0, 1, 2, · · · (28)

For small times t� 2π
∆ω∓ω , the probability of a transition grows quadratically with time.

• On the other hand, suppose we fix a time t . Notice that as the frequency of light ω is tuned off
from the ‘resonant’ frequency ±∆ω , the probability of a transition decays rapidly (quadratically
in 1

∆ω∓ω ). In fact, let us consider the ‘average transition rate per unit time’,

Pi→f (t)

t
≈ g2

~2
|〈uf |H1|ui〉|2

sin2
(

1
2(∆ω ∓ ω)t

)
(∆ω ∓ ω)2t

. (29)

If we wait a time t large compared to the period of this oscillatory behavior 2π
∆ω∓ω , then the

transition rate gets more sharply peaked at ω = ±∆ω . Indeed, using a representation of the
Dirac Delta function5

2

π
lim
t→∞

sin2 1
2Ωt

Ω2t
= δ(Ω), and putting Ω = ∆ω ∓ ω, (30)

we get for a harmonic perturbation that lasts for a long time 0 ≤ t ≤ T 6

Ratei→f = lim
T→∞

Pi→f (t)

T
≈ g2

4~2
|〈uf |H1|ui〉|2 2πδ(∆ω ∓ ω). (31)

5Let Dt(ω) = 2
π

sin2(ωt/2)

ω2t
. Then we see that Dt(ω) → 0 as t → ∞ for any ω 6= 0. Moreover, at ω = 0,

Dt(0) = t
2π
→∞ as t→∞ . So as t→∞ , Dt(ω) tends to a distribution supported at t = 0. To show it is the

Dirac delta distribution we need to show limt→∞
∫
RDt(ω)dω = 1, but in fact this integral U(t) =

∫
RDt(ω)dω = 1

for all t > 0. First by rescaling ω = 2x/t we see that U(t) = U(1) . So it only remains to show that U(1) =
1
π

∫
R

sin2 x
x2

dx = 1. This may be established using contour integration. Indeed, sin2 x
x2

= f(x) + f∗(x) where

f(x) = 1−e2ix
4x2

. Moreover f(x) has a simple pole at x = 0 with residue −i/2 (the residue is just the coefficient

of the 1/x term in the Laurent series expansion of f around x = 0). We write the integral of sin2 x
x2

as half the
sum of two integrals over contours that are real except that they either just go above the origin or just below the
origin. This is called the Cauchy principal value. In this manner we express U(1) as 1

π
× 2 × <P

∫
R f(x) . The

Cauchy principal integral of f is obtained by closing the contour with a semicircle of radius R in the upper half
plane where it is seen that |f | < 1/2R2 . Only the contour which goes below the origin encloses a pole and we get
the desired result using the Cauchy residue theorem

∮
f(z)dz = 2πi

∑
j Residuewj (f) where wj are the locations

of the poles of f that lie within the contour of integration.
6Here ω > 0 and ∆ω = ωf − ωi . Absorption: −sign, ∆ω > 0 and ω ≈ ∆ω . Emission +sign, ωf < ωi ,

ω ≈ −∆ω .
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This is called Fermi’s Golden rule. For a harmonic perturbation, the average transition rate
after a long time approaches a time independent value. It is proportional to the absolute square
of the perturbing hamiltonian between initial and final states. It is significant only when the
frequency of the perturbation matches the gap between the levels. So far we have considered
the case where the initial and final states form a discrete set. Later, we will extend this to the
case where the final states form a continuum.

2.4.1 Frequency-time relation for harmonic perturbations

We briefly discuss a relation between the frequency of a harmonic perturbation (e.g. EM waves)
and the time for which it has acted to cause a transition between states of a system (e.g. an
atom). This relation is often written in a form similar to the uncertainty principle, though it
differs from the energy-time uncertainty inequality in many crucial ways.

• Recall that the probability of transitions from state i to state f due a harmonic perturbation
gH1 cosωt acting for a time t on a system with hamiltonian H0 and energy levels Ei = ~ωi is
given to first order by

Pi→f (t) ≈ 1

~2
|〈f |gH1|i〉|2

sin2
(

(ω±ωfi)t
2

)
(ω ± ωfi)2

. (32)

where ωfi = ωf − ωi is the Bohr frequency associated with the transition between i and f .
Let us consider the case of absorption (excitation) ωfi > 0, though a similar argument applies
to emission (decay). We consider the transition probability (or the rate P/t) as a function of
incident frequency ω . Pi→f (t) is quite sharply peaked around ω = ωfi , but has a finite spread.
In other words, it is not only the resonant frequency that is effective in inducing a transition,
but a narrow range around it. Roughly, this band of frequencies lies somewhere in the interval
between the two nearest zeros of Pi→f (t) around the central maximum at ω = ωfi .

These zeros occur at (ω − ωfi)
t

2
= ±π. (33)

So the probability of excitation after a time t is most significant for a range of frequencies lying
within

ωfi −
2π

t
. ω . ωfi +

2π

t
. (34)

Note that these are not inviolable inequalities, frequencies which are outside this interval can
also induce transitions from i to f , though with a much lower probability. Moreover, frequencies
at the edges of this band cannot induce transitions since the probability goes to zero.

• Within these approximations, the frequencies lying in the central region of the band

|ω − ωfi| .
2π

t
(35)

are particularly effective in inducing a transition from i to f after a time t . Let us denote the
central half the above range of frequencies by δω Then after a time t , frequencies lying in a
band of width ∆ω ≈ 2π/t about ωfi are effective in causing transitions from i to f :

∆ω t ≈ 2π (36)

9



Sometimes, we multiply through by ~ and express the frequency band as a range of energies
∆E ≡ ~∆ω

∆E t ≈ h. (37)

Sometimes, this is loosely called an uncertainty relation. But t here is not the uncertainty in
a measurement of time. Moreover, this relation between the band of effective frequencies and
the time the perturbation acted is not an inequality but just an estimate relevant to harmonic
perturbations.

• The definitions of ∆E and t here are different from what they mean in the Mandelstam-Tamm
version (see Griffiths, Introduction to Quantum Mechanics) of the energy-time uncertainty in-
equality ∆E∆t ≥ ~

2 . In this inequality, ∆E is the standard deviation in possible measurements
of energy of a system in a given state ψ . And ∆t is the time it takes for the expectation value
(in state ψ ) of a chosen observable A to change by an amount equal to one standard deviation
in the distribution of possible measured values of A : ∆t|∂t〈A〉ψ| = ∆A .

• Our new relation simply says that if the perturbation acts only for a short time, then a wide
band of frequencies can cause transitions. Indeed, as is easily seen by taking t → 0, for short
times, Pi→f is independent of ω , all frequencies are equally effective in inducing transitions if
they act for a very short time. But after the perturbation has acted for a long time, the band
of effective frequencies is much narrower, tending eventually to the resonant frequency alone, as
t→∞ .

• In this discussion, the EM wave is treated classically. The photon concept does not play a
role. This works in the high intensity regime where a large number of photons are present, and
the energy in a monochromatic EM wave is supplied in a nearly continuous manner. Within
this framework, energy is conserved. Irrespective of what the frequency of the EM wave is, an
energy of ~ωfi is absorbed by the atom in going from i→ f .

• One way to interpret this relation is to imagine an ensemble of atoms all in state i . A
monochromatic harmonic perturbation is applied to each atom for a time t . However, we scan
uniformly through a whole range of frequencies ω . So a bunch of atoms receive frequency ω1 ,
another bunch of atoms receive a slightly higher frequency and so on. So each bunch of atoms
experiences a slightly different frequency of light. After a common time t some atoms would
have been excited to a given final state f with energy Ef . The above argument says that the
incident frequencies most effective in inducing a transition from i → f are clustered around
ω = ωfi with an approximate spread given by ∆ω ≈ 2π/t .

• Another way to interpret this formula: suppose all the atoms in state i receive light of the same
frequency ω . But suppose there are several closely-spaced possible final states with energies Ef
(to which transitions are not forbidden!). Let the harmonic perturbation act for a time t . Then
we tabulate the energies Ef of the atoms that have made transitions to various possible excited
states. Then we will find that among the atoms that have been excited, a vast majority would
have been excited to states f with energies Ef satisfying

|Ef − (Ei + ~ω)| . h

t
. (38)

In other words, the absorbed energies are centered around ~ω but with a spread of roughly h/t .

• Yet another way to look at it is to consider an ensemble of atoms or other particles in an
unstable state i . However, suppose we do not know the energy Ei (or the mass of the unstable
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particle). We wait a time t (e.g. the life time) after which a fraction of the atoms have decayed,
say via a specific channel to a particular (say stable) final state f , whose energy is known. In the
process, radiation of some sort is also emitted and we measure how much energy is carried away
by radiation in each decay. However, according to the above argument, in different members of
the ensemble, we will find that a slightly different amount of energy has been carried away by
radiation leading to a distribution of radiated energies that are clustered around a central value
E0 (determined experimentally), with a spread in energies given by ∆E ≈ h/t . In this manner,
we can reconstruct a distribution of possible energies of the initial state Ei or a distribution of
possible masses of the unstable particle i . We would predict that Ei would lie approximately
in the interval

E0 + Ef −
h

t
. Ei . E0 + Ef +

h

t
. (39)

3 Quantum theory of radiation

So far we have discussed the quantum theory of a matter particle like the electron, via the
Schrodinger equation. Among other things, this was needed to accommodate the wave nature
of electrons (Davisson-Germer electron diffraction) and to explain the stability of the ground
state of the atom and the discrete atomic spectra. However, the earliest ideas of quantization
arose from Planck’s attempt to fit the spectrum of black body electromagnetic radiation. The
photoelectric effect and Compton scattering reinforced the need to treat light quantum me-
chanically, light too displayed both wave and particle-like behaviour. However, we have not
treated light quantum mechanically and have only a vague idea of what a photon is. Indeed,
the quantization of the Electromagnetic field is more difficult than the quantization of particle
mechanics, primarily because the EM field has an infinite number of degrees of freedom [namely,
the electric and magnetic fields at each point of space]. On the other hand, a point particle has
only three degrees of freedom, we need three coordinates (x, y, z) to locate the particle at any
instant of time. Historically, the quantization of the EM field had to wait till the late 1920s and
1930s work of Dirac, Pauli, Heisenberg, Jordan, Fermi etc., while the quantum theory of a point
particle was already formulated by Schrödinger and Heisenberg by 1926-27.

• Classical systems with infinitely many degrees of freedom are quite common. They include
(1) the EM field; (2) transverse vibrations of a stretched string: the height of the string at each
point along the string h(x) must be specified; (3) heat conduction along a rod, the temperature
u(x) at each point x along the rod must be specified. (4) fluid flow, the velocity, pressure and
density at each point of the container need to be specified. The classical equations of motion
(evolution equations) for systems with infinitely many degrees of freedom are typically systems
of partial differential equations. What are the PDEs that govern the time evolution of the above
4 systems? By contrast, the equations of motion for a system with finitely many degrees of
freedom are systems of ordinary differential equations [e.g. Newton’s equation for a particle is
a set of three ODEs mẍi = Fi ].

• What is more, the solution of the Schrödinger equation for the hydrogen atom spectrum
suggests that an atom would remain forever in an excited stationary state. We have already
seen that in the presence of an external EM field, atoms can be stimulated to make transitions
between stationary states. The rate of stimulated emission or absorption is proportional to the
intensity of light (energy density of the stimulating EM radiation). However, spectroscopists
have known for long that atoms in excited states spontaneously decay in about a nanosecond
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through emission of light, even in the absence of any stimulation. How is this to be explained
theoretically? Einstein showed that to understand thermodynamic equilibrium between atoms
and radiation (whose spectral distribution is governed by Planck’s blackbody law) in a cavity, the
rate for spontaneous decay from excited states must be non-zero. Remarkably, Einstein’s 1917
argument preceded the formulation of quantum mechanics (Schrodinger and Heisenberg) and
the development of time dependent perturbation theory (by Dirac)! Let us recall his argument.
However, Einstein’s argument does not explain how there can be spontaneous decay even in the
absence of external EM fields. The explanation for this is provided by the quantum theory of
radiation. Even in the vacuum state where the mean electric and magnetic fields are zero, there
are vacuum fluctuations which, in a sense, ‘induce’ spontaneous emission!

• Note that spontaneous absorption is almost never seen to occur, an atom in its ground state
in vacuum is rarely found to spontaneously get excited. A statistical mechanics argument for
this may be offered, using the principle of equal a priori probabilities: in equilibrium, all states
of a system with the same energy are equally likely. Consider an atom in the presence of
electromagnetic radiation present in the vacuum. Suppose the energy difference between the
ground and first excited state of the atom is ∆E . There is only one way in which this quantum
of energy can be possessed by the atom: by being in the first excited state. On the other
hand, this energy can be kept in the radiation field in very many ways, essentially, since the
electromagnetic field has very many degrees of freedom, the electric and magnetic fields at each
point of space. Since a priori all these possibilities are equally probable, it is infinitely more
likely for the quantum of energy to be stored in the electromagnetic field than in the atom. This
explains why atoms are typically found in their ground states and are not seen to spontaneously
absorb radiation from the vacuum and get excited.

3.1 Atoms and radiation in equilibrium: Einstein’s A and B coefficients

• Suppose we have a box of atoms in thermal equilibrium with EM radiation at temperature T .
We already know that EM radiation in equilibrium at temp T has a frequency distribution of
energy density u(ν)dν given by Planck’s black body law. For simplicity, suppose the atoms can
be in one of two states, with Nu in the upper state and Nl in the lower state. In equilibrium
these numbers do not change with time. However, this is a dynamic equilibrium where atoms
in the upper state decay to l via stimulated emission (due to the EM waves in the cavity) and
possibly by spontaneous emission. At the same time, atoms in the lower state get exited to u
via stimulated absorption. The rates (per atom) for these processes are denoted in the obvious
way. The rate of change of Nu is (ignoring spontaneous absorption)

0 =
dNu

dt
= −Rsp

u→lNu −Rst
u→lNu +Rst

l→uNl. (40)

From our study of time dependent perturbation theory, we have seen that the rates of stimulated
emission/absorption are equal Rst

u→l = Rst
l→u , both being proportional to the absolute squares

of the transition matrix elements 〈u|H1|l〉, 〈l|H1|u〉 (which are complex conjugates due to her-
miticity of the perturbing hamiltonian). However, this fact was not available to Einstein. He
deduced it as we will see below. However, these stimulated emission rates should be proportional
to the energy density u(ν) of EM waves at the transition frequency7. So Einstein defined the

7This is a consequence of Fermi’s Golden rule, the transition rate is proportional to the square of the transition
matrix element, which is proportional to the square of the electric field for electric dipole transitions.
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so-called B coefficients which are the rates (per atom) for stimulated transitions per unit radiant
energy density:

Rst
u→l = Bu→l u(ν) and Rst

l→u = Bl→u u(ν) (41)

where we denote the energy difference by hν = Eu − El . Furthermore, he denoted the rate of
spontaneous emission per atom by Rsp

u→l = A . Thus the rates per atom for the two transitions
are

wl→u = Bl→uu(ν) and wu→l = Bu→lu(ν) +A. (42)

Then the statement of equilibrium dNu
dt = 0 is the equality

Nlwl→u = Nuwu→l or NlBl→uu(ν) = NuBu→lu(ν) +NuA (43)

We find

u(ν) =
ANu

NlBl→u −NuBu→l
=

A/Bu→l
Nl
Nu

Bl→u
Bu→l

− 1
(44)

Now since the atoms are in thermal equilibrium at temperature T , the populations Nl, Nu are
proportional to the Boltzmann factors

Nl

Nu
= e−(El−Eu)/kT = ehν/kT . (45)

Thus

u(ν)dν =
A/Bu→l

ehν/kT Bl→uBu→l
− 1

dν. (46)

In order to fix the A and B coefficients (which are independent of T ) we will compare this
with the classically known energy density in black-body radiation. At high temperatures or in
the semi-classical limit hν/kT → 0, the equilibrium distribution of energy density in cavity
radiation is given by the Rayleigh-Jeans law [we indicate below one way to derive the Rayleigh-
Jeans formula]

uRJ(ν)dν =
8πν2

c3
kT dν or uRJ(ω)dω =

8πω2

(2π)2c3
kT dω (47)

For this to agree with our formula at high temperatures, we need several conditions to be
satisfied. First, the rate of spontaneous emission A 6= 0, we will explain this by studying the
quantum theory of radiation. Second, the two B coefficients must be equal Bu→l = Bl→u ≡ B .
Under this assumption,

u(ν)dν
high T−→ A

B

kT

hν
dν. (48)

Comparing with the RJ formula we find the ratio of spontaneous and stimulated emission rates

A

B
=

8πhν3

c3
(49)

Thus we have expressed the spontaneous emission rate in terms of the stimulated emission rate.
The latter can be calculated by treating the stimulating EM wave as a perturbation to the
atomic hamiltonian.
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• As a byproduct of this argument, we may also obtain the Planck black body spectrum by
plugging in this value for A

B in u(ν):

u(ν)dν =
A

B

dν

ehν/kT − 1
=

8πν2

c3

hν

ehν/kT − 1
dν (50)

which is precisely the Planck distribution (ω = 2πν, hν = ~ω ).

• Let us indicate how one may obtain the Rayleigh Jeans formula. One counts the number of
possible modes of EM radiation with frequency in the interval [ν, ν + dν] in a cavity of unit
volume. Then one appeals to classical equipartition to assign an energy kT to each of these
modes. Then the RJ energy density at temperature T is just the product of the number of modes
and kT . We could count the number of modes (standing waves) in a cavity purely classically
and get the answer 8πν2/c3 . But let us use quantum mechanical reasoning. The number of
photons with momentum between [p,p + dp] and [r, r + dr] is

2× d3p d3r

h3
. (51)

The reasoning is that there is one quantum state for each cell of phase space of volume h3 .
The uncertainty principle forbids us from localizing a particle to within a cell of Planck volume
h3 in phase space. The factor of 2 accounts for the two possible polarizations of photons. We
will soon explain what a photon is, and what its polarization is. It follows that the number of
photon states per unit volume with wave vector in [k, k+ dk] is

2× ~3d3k

h3
= 2× d3k

(2π)3
(52)

So the number of photon states with wave number between [k, k + dk] and direction of wave
vector lying in solid angle dΩk is

2× k2dkdΩk

(2π)3
. (53)

Converting to frequency k = ω/c = 2πν/c , the number of photons with frequency in the interval
[ν, ν + dν] and any direction of wave vector is

2× 4πν2dν

c3
=

8πν2 dν

c3
. (54)

Multiplying by the classical equipartition assignment of energy kT per mode, we get the
Rayleigh-Jeans distribution.

3.2 Definition of mean lifetime of an excited state due to spontaneous emission

• Suppose an atom is initially in the excited (upper energy) state u and has available to it several
lower energy states l1, l2, . . . ln to which it can spontaneously decay. Each of these is called a
decay channel or decay mode. Suppose the spontaneous transition probability from u→ li per
unit time, i.e., the spontaneous decay rate is Rsp

u→li . This spontaneous decay rate will depend
on the electromagnetic radiation present in the vacuum, just as the rate for stimulated emission
depends on the electromagnetic radiation incident on the atom. The spontaneous decay rate
Rsp
u→li was called the A-coefficient by Einstein.
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• If there are initially Nu atoms in upper state u , then in a time dt the increase in Nu

dNu = −
(
Rsp
u→l1 + · · ·+Rsp

u→ln

)
Nu dt (55)

Thus the expected number of atoms remaining in upper state u at time t is

Nu(t) = Nu(t = 0) exp
[
−
(
Rsp
u→l1 + · · ·+Rsp

u→ln

)
t
]

(56)

The time constant for this exponential depletion of population is called the lifetime of the upper
state

τ =
1

Rsp
u→l1 + · · ·+Rsp

u→ln
(57)

It is the time after which (on average) a fraction 1/e ≈ 1/2.718 ≈ 0.37 the population has
decayed to any of the available lower states, and only about 63% remain in upper state u . If
selection rules do not permit any lower state to decay to, then the rates are zero and the lifetime
τ infinite and the state is stable.

• To understand the spontaneous decay of excited states of the atom (and compute their lifetime)
we will develop the quantum theory of radiation and study its interaction with electrons in an
atom.

3.3 Classical radiation from Maxwell’s equations in radiation gauge

• Maxwell’s equations for the vacuum electric and magnetic fields in rationalized Heaviside-
Lorentz units are8

∇ ·B = 0, ∇× E = −1

c

∂B

∂t
, ∇ ·E = ρ and ∇×B =

j

c
+

1

c

∂E

∂t
. (58)

where for consistency of the two inhomogeneous equations the charge and current density must
satisfy the continuity equation ∂ρ

∂t + ∇ · j = 0. The first two homogeneous Maxwell equations
state the absence of magnetic monopoles, and Faraday’s law of induction. The second pair
of inhomogeneous equations are Gauss’ law and Ampere’s law with Maxwell’s correction term
involving the time derivative of the electric field (the displacement current). Gauss was Ger-
man, Ampere French, Faraday English and Maxwell Scottish. The motion of a charge e in an
electromagnetic field is governed by the Lorentz force law

F = e
[
E +

v

c
×B

]
. (59)

8We use rationalized Heaviside-Lorentz units. In HLU charges are normalized so that Coulomb’s law takes the
form F = q1q2r̂

4πr2
. The electric field of a point charge is E = q

4πr2
r̂ and the Biot-Savart law reads B = 1

4πc

∮
Idl×r
r3

.

Charges in HLU are related to CGS (esu or statcouloumb) units via qhlu =
√

4πqesu while the fields and potentials

are Ehlu =
Ecgs√

4π
, Bhlu =

Bcgs√
4π

and Ahlu =
Acgs√

4π
. It follows that the expression for the conjugate momentum

π = p− eA/c and the Lorentz force law F = q(E+ v
c
×B) take the same form in both Gaussian and rationalized

units. The magnitude of the charge of the electron is ecgs = 4.8 × 10−10 esu. Sommerfeld’s fine structure

constant in HLU is α = e2

4π~c . Putting in the values c = 3 × 1010 cm/s and ~ = 1.05 × 10−27 erg.s we find

α = 4.82×10−20

1.05×3×10−17 = 7.3× 10−3 ≈ 1/137. In going from formulae in SI units to HLU, ε0, µ0 are put equal to one,
since they have been absorbed into the definition of charge, and all times come with a factor of c .
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• The first pair of homogeneous Maxwell equations are identically satisfied if the fields are
expressed in terms of scalar and vector potentials (φ,A)

E = −∇φ− 1

c

∂A

∂t
and B = ∇×A. (60)

However, the gauge potentials (φ,A) are not uniquely determined by the E and B fields, more
on this momentarily. In terms of the gauge potentials, the Ampere-Maxwell equation becomes
(use ∇× (∇×A) = −∇2A +∇(∇ ·A))

−∇2A +∇(∇ ·A) =
j

c
− 1

c
∂t∇φ−

1

c2

∂2A

∂t2
. (61)

So introducing the scalar and vector potentials means that the first pair of homogeneous Maxwell
equations have already been solved. The gauge potentials play a very important role in the
quantum theory. The hamiltonian for the interaction of a charged particle with the EM field is
written in terms of A , rather than in terms of E or B .

• The inhomogeneous Maxwell equations can be written in a relativistically covariant form by
introducing the 4-vectors Aµ = (φ,A) and jµ = (cρ, j) and the field strength tensor Fµν =
∂µAν − ∂νAµ . Then the inhomogeneous Maxwell equations become ∂µF

µν = 1
c j
ν along with

the consistency condition ∂µj
µ = 0 which expresses local charge conservation.

• However, A and φ are not uniquely determined by the measurable electric and magnetic
fields. Two gauge potentials (φ,A) and (φ′,A′) which differ by a gauge transformation

A′ = A +∇θ, φ′ = φ− 1

c

∂θ

∂t
. (62)

correspond to the same electromagnetic fields. Gauge transformations form a group G which
acts on the space of gauge potentials A = {(φ,A)} . Each orbit (equivalence class of gauge
potentials) corresponds to an electromagnetic field (E,B) and the space of electromagnetic
fields is the quotient A/G . A choice of orbit representatives is called a gauge choice. It is
obtained by imposing condition(s) on the gauge potentials which are satisfied by one set of
gauge potentials from each equivalence class.

• A convenient gauge choice is Coulomb gauge ∇ ·A = 0. Given a vector potential A′ we find
its representative in Coulomb gauge by making the gauge transformation A = A′ −∇θ with θ
chosen to satisfy Poisson’s equation ∇2θ = ∇ ·A′ .
• Gauss’ law simplifies in Coulomb gauge: ∇ · E = −∇2φ − ∂∇·A

∂t = 0 becomes −∇2φ = ρ ,
whose solution involves the Coulomb potential (this is why ∇ · A = 0 is called the Coulomb

gauge!) φ(r, t) = 1
4π

∫
d3r′ ρ(r′,t)

|r−r′| . In particular, in Coulomb gauge, the scalar potential φ(r, t)
is not a dynamical quantity, it is entirely fixed by the instantaneous charge density. Now let
us specialize to the case where there are no charges present in the interior and boundary of
the region of interest, so that ρ = 0. Then φ = 0. In the absence of charges, Coulomb gauge
is called radiation gauge (φ = 0, ∇ · A = 0), since electromagnetic radiation is most easily
described in this gauge. Indeed, ∇ ·A = 0 or k · Ãk = 0 in Fourier space means there are only
two (transverse) components of the vector potential that are dynamical. These correspond to
the two independent polarizations of electromagnetic radiation. In radiation gauge, the Ampere-
Maxwell equation becomes

1

c2

∂2A

∂t2
= ∇2A +

j

c
, (provided ∇ ·A = 0, φ = ρ = 0). (63)
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This is the vector wave equation in the presence of a current source j . One is often interested in
EM waves in vacuum, in which case j = 0 and we get the homogeneous vector wave equation.

�A ≡ 1

c2

∂2A

∂t2
−∇2A = 0, (provided ∇ ·A = 0, j = 0, φ = ρ = 0). (64)

3.3.1 Fourier decomposition of A(r, t) , transversality condition and polarization

The wave equation describes EM waves, including traveling plane waves. Since the equation is
linear, a super position of plane waves is also a solution. This suggests that we may express the
general solution of the wave equation as a superposition of plane waves. This is what Fourier
analysis does for us. We first imagine that the EM field is considered in a large cubical box of
volume V and write the vector potential as a Fourier series

A(r, t) =
c√
V

∑
k

Ak(t)eik·r (65)

The Fourier coefficient Ak(t) is called the Fourier mode corresponding to wave vector k . The
pre-factors c/

√
V are not very important and for later convenience: the formula for the elec-

tric field −1
c
∂A
∂t becomes simpler. The allowed values of k are determined by the boundary

conditions, but are not important to us since we will eventually let V → ∞ so that all k are
allowed. For simplicity, we consider the radiation field in a cubical cavity of volume V with
periodic boundary conditions. This allows us to work with Fourier series. We will eventually
let the sides of the box go to infinity, and the Fourier series will become Fourier integrals. The
distinction is not important for us here.

• The advantage of the Fourier expansion is that the wave equation �A = 0 reduces to a system
of ODEs, for each mode k

Äk(t) + c2k2Ak(t) = 0 ⇒ Äk(t) = −ω2
kAk(t). (66)

Thus each mode Ak evolves independently in time like a classical oscillator of angular frequency
ωk = c|k| . We anticipate that the time dependence of the vector potential may be written as
a linear combination of eiωkt and e−iωkt . However Ak is a vector, not a scalar, so it has a
direction. Which way does it point? This brings in the concept of polarization.

• The Coulomb gauge condition ∇ ·A = 0 becomes

∇ ·A =
ic√
V

∑
k

k ·Ak(t)eik·r ≡ 0. ⇒
∑
k

k ·Ake
ik·r = 0 for all r (67)

The only way for this to happen is for the individual Fourier coefficients to vanish, i.e., k·Ak = 0
for each k . In other words, the Fourier modes Ak must each be transversal (orthogonal) to the
corresponding wave vectors. Thus the Coulomb gauge condition is also called the transversality
condition. We will soon see that k is the direction of propagation of the corresponding EM
wave, so we see that Ak must be transverse to its wave vector.

• So we may write Ak =
∑

λAk,λελ as a linear combination of two basis polarization vectors
~ε1,~ε2 , which are perpendicular to k . For convenience we choose them to be mutually orthogonal
so that ε1, ε2, k̂ form an orthonormal system:

k̂ · ελ = 0, ελ · ελ′ = δλ,λ′ , ε1 × ε2 = k̂ =
k

k
(68)
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ε1,2(k) of course depend on k , but for brevity, we do not display the k-dependence explicitly.

• A single-mode EM field with Ak,λ ∝ ελ would correspond to an EM wave with the electric field
Ek ∝ −1

c Ȧk pointing along (“polarized along”) the ελ direction. The corresponding magnetic

field is Bk ∝ k × Ak . We see that for a fixed Fourier mode k , the electric Ek ∝ Ȧk and
magnetic fields Bk ∝ k ×Ak are both orthogonal to k , i.e., k · Ek = 0 and k ·Bk = 0. This
is the statement that EM waves are transversely polarized. One choice of basis for polarization
vectors is9

ε1 = x̂, ε2 = ŷ and k̂ = ẑ. (70)

Since ε1, ε2, k̂ form an orthonormal basis for 3d Euclidean space, we may write the identity
matrix as a sum of projections to the subspaces spanned by each

I = ε1ε
t
1 + ε2ε

t
2 + k̂k̂t or δij = (ε1)i(ε1)j + (ε2)i(ε2)j +

kikj
k2

(71)

Thus the transverse projection operator (it appears in the Poisson brackets below) may be
expressed as

δij −
kikj
k2

=
∑
λ=1,2

ελi ε
λ
j . (72)

3.3.2 Electromagnetic energy, Lagrangian, conjugate momentum and Poisson brackets

• The energy in the electromagnetic field in the radiation gauge becomes

H =
1

2

∫ (
E2 + B2

)
d3r =

1

2

∫ (
1

c2
Ȧ2 + (∇×A)2

)
d3r ≡

∫
H d3r. (73)

The instantaneous configuration of the radiation field is specified by the vector potential A(r, t),
subject to ∇ ·A = 0. Comparing with the point-particle energy H = 1

2mq̇
2 + V (q) = T + V ,

the electric energy is the kinetic energy and the magnetic energy is a potential energy. The
corresponding Lagrangian is T − V :

L =
1

2

∫ (
E2 −B2

)
d3r =

1

2

∫ (
1

c2
Ȧ2 − (∇×A)2

)
d3r ≡

∫
L d3r. (74)

Recall that the momentum conjugate to a coordinate q is ∂L
∂q̇ . So the momentum conjugate

to Ai is πi = ∂L
∂Ȧi

= −1
cEi . It is tempting to write Poisson brackets {Ai(r, t),−1

cEj(r, t)} =

δijδ
3(r− r′). However, this would not be consistent with the radiation gauge condition, which

requires that the divergence of the lhs must vanish. In fact the divergence of the lhs in both r
and r′ must vanish since ∇ ·A = 0 and ∇ ·E = 0 in the absence of charges.

• Poisson bracket relations that respect the transversality constraints are{
1

c
Ei(r, t), Aj(r

′, t)

}
= δTij(r− r′),

{
Ai(r, t), Aj(r

′, t)
}

=
{
Ei(r, t), Ej(r

′, t)
}

= 0. (75)

9It is also interesting to choose a complex basis of ‘right’ and ‘left’ circular polarization vectors. E.g. if
~ε1 = x̂,~ε2 = ŷ ,

ε+ =
1√
2

(x̂+ iŷ) and ε− =
1√
2

(x̂− iŷ), while k̂ = ẑ. (69)

These are orthonormal in the sense ε∗λ · ελ′ = δλ,λ′ , ẑ · ε± = 0.
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Here δTij(r− r′) is the transverse projection of the delta function:

δTij(r− r′) =

∫
d3k

(2π)3

(
δij −

kikj
k2

)
eik·(r−r

′) =
1

V

∑
k

(
δij −

kikj
k2

)
eik·(r−r

′). (76)

The transverse delta function is symmetric and divergence-free ∂
∂ri
δTij(r−r′) = − ∂

∂r′i
δTij(r−r′) =

0.

• These Poisson brackets may seem a bit ad hoc. The justification for any set of Poisson brackets
is that they must give the correct equations of motion with the appropriate hamiltonian (and
satisfy anti-symmetry and the Jacobi identity). We will verify later that these p.b. imply the
vector wave equation for A (this is easier to check in Fourier space).

• Let us return to the Fourier expansion of the vector potential and write the electromagnetic
energy in terms of the modes Ak

10

A(r, t) =
c√
V

∑
k

Ak(t)eik·r (78)

• The electric and magnetic fields are

E = − 1√
V

∑
k

Ȧke
ik·r and B =

ic√
V

∑
k

(k×Ak)eik·r. (79)

• The electric (kinetic) energy is (we use
∫
d3r ei(k−k

′)·r = V δkk′ and A−k = A∗k )

K.E. =
1

2

∫
E2d3r =

1

2V

∑
k,k′

ȦkȦk′

∫
d3r ei(k+k′)·r =

1

2

∑
k

ȦkȦ−k =
1

2

∑
k

|Ȧk|2. (80)

While the magnetic (potential) energy is

P.E. = −1

2

c2

V

∑
k,k′

(k×Ak)·(k′×Ak′)

∫
ei(k+k′)·rd3r =

c2

2

∑
k

(k×Ak)·(k×A−k) =
c2

2

∑
k

|k×Ak|2.

(81)
Thus the electromagnetic energy is

H =
1

2

∑
k

(
|Ȧk|2 + ω2

k|k̂ ×Ak|2
)

where ωk = c|k|. (82)

Comparing with the hamiltonian of a particle of mass m = 1 in a harmonic oscillator potential,
Hsho = 1

2 q̇
2 + 1

2ω
2q2 we see that the electromagnetic energy is a sum of energies of a collection

of oscillators Ak . This may also be seen from the equation of motion �A = 0.

10Since A is real, the Fourier coefficients must satisfy the symmetry A∗−k = Ak . Why is this true? This is a
general fact about Fourier series. Suppose f(x) =

∑∞
n=−∞ fne

inx . Then f∗(x) =
∑
n f
∗
ne
−inx . But now let us

relabel the dummy index of summation as n′ = −n , then f∗(x) =
∑∞
n′=−∞ f

∗
−n′e

in′x =
∑
n f
∗
−ne

inx . But this
must equal f(x) for all x , and this is possible only if the Fourier coefficients are all the same, i.e., if fn = f∗−n .
To make the reality of A(r, t) manifest, we could also write

A(r, t) =
1

2

c√
V

∑
k

(
Ak(t)eik·r + A∗k(t)e−ik·r

)
(77)
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3.3.3 Solution of vector wave equation as superposition of polarized plane waves

• Indeed, the advantage of the Fourier expansion is that the wave equation �A = 0 reduces
to a system of decoupled ODEs, for each mode k and each independent polarization λ . Upon
dotting with ~ελ ,

Äk(t) + c2k2Ak(t) = 0 becomes Äk,λ(t) = −ω2
kAk,λ(t) where ωk = c|k|. (83)

Thus each mode Ak,λ evolves independently in time like a classical oscillator of angular frequency
ωk

Ak,λ(t) = ck,λe
−iωkt + c∗k,λe

iωkt. (84)

The real and imaginary parts of ck,λ are the two constants of integration. Thus

Ak(t) =
∑
λ

~ελ
[
ck,λe

−iωkt + c∗k,λe
iωkt
]
. (85)

If we were working with complex polarization vectors ε± we would have

Ak(t) =
∑
λ

[
ck,λ~ελe

−iωkt + c∗k,λ~ε
∗
λe
iωkt
]
. (86)

For simplicity, let us stick to real polarization vectors. Using these Fourier coefficients we syn-
thesize the vector potential that is the general solution of the vector wave equation incorporating
the Coulomb gauge condition11

A(r, t) =
c√
V

∑
k,λ

~ελ

[
ck,λe

i(k·r−ωkt) + c∗k,λe
−i(k·r−ωkt)

]
(88)

A has been expressed as a linear combination of plane waves ελe
i(k·r−ωt) traveling in the di-

rection of their respective wave vectors k , and with polarization λ . The corresponding electric
field is (here and elsewhere + c.c. denotes addition of the complex conjugate)

E(r, t) = −1

c
Ȧ =

i√
V

∑
k,λ

~ελωk

(
ckλe

i(k·r−ωt) − c.c.
)

(89)

Here the constant Fourier coefficients ck,λ, c
∗
k,λ are determined by initial conditions on A,E .

With a slight abuse of notion, it is convenient to define

ck,λ(t) = ck,λe
−iωkt, c∗k,λ(t) = c∗k,λe

iωkt where ck,λ, c
∗
k,λ are the initial values. (90)

3.3.4 Change of phase space variables from A,E to Fourier modes ck,λ, c
∗
k,λ

It is clear that the Fourier modes ck,λ(t), c∗k,λ(t) of definite wave number and polarization have
a simpler (simple harmonic) time-dependence than the position space E,A fields (which are

11 • When V → ∞ , these Fourier series become integrals 1
V

∑
k →

∫
d3k

(2π)3
with k taking all values. For

instance,

A(r, t) = c

∫
d3k

(2π)3

∑
λ

[c(k, λ)ελe
(k·r−ωt) + c.c] where c(k, λ) =

√
V ck,λ. (87)
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linear combinations of several modes). Moreover, the hamiltonian does not couple distinct
Fourier modes. This motivates a change of phase space variables from A and E to c, c∗ . We
define12

A(r, t) =
c√
V

∑
k,λ

~ελ

[
ck,λ(t)eik·r + c∗k,λ(t)e−ik·r

]
E(r, t) =

i√
V

∑
k,λ

~ελωk

(
ckλ(t)eik·r − c∗kλ(t)e−ik·r

)
(91)

These changes of variables are chosen so that the transversality constraints on A and E are
automatically satisfied. Note that the electric field is not obtained by differentiating A in time,
it is an independent field. On the other hand, the magnetic field is obtained by taking curl of
A , it is a dependent field.

• A significant advantage of c, c∗ over A,E is that they have simpler p.b. than A and E . Upon
quantization c, c∗ are related to annihilation and creation operators for photons with definite
wave vector and polarization.

• The equal-time Poisson brackets among the components Ai and Ej are satisfied if the modes
ck,λ(t), c∗k,λ(t) satisfy the following equal time p.b.

{
ck,λ(t), c∗k′,λ′(t)

}
=

1

2iωk
δkk′ δλλ′ ,

{
ck,λ(t), ck′,λ′(t)

}
=
{
c∗k,λ(t), c∗k′,λ′(t)

}
= 0. (92)

Apart from some constant factors, this must remind us of commutators between SHO annihila-
tion and creation operators [a, a†] = 1, [a, a] = [a†, a†] = 0. Let us indicate how this is verified in
one case. All dynamical variables A,E, c, c∗ are evaluated at the same time t which we suppress{

1

c
Ei(r), Aj(r

′)

}
=

i

V

∑
k,λ,k′,λ′

ωk

{
ck,λ(ελ)ie

ik·r − c.c., ck′λ′(ελ′)je
ik′·r′ + c.c

}
=

i

iV

∑
k,λ,k′,λ′

ωk
2ωk

[
δkk′δλλ′ελiελ′je

i(k·r−k′·r′) + c.c.
]

=
1

2V

(∑
k

(
δij −

kikj
k2

)
eik·(r−r

′) + c.c.

)
=

1

2V
2V δTij(r− r′) = δTij(r− r′).

We used the completeness/transverse projection formula
∑

λ ελiελj = δij− k̂ik̂j . In the last line,

the Fourier series is a real function of r− r′ , since δij − k̂ik̂j is an even function of momentum.
So the addition of the complex conjugate just doubles it. One may similarly check that the
components of the electric field Poisson commute with each other and so too do the components
of the vector potential.

12Of course, we know the time dependence of c(t), c∗(t) from solving the equations of motion. But that explicit
time-dependence is not needed now, it simply motivates the following change of phase space dynamical variables.
Equal time Poisson brackets between dynamical variables do not depend on their time-dependence nor on what
the hamiltonian is.
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3.3.5 Hamiltonian in terms of Fourier modes ckλ, c
∗
kλ

• Let us express the classical hamiltonian in terms of the Fourier modes. We will show below
that

H =
1

2

∫
(E2 + B2)d3r = 2

∑
k,λ

ω2
kc
∗
k,λck,λ (93)

• To obtain this formula for the hamiltonian, let us work for simplicity with a real o.n. basis
for polarizations ε1 × ε2 = k̂ . The expressions for A,E,B in terms of c, c∗ are

A(r, t) =
c√
V

∑
k,λ

~ελ

[
ck,λ(t)eik·r + c∗k,λ(t)e−ik·r

]
E(r, t) =

i√
V

∑
k,λ

~ελωk

(
ckλ(t)eik·r − c∗kλ(t)e−ik·r

)
B(r, t) = ∇×A =

i√
V

∑
k,λ

ωkk̂ × ~ελ
(
ckλ(t)eik·r − c∗kλ(t)e−ik·r

)
(94)

Now we compute the electric energy using orthogonality
∫
ei(k−k

′)·rd3r = V δk,k′ and ελελ′ =
δλ,λ′ .

1

2

∫
E2d3r = − 1

2V

∑
k,k′,λ,λ′

ελ · ε′λωk ωk′

∫ [
ckλe

ik·r − c∗kλe−ik·r
] [
ck′λ′e

ik′·r − c∗k′λ′e−ik
′·r
]
d3r

= −1

2

∑
kλ

ω2
k

[
ckλc−kλ + c∗kλc

∗
−kλ − 2|ckλ|2

]
. (95)

The magnetic energy is

1

2

∫
B2d3r = − 1

2V

∑
k,k′,λ,λ′

ωkωk′(k̂×ελ) ·(k̂′×ε′λ)

∫ [
ckλe

ik·r − c∗kλe−ik·r
] [
ck′λ′e

ik′·r − c∗k′λ′e−ik
′·r
]
d3r.

It is clear that the spatial integrals will produce either δk,−k′ or δk,k′ in the various terms. Now

we use k̂ = ±k̂′ , orthogonality of wave and polarization vectors, and the scalar and vector triple
product identities to simplify

(k̂ × ελ) · (k̂′ × ε′λ) = k̂′ · (ε′λ × (k̂ × ελ)) = k̂′ · [k̂(ελ′ · ελ)− ελ(ελ′ · k̂)] = (k̂′ · k̂) δλλ′ . (96)

So the magnetic energy becomes

1

2

∫
B2d3r = −1

2

∑
k,λ

ω2
k[−ck,λc−k,λ − c∗k,λc∗−k,λ − 2|ck,λ|2]. (97)

We see that the cc and c∗c∗ terms cancel between the electric and magnetic energies giving
H = 2

∑
k,λ ω

2
kc
∗
k,λ . To make the energy look like that of a collection of harmonic oscillators,

we define rescaled Fourier modes

ck,λ =

√
~

2ωk
ak,λ, and c∗k,λ =

√
~

2ωk
a∗k,λ. (98)
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Then the hamiltonian and p.b. become

H =
∑
k,λ

~ωk
(
a∗k,λak,λ

)
,

{
ak,λ, a

∗
k′,λ′

}
=

1

i~
δk,k′δλ,λ′ ,

{
ak,λ, ak′,λ′

}
=
{
a∗k,λ, a

∗
k′,λ′

}
= 0.

(99)
Note that the introduction of factors of ~ does not make this a quantum theory, we are simply
choosing to measure the energy of each mode in units of ~ωk . We will quantize this hamiltonian
dynamical system soon by replacing classical dynamical variables by operators on Hilbert space
and p.b. by commutators {., .} → 1

i~ [., .] . These re-scalings ensure that the quantum hamiltonian
and commutators take a standard form.

• Simple as the hamiltonian and p.b. are, we must still check that they imply the correct
time dependence for a and a∗ , previously obtained by solving the vector wave equation, i.e.,
ak,λ(t) = e−iωktak,λ(0). Hamilton’s equation for evolution is

ȧkλ = {ak,λ, H} =

ak,λ,∑
l,µ

~ωla∗lµalµ

 =
∑
lµ

~ωlalµ
δk,lδλ,µ
i~

= −iωkakλ. (100)

The solution of this equation is ak,λ(t) = ak,λ(0)e−iωkt . Thus we have verified that the Hamil-
tonian and p.b. we have postulated for the classical radiation field lead to the correct time-
evolution. This justifies the ‘ad-hoc’ introduction of the transverse delta function in the p.b.
between A and E .

• Let us motivate the passage to the quantum theory by recalling how to ‘canonically’ quantize
a harmonic oscillator using creation and annihilation operators.

3.4 Quantization of the harmonic oscillator using creation and annihilation operators

• Newton’s equation for a particle of mass m executing simple harmonic motion is mq̈ = −ω2q .
The energy of such a harmonic oscillator is E = 1

2mq̇
2 + 1

2mω
2q2 . In terms of the momentum

p = mq̇ , the hamiltonian is H = p2

2m + 1
2mω

2q2 . Position and momentum satisfy the p.b.
{q, p} = 1, {q, q} = {p, p} = 0.

• Since ~ω has dimensions of energy, even classically we may write H = ~ω( p2

2m~ω + 1
2
mωq2

~ ).
Defining a constant with unit of inverse length β =

√
mω
~ we have the dimensionless coordinate

and momentum ξ = βq and p = p
~β with p.b. {ξ, p} = 1

~ and H = 1
2~ω(ξ2 + p2). We now

define the complex combinations

a =
ξ + ip√

2
and a∗ =

ξ − ip√
2

with {a, a∗} = − i
~

and H = ~ωa∗a = ~ω|a|2. (101)

In the quantum theory, q, p become operators. In the Schrodinger representation p = −i~ ∂
∂q

and the p.b. {q, p} = 1 is replaced by the commutator [q, p] = i~ (i.e., multiply the rhs by i~).
It follows that [ξ, p] = i . In the Schrodinger representation p = −i ∂∂ξ , check that this gives the
desired commutator [ξ, p] = i .

• Now if a† = (ξ − ip)/
√

2 denotes the hermitian adjoint of the operator a (quantum version
of a∗ ), then [a, a†] = 1. Moreover,

a†a =
1

2

(
ξ2 + p2 + i[ξ, p]

)
=

1

2

(
ξ2 + p2 − 1

)
(102)
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• The hamiltonian operator

H =
p2

2m
+

1

2
mω2q2 =

1

2
~ω(ξ2 + p2) (103)

may be written as H = ~ω(a†a + 1
2). We have used that fact that aa† − a†a = 1. N = a†a is

the number operator. We may check using the commutation relations that

[N, a] = [a†a, a] = [a†, a]a = −a and [N, a†] = [a†a, a†] = a†[a, a†] = a†. (104)

It follows that
[H, a] = −~ωa and [H, a†] = ~ωa†. (105)

a, a† are called the annihilation and creation operators (or lowering and raising operators)
because of the way we may interpret these relations. Suppose |ψ〉 is an energy eigenstate
with energy eigenvalue E . Then assuming a|ψ〉 is not the zero vector, a|ψ〉 is also an energy
eigenstate with a little lower energy E − ~ω , since

H(a|ψ〉) = aH|ψ〉 − ~ωa|ψ〉 = (E − ~ω)(a|ψ〉) (106)

Similarly, a†|ψ〉 is also an energy eigenstate with a slightly higher energy E + ~ω .

• Now the SHO hamiltonian is a positive operator, in the sense that its diagonal matrix element
in any state is positive:

〈φ|H|φ〉 =
1

2
~ω + 〈φ|a†a|φ〉 =

1

2
~ω + 〈aφ|aφ〉 =

1

2
~ω + |||aφ〉||2 ≥ 1

2
~ω. (107)

Since eigenvalues are simply expectation values in normalized eigenstates, the energy eigenvalues
must all be ≥ 1

2~ω . Now, if there is one energy eigenstate |ψ〉 with eigenvalue E , then by
repeated application of the lowering operator a , we may produce an energy eigenstate with
negative energy, contradicting the positivity of H . To avoid this problem, successive application
of a must result in a state |0〉 (taken to have unit norm) which is annihilated by the lowering
operator. This state is the ground state of the hamiltonian H|0〉 = 1

2~ω|0〉 with energy E0 =
1
2~ω . |0〉 is also called the vacuum state. The first excited state is |1〉 = a†|0〉 , with an energy
E1 = 3

2~ω .

• Note that the ground or vacuum state is not the zero vector. The zero vector ψ(x) = 0 is not
a state describing a particle, since it has zero probability to be found any where. But the simple
harmonic oscillator describes one particle at all times, so every physical state of the SHO must
satisfy the normalization condition

∫∞
−∞ |ψ(x)|2dx = 1. One may find the position space wave

function of the ground state, i.e., 〈x|0〉 = ψ0(x) using the condition aψ(x) = 1√
2
(ξ + ∂ξ)ψ = 0.

This implies ψ′/ψ = −ξ or ψ = Ae−ξ
2/2 = Ae−β

2x2/2 . Find the value of constant A to ensure
the ground state is normalized to one. Note that though the average value of x in the ground
(vacuum) state is zero on account of evenness (parity symmetry) of ψ0(x), the position does
suffer fluctuations, 〈x2〉0 6= 0. Similarly, one checks that 〈p〉0 = 0 but 〈p2〉0 6= 0.

• We check using the commutation relation aa† − a†a = 1 that |1〉 has unit norm

〈1|1〉 = 〈0|aa†|0〉 = 〈0|0〉+ 〈0|a†a|0〉 = 1. (108)

Similarly, the second excited state is ∝ a†|1〉 . The square of its norm is

〈0|aaa†a†|0〉 = 〈0|a(a†a+ 1)a†|0〉 = 〈0|aa†|0〉+ 〈0|(a†a+ 1)aa†|0〉 = 1 + 1 = 2. (109)
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So the normalized second excited state is |2〉 = 1√
2
a†a†|0〉 , with an energy 5

2~ω . Proceeding

this way13, one finds that the nth excited state (normalized to one) is |n〉 = 1√
n!

(a†)n|0〉 with

an energy eigenvalue En = ~ω(n+ 1
2).

• In the Schrödinger picture, the states evolve with time, as specified by the Schrodinger equation
i~∂|ψ(t)〉

∂t = H|ψ(t)〉 , while observables like H,x, p are time-independent. Energy levels are
stationary, in the sense that they evolve by a phase

|n(t)〉 = e−iEnt/~|n(0)〉. (110)

• In the Heisenberg picture, states are time-independent while observables carry the time de-
pendence. By definition, the state in the Heisenberg picture is just the Schrödinger state at
t = 0. So

|φ(t)〉s = e−iHt/~|φ(0)〉 ⇒ |φ(t)〉s = e−iHt/~|φ〉h. (111)

The Heisenberg picture operator Ah corresponding to the Schrödinger picture operator As is
defined as

Ah(t) = eiHt/~Ase
−iHt/~ = U †AsU, where we denote U = e−iHt/~. (112)

It follows that the hamiltonian is the same in both pictures Hs = Hh ≡ H . Further, the states
and operators in the two pictures coincide at t = 0.

• Matrix elements and expectation values (which carry physical significance) may be computed
in either picture, resulting in the same values

h〈φ|Ah(t)|ψ〉h =s 〈φ(t)|UU †AsUU †|ψ(t)〉s =s 〈φ(t)|As|ψ(t)〉s. (113)

Just as the Schrodinger equation governs the evolution of states in the Schrodinger picture, the
time evolution of an observable Ah is governed by the Heisenberg equation of motion

i~
∂Ah
∂t

= [Ah, H]. (114)

Let us derive the Heisenberg equation of motion. Recall Ah(t) = U †AsU

i~∂tAh = i~(∂tU
†)AsU + i~U †As∂tU = −HU †AsU + U †AsUH = −HAh +AhH = [Ah, H].

(115)
Here we used U = e−iHt/~ so that i~∂tU = HU = UH since H and U commute. And taking
the hermitian adjoint, −i~∂tU † = HU † .

• The Heisenberg equation of motion is the quantum version of Hamilton’s classical equations
written in p.b. form. Start with {A,H} = ∂A

∂t and replace p.b. by commutators and multiply
the rhs by i~ .

• Let us use the Heisenberg equation of motion14 to find the time evolution of the SHO creation
and annihilation operators in the Heisenberg picture.

i~
∂ah
∂t

= [ah, H] = ([a,H])h = ~ωah ⇒ ∂ah
∂t

= −iωah ⇒ ah(t) = e−iωtah(0) (116)

Similarly (or taking the hermitian conjugate), we get a†h(t) = eiωta†h(0). This is the same time
evolution as in a classical harmonic oscillator.

13The normalization factors may be obtained by first showing that a†|n〉 =
√
n+ 1|n+1〉 and a|n〉 =

√
n|n−1〉 .

14We also use [H, a] = −~ωa, [H, a†] = ~ωa† and the relation [Bh, H] = [U†BU,H] = U†[B,H]U = ([B,H])h
on account of [H,U ] = 0 where U = e−iHt/~ .
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3.5 Quantization of radiation field in radiation gauge

• Heisenberg’s and Schrödinger’s development of point particle quantum mechanics shows that
the position and momentum of a particle are subject to quantum fluctuations. This is also mo-
tivated by Heisenberg’s microscope thought-experiment which suggests that the determination
of position with greater accuracy would make the determination of momentum more uncertain.
The electromagnetic field is also subject to quantum fluctuations. This was motivated by Weis-
skopf’s microscope thought-experiment. Here, we try to pin point the position of a charged
point particle by measuring the electric field it produces, and fix its momentum by measuring
the magnetic field produced by the current of the moving charge. If the electric and magnetic
fields could be simultaneously determined, then we might be able to fix the instantaneous po-
sition and momentum of the particle, violating the Heisenberg uncertainty principle. To avoid
this problem, we expect the electric and magnetic fields to display quantum fluctuations. This
gives us a reason to quantize the radiation field. Once quantized, we will be able to identify the
photon as a state of the quantized radiation field. However, it is harder to quantize the radiation
field than a point particle. This is primarily because a particle or system of particles has a finite
number of degrees of freedom, while the EM field has an infinite number of degrees of freedom
(the electric and magnetic fields at each point in space). Another new feature is the possibil-
ity for photons to be created or absorbed. The number of atomic electrons in Schrodinger’s
treatment is fixed. But in radiative transitions the number of photons is not conserved. So the
Hilbert space must include a vacuum state of no photons, states with one photon, states with
two photons etc. Let us set up a scheme to deal with these possibilities.

• We will quantize the radiation field by the canonical procedure of replacing Poisson brackets
with commutators, as we did for the harmonic oscillator. Indeed, the radiation field can be
regarded as an infinite collection of harmonic oscillators, one for each mode labelled by wave
vector and polarization (k, λ).

H = 2
∑
k,λ

ω2
kc
∗
kλckλ (117)

where the vector potential is

A(r, t) =
c√
V

∑
kλ

~ελ

[
ckλ(t)eik·r + c∗kλe

−ik·r
]
. (118)

Recall the p.b. among the modes of the EM field{
ck,λ, c

∗
k′,λ′

}
=

1

2iωk
δkk′ δλλ′ ,

{
ck,λ, ck′,λ′

}
=
{
c∗k,λ, c

∗
k′,λ′

}
= 0. (119)

To make the Hamiltonian and p.b. look simpler and to follow a notation similar to the one used
in quantizing the SHO, we define re-scaled Fourier modes for the radiation field

ck,λ =

√
~

2ωk
ak,λ, and c∗k,λ =

√
~

2ωk
a∗k,λ. (120)

Then the hamiltonian becomes
H =

∑
kλ

~ωka∗kλakλ. (121)
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Then the Fourier decomposition of the vector potential reads

A(r, t) =
c√
V

∑
k,λ

√
~

2ωk
~ελ

[
ak,λ(t)eik·r + a∗kλ(t)e−ik·r

]
(122)

and the equal-time p.b. among the ak,λ, a
∗
k,λ are

{
ak,λ, a

∗
k′,λ′

}
=

1

i~
δk,k′δλ,λ′ , while

{
ak,λ, ak′,λ′

}
=
{
a∗k,λ, a

∗
k′,λ′

}
= 0. (123)

Now we canonically quantize this system by analogy with the SHO. The p.b. among the a, a∗

are replaced by commutators between a , multiplying the RHS by i~ . Thus we get the canonical
commutation relations

[ak,λ, a
†
k′,λ′ ] = δk,k′δλ,λ′ , while [ak,λ, ak′,λ′ ] = [a†k,λ, a

†
k′,λ′ ] = 0. (124)

The expansion of the vector potential operator now reads

A(r, t) =
c√
V

∑
k,λ

√
~

2ωk
~ελ

[
ak,λ(t)eik·r + a†kλ(t)e−ik·r

]
. (125)

We will find its time dependence shortly. There are similar expansions for the electric and
magnetic field operators as linear combinations of creation and annihilation operators. The
quantum version of the A,E Poisson brackets are the commutators [Ei, Ej ] = [AiAj ] = 0 and

[Ei(r, t), Aj(r
′, t)] = i~cδTij(r− r′). (126)

• The expression for the hamiltonian operator is ambiguous in the quantum theory since a, a†

do not commute. Classically we may write several equivalent expressions, H =
∑

~ωka∗kλakλ =∑
~ωkakλa∗kλ = 1

2

∑
~ωk(a∗kλakλ + akλa

∗
kλ). If a, a∗ are replaced by a, a† then one gets hamil-

tonian operators that differ by an additive constant. If we use the first expression, then
Ĥ =

∑
k,λ ~ωka

†
k,λak,λ . But if we use the third (symmetric expression for H , which also

corresponds to 1
2(E2 +B2)) then the quantum hamiltonian is

Ĥ =
∑
k,λ

~ωk
(
a†k,λak,λ +

1

2

)
since ak,λa

†
k,λ = a†k,λak,λ + 1. (127)

The additive constant
∑

k,λ
1
2~ωk is called the zero point energy. In the infinite volume limit,

it is infinite. However, this is a constant addition to the energy, and can be eliminated by
redefining the zero of energy. Henceforth, we define H =

∑
k,λ ~ωk a

†
k,λak,λ . This definition is

convenient since it assigns energy zero to the vacuum state.

3.5.1 Hilbert space of photon states

• To find the spectrum of the hamiltonian, we proceed as we did for the SHO. Indeed, the
hamiltonian of the quantized radiation field is a sum of harmonic oscillators, one for each ‘mode’
labelled by k, λ . From the commutation relations, we find as before, that

[H, ak,λ] = −~ωkak,λ and [H, a†k,λ] = ~ωka†k,λ. (128)
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It follows that ak,λ, a
†
k,λ lower and raise the energy by ~ωk . Thus we have a vacuum state

|0〉 with energy zero, which is annihilated by all the lowering operators ak,λ|0〉 = 0. (This

also means 〈0|a†k,λ = 0 for all k, λ .) As before, Nk,λ = a†k,λak,λ is a number operator. It
has non-negative integers as its eigenvalues, which count the number of photons with wave
vector k and polarization ελ in an eigenstate. k, λ are together good quantum numbers for
photons.Nk,λ|0〉 = 0. The operator whose eigenvalues are the total number of photons is

N̂ =
∑

k,λNk,λ . We say that the vacuum state has no photons of any wave vector or polarization.
However, the vacuum state is not the zero vector, it has unit norm 〈0|0〉 = 1. We will see that
though the average electric and magnetic fields in the vacuum state are zero, they have non-zero
fluctuations in the vacuum state. The free space around us (ignoring the EM fields from cell
phone towers etc) is to a reasonable approximation the vacuum state of the photon field. If we
measure the electric field, we will get small non-zero values which on average are zero. These
small non-zero values are due to quantum fluctuations. This is just like saying that x and p
are on average zero in the ground state of the harmonic oscillator. Nevertheless 〈x2〉 and 〈p2〉
are non-zero in the ground state of the SHO. The position x of the particle is the counterpart
of the vector potential A , while the particle momentum p is the analog of (−1/c times) the
electric field.

• A state with one photon of wave vector k and polarization λ is |1k,λ〉 = a†k,λ|0〉 . This 1-photon
state has energy ~ωk .

• Similarly, a state with two photos is

|1k,λ, 1k′,λ′〉 = a†k,λa
†
k′,λ′ |0〉. (129)

It is an eigenstate of the hamiltonian with energy ~(ωk+ωk′). Since creation operators commute,
it does not matter in what order we write the creation operators, so

|1k′,λ′1k,λ〉 = |1k,λ, 1k′,λ′〉. (130)

In other words, the state function of a system of two photons is symmetric with respect to
exchange of the quantum numbers of the two photons: photons behave as bosons.

• The above two photon state has norm one if the quantum numbers are distinct, i.e., (k, λ) 6=
(k′, λ′). If the quantum numbers are the same, then the normalized 2-photon state is

|2k,λ〉 =
1√
2!

(a†k,λ)2|0〉. (131)

This follows from the commutation relations of creation and annihilation operators just as in
the case of the harmonic oscillator.

• More generally a normalised multi-photon state with n, n′, n′′, . . . photons with quantum
numbers (k, λ), (k′, λ′), (k′′, λ′′), . . . is

|nk,λ, n′k′,λ′ , n′′k′′,λ′′ , . . .〉 =
(a†k,λ)n
√
n!

(a†k′,λ′)
n′

√
n′!

(a†k′′,λ′′)
n′′

√
n′′!

. . . |0〉. (132)

Again, by the commutativity of the creation operators, these multi-photon states are symmetric
under exchange of any pair, they describe bosons. These multi-photon states together span the
Hilbert space of the quantized radiation field. It is called the bosonic Fock space of photons. The
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basis we have chosen to describe the Fock space is called the occupation number/photon number
basis, since the basis states have definite numbers of photons with specified wave vector and
polarization. It is in this way that the quantum theory accommodates the particle-like nature of
photons discovered by Planck, Einstein et. al. On the other hand, a linear combination such as
|1k,λ〉 − |2k′,λ′〉 is also a valid state of the radiation field, but it does not have a definite number
of photons, a measurement of the number of photons may result either in the answer one or
two. Such states play a role in the ability of the quantum theory to accommodate the wave-like
character of light, as we will see.

3.5.2 Fluctuations of E and B fields, EM Waves from matrix elements

• In the quantum theory the transverse photon vector potential field in radiation gauge is the
hermitian operator

A(r, t) =
c√
V

∑
k,λ

~ελ

√
~

2ωk

[
ak,λ(t)eik·r + a†kλ(t)e−ik·r

]
. (133)

The time dependence of A as well as the electric and magnetic field operators is determined
by that of the creation and annihilation operators. To find their time-dependence, we use the
Heisenberg equation of motion which is the quantised version of Hamilton’s equation ȧ = {a,H}
obtained by the replacement {·, ·} → [·, ·]/i~

i~
dak,λ
dt

= [ak,λ, H] = ~ωkak,λ ⇒ ak,λ(t) = e−iωktak,λ(0) (134)

Similarly, a†k,λ(t) = eiωkta†k,λ(0). We may regard ak,λ(t) as the annihilation operator in the
Heisenberg picture while ak,λ(0) is the annihilation operator in the Schrodinger picture. We
will often omit the argument of a , and hope it is clear from the context. Thus our Fourier mode
expansion of the quantized vector potential is

A(r, t) =
c√
V

∑
k,λ

~ελ

√
~

2ωk

[
ak,λ(0)ei(k·r−ωkt) + a†kλ(0)e−i(k·r−ωkt)

]
. (135)

We notice that the time dependence is the same as in classical radiation theory (this is generally
true when the hamiltonian is quadratic in fields and commutators are canonical). It follows that
E and B are the hermitian field operators

E(r, t) = −Ȧ

c
= i
∑
k,λ

√
~ωk
2V

~ελ

(
akλe

i(k·r−ωkt) − a†kλe
−i(k·r−ωkt)

)
B(r, t) = ∇×A = i

∑
k,λ

√
~ωk
2V

(k̂ × ~ελ)
(
akλe

i(k·r−ωkt) − a†kλe
−i(k·r−ωkt)

)
(136)

Being linear combinations of creation and annihilation operators, the electric and magnetic fields
do not commute either with the number operator or hamiltonian (nor with each other). Their
eigenstates do not have definite energy or number of photons in general. On the other hand,
states of definite energy (like the vacuum) are not eigenstates of E or B . For instance, acting

29



on the vacuum the electric field operator produces a linear combination of one photon states
with all possible wave vectors and polarizations.

E(r, t)|0〉 = −i
∑
k,λ

√
~ωk
2V

~ελe
−i(k·r−ωkt)|1k,λ〉 (137)

It follows that the matrix element of the electric (or magnetic field) between the vacuum and 1
photon state 1k,λ is a transversely polarized plane EM wave

〈1k,λ|E(r, t)|0〉 = −i
√

~ω
2V

ελe
−i(k·r−ωt) and 〈1k,λ|B(r, t)|0〉 = −i

√
~ω
2V

(ελ × k̂) e−i(k·r−ωt).

(138)
Since plane waves satisfy Maxwell’s equations, we see that these matrix elements of the elec-
tric and magnetic fields in the quantum theory satisfy the same wave equations (Maxwell’s
equations) as the classical electric and magnetic fields. The wave nature of light follows from
Maxwell’s equations. So this is one of the ways in which the quantum theory of the photon
field accommodates the wave nature of light while also manifesting the particle-like nature of
photons. From the viewpoint of the quantum theory, we may regard Maxwell’s equations as
determining these matrix elements of the fields. This is a useful point of view, since it also
applies to the Klein-Gordon and Dirac equations.

• Historically, the Dirac and KG equations were introduced as relativistic quantum equations
to describe a single electron or single pion. This interpretation was inconsistent in situations
with significant relativistic effects: due to the possibility for particle creation and annihilation,
particle number is not conserved and it does not make sense to look for a theory of a definite
number of particles. The apparent successes of the ‘1 particle’ Dirac equation (like the prediction
of the magnetic moment of the electron or fine structure of the hydrogen spectrum) are all in the
regime where relativistic effects are very small. In the current view, the Dirac and KG equations
are not one particle wave equations like the non-relativistic Schrodinger equation, but rather
classical wave-field equations, on the same footing as Maxwell’s equations. The appearance of
factors of ~ in the Dirac and KG equations does not make them ‘quantum’, but is due to a
conventional choice of units for momenta and energies. Strictly, these classical relativistic field
equations do not admit particle interpretation at all. However, when quantised via the process
of ‘field’ quantization (somewhat misleadingly also known as ‘second’ quantization) that we have
just carried out for the EM field, we arrive at the quantised Dirac and KG fields. States in the
Hilbert space of these quantum fields now admit physical interpretation in terms of particles.
Remarkably, the matrix elements of these quantised fields (Dirac, KG, Maxwell) between the
vacuum and 1 particle states, satisfy the classical wave-field equations that one started with.

• By contrast, the 1 particle (or n-particle) non-relativisitic Schrodinger wave equation is
already quantised. Unlike KG, Dirac or Maxwell, it is not to be regarded as a classical field
equation awaiting quantization. It already deals with operators and states in Hilbert space.

• As the Weisskopf microscope thought experiment suggested, the electromagnetic field displays
quantum fluctuations. To see this, consider the simplest of states, the vacuum |0〉 with no
photons. In this state, 〈0|A|0〉 = 0 since the annihilation operators will kill the ket-vacuum
while the creation operators kill the bra-vacuum. Since E = −1

c
∂A
∂t and B = ∇×A , the electric

and magnetic fields also have zero expectation values in the vacuum state. However, just as
〈0|x2|0〉 > 0, 〈0|p2|0〉 > 0 in the g.s of the SHO, one checks that 〈0|B2|0〉 > 0 and 〈0|E2|0〉 > 0
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since E2,B2 include terms of the form aa† which have non-zero vacuum expectation values. It
follows that there are vacuum fluctuations in the electromagnetic fields, even when their mean
values are zero. E.g., free space around us (ignoring the EM fields from cell phone towers etc) is
to a reasonable approximation the vacuum state of the photon field. If we measure the electric
field, we will get small non-zero values which on average are zero. These small non-zero values
are due to quantum fluctuations.

• Question: How is 〈0|E2|0〉 > 0 and 〈0|B2|0〉 > 0 consistent with 〈0|H|0〉 = 0? Ans: our
hamiltonian H =

∑
~ωa†a differs from

∫
1
2(E2 + B2) =

∑ 1
2~ω(aa† + a†a) by an additive

constant (‘zero point energy’
∑ 1

2~ωk ). The non-zero vacuum fluctuations in E and B , in a
sense, add up to give this ‘zero point energy’.

• Heuristically we may say that in the vacuum, though there are no real photons, there can be
virtual photons that pop in and out of existence here and there, for short periods of time. These
virtual photons are a way to visualize, for example, the evaluation of the expectation value
〈0|aa†|0〉 . Virtual photons are not directly detected, they are not present in the initial or final
state. But virtual photons have real effects such as (1) The measurable vacuum fluctuations in
the electric and magnetic fields. (2) The Casimir force between metal plates in vacuum. (3) The
spontaneous gamma decay of atoms, nuclei and hadrons from excited states. While stimulated
emission of photons from excited atoms is understandable, it was found that excited atoms can
spontaneously emit photons. In a sense, virtual photons ‘stimulate’ the atom to ‘spontaneously’
decay.

4 Interaction of atomic electrons with radiation

4.1 Overview of atomic structure & transitions

• Let us begin with a brief overview of atomic structure and transitions. Though weak interac-
tions do play a tiny role (especially in parity-violating effects), atomic structure is determined
to an excellent approximation simply by applying non-relativistic quantum mechanics to the
Coulomb interaction between electrons and nuclei, while imposing Pauli’s exclusion principle.
The mass of the nucleus mN is too large compared to me to affect atomic wave functions
and energies much. To a good approximation, they depend only on the charge (via the fine
structure constant α = e2/4π~c) and mass of the electron me and the nuclear charge Z .
There are two length scales associated with atomic electrons, their reduced Compton wavelength
~/mc = 1/m ≈ 4× 10−14 m and the atomic size (Bohr radius a0 = 1/αm). The typical atomic
size, binding energy and speed of electrons in atoms can be estimated using the Bohr model of
the H-atom, or variationally by using Heisenberg’s uncertainty principle. Heuristically (replac-

ing 〈1/r〉 by 1/〈r〉 etc.), the expectation value of energy is E ≈ (∆p)2

2m − α
∆x . Using ∆p∆x ∼ 1

we get E ≈ 1
2m(∆x)2 − α

∆x . Minimizing in ∆x we get a0 ≈ (∆x)min = 1
αm . The resulting energy

is Emin ∼ −1
2mα

2 ≡ −1Ry = −13.6 eV. Putting |E| ≈ 1
2mv

2 we find that the speed of an
electron in an atom is roughly v = α in units of c . We notice that (1) the size of the atom is
much larger than the Compton wavelength of its constituents a0 = 1/αme � 1/me � 1/mN ;
(2) the electron moves non-relativistically and (3) the binding energy 1

2mα
2 is much less than

the rest energy of the constituents (Ry � mec
2 � mNc

2 ). These are general features of a non-
relativistic bound state. To a good approximation, a nucleus is a non-relativistic bound state
of nucleons, the solar system is a non-relativistic bound state of sun and planets. A hadron is
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very different: it is a relativistic bound state of quarks and gluons.

• The solution of the Schrödinger equation for the hydrogen spectrum suggests that an atom
would remain forever in an excited stationary state. In the presence of an external EM field,
atoms can be stimulated to make transitions between stationary states. The rate of stimulated
emission or absorption is proportional to the intensity of light (energy density of the stimulat-
ing EM radiation). However, spectroscopists have known for long that atoms in excited states
spontaneously decay in about a nanosecond through emission of light, even in the absence of
any stimulation. How is this to be explained theoretically? Einstein showed that to understand
thermodynamic equilibrium between atoms and radiation (whose spectral distribution is gov-
erned by Planck’s blackbody law) in a cavity, the rate for spontaneous decay from excited states
must be non-zero. Remarkably, Einstein’s 1917 argument preceded the formulation of quantum
mechanics and the development of time dependent perturbation theory (by Dirac)! However,
Einstein’s argument does not explain how there can be spontaneous decay even in the absence
of external EM fields. The explanation for this is provided by the quantum theory of radiation.
Even in the vacuum state where the mean electric and magnetic fields are zero, there are vacuum
fluctuations which, in a sense, ‘induce’ spontaneous emission15!

• The interaction of atomic electrons with radiation leads to decay of atoms in excited states to
lower energy levels via spontaneous emission of photons. As for any non-relativistic bound state,
the reduced wavelength λ = 1/∆E of photons emitted is large compared to the atomic size a0 .
To see this, note that the energy difference ∆E ∼ 1

2mα
2 ∼ 1/2ma2

0 . So λ/a0 ∼ ma0 = 1/α =
1/v � 1. The radiation field of the decaying atom may be expressed as a multipole expansion
in powers of the small parameter a0/λ ∼ α . We will see that the leading term corresponds to
electric dipole radiation (E1), which is followed by electric quadrupole E2 and magnetic dipole
(M1) terms.

• Not all transitions between atomic levels are allowed, there are selection rules based on parity
and angular momentum conservation. In one photon emission, the angular momentum ji of the
atom in its initial state must equal the combined angular momentum of the photon (jγ ) and
final state atom (jf ). By the rules for combining angular momenta we must have |jf − jγ | ≤
ji ≤ |jf + jγ | . Dipole radiation has Jγ = 1, so dipole transitions must satisfy the selection rule
∆j = 0,±1. Now a 1 photon state (dipole or not) cannot have zero angular momentum, jγ 6= 0.
It follows that ji , jf cannot both be zero, there are no 1-photon transitions between a pair
of zero angular momentum states. Parity conservation implies Πi = ΠfΠγ . We will see that
Πγ = −1 for E1 (Πγ = 1 for M1), so it follows that parity must be reversed in E1 transitions.

15Note that spontaneous absorption is almost never seen to occur, an atom in its ground state in vacuum is
rarely found to spontaneously get excited. A statistical mechanics argument for this may be offered, using the
principle of equal a priori probabilities: in equilibrium, all states of a system with the same energy are equally
likely. Consider an atom in the presence of electromagnetic radiation present in the vacuum. Suppose the energy
difference between the ground and first excited state of the atom is ∆E . There is only one way in which this
quantum of energy can be possessed by the atom: by being in the first excited state. On the other hand, this
energy can be kept in the radiation field in very many ways, essentially, since the electromagnetic field has very
many degrees of freedom, the electric and magnetic fields at each point of space. Since a priori all these possibilities
are equally probable, it is infinitely more likely for the quantum of energy to be stored in the electromagnetic
field than in the atom. This explains why atoms are typically found in their ground states and are not seen to
spontaneously absorb radiation from the vacuum and get excited.
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4.2 Coupling of atomic electrons to the EM field

• To systematically study the interaction of electrons in an atom with the radiation field,
we begin with the atomic hamiltonian H0 and treat the interaction with the EM field as a
perturbation H1 . For simplicity, let us consider a one electron atom such as hydrogen, ignoring
the spin of the electron. In rationalized Heaviside-Lorentz units,

H0 =
p2

2m
− e2

4πr
(139)

We know that the eigenstates of H0 are |nlm〉 with energies

Enlm = − me4

2(4π)2n2~2
= − e2

2(4π)n2a0
= −mc

2α2

2n2
where a0 =

(4π)~2

e2m
and α =

e2

4π~c
(140)

are the Bohr radius and fine structure constant. Here the principal quantum number n takes the
values 1, 2, . . . corresponding to the K,L,M shells. The angular momentum/azimuthal quantum
number l = 0, 1, . . . n − 1 corresponds to the s, p, d, f orbitals and the magnetic quantum
number ml = −l,−l + 1, . . . , l − 1, l corresponds to the various possible projections of the
angular momentum on the z-axis. Each level has a degeneracy of n2 . If we included the spin
of the electron, then the energies are not altered but the degeneracies are doubled to 2n2 on
account of the two possible spin projections on the z-axis ms = ±1

2 . If we have a hydrogenic
atom with Z protons in the nucleus e2 is replaced by Ze2 .

• According to the Schrodinger equation, all the eigenstates |n, l,m〉 are stable if the hydro-
gen atom is considered in isolation. However, when we consider the hydrogen atom coupled
to the electromagnetic field, we find that all except the ground state |100〉 are unstable to
decay by emission of one or more photons, as is experimentally observed. The decay may be
either stimulated by external EM radiation or ‘spontaneous’. Even in the vacuum state, the
electromagnetic field displays quantum fluctuations and these quantum fluctuations can cause
spontaneous emission.

• The interaction of a charged particle with an EM field is given by the Lorentz force law. The
interaction of an electron (charge e) with an EM field (given by the vector potential A) may be
derived from a Hamiltonian. It is obtained by replacing the electron momentum p by p−eA/c .
This is called the minimal coupling or Lorentz prescription (it can be proved by checking that
the resulting equation of motion for r(t) is Newton’s equation with the Lorentz force). Thus

p2

2m
→ 1

2m

(
p− eA

c

)2

=
p2

2m
− e

2mc
(p ·A + A · p) +

e2

2mc2
A2. (141)

• In the quantum theory, p = −i~∇ . So p and A(r) do not commute in general, [pi, Aj ] =
−i~∂iAj . In particular,

p ·A−A · p =
∑
i

[pi, Ai] = −i~∇ ·A. (142)

However, in Coulomb gauge, ∇ ·A = 0, so p ·A = A · p . Thus the hamiltonian becomes

H =

(
p2

2m
− e2

4πr

)
− e

mc
A · p +

e2

2mc2
A2 = H0 −

e

mc
A · p +

e2

2mc2
A2 (143)
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where H0 is the standard hydrogen hamiltonian including kinetic energy and Coulomb potential.
The first interaction term linear in A is usually the dominant one, responsible for decay by single
photon emission in perturbation theory (e.g. electric dipole radiation). The quadratic term in
A is usually a small correction, it is called the dielectric term. It is responsible for simultaneous
two photon emission processes. We will ignore it. It becomes more important when the effect
due to the first term vanishes (as in the decay of the 2S state of hydrogen).

• In addition to this ‘minimal’ electromagnetic coupling of the electron, there is Pauli’s magnetic
moment interaction between the spin of the electron and the magnetic field

e~
2mc

σ ·B where B = ∇×A. (144)

Though an ad hoc addition to the hamiltonian in the non-relativistic treatment of the atom,
Pauli’s magnetic moment interaction also arises via the minimal coupling Lorentz prescription
in Dirac’s relativistic theory of the electron. The magnetic moment interaction is usually smaller
than the electric dipole interaction and we will ignore it. It is responsible for magnetic dipole
radiation from atoms.

4.3 Why p→ p− eA
c for charged particle in an EM field?

An electromagnetic field is described by electric ~E(r, t) and magnetic ~B(r, t) fields which may
be obtained from scalar φ(r, t) and vector ~A(r, t) potentials

~E = −~∇φ− 1

c

∂ ~A

∂t
, ~B = ~∇× ~A (145)

Suppose a test charge e moves in such an external field (produced by some other charges and
currents), then it feels the Lorentz force and follows a trajectory given by Newton’s second law

mr̈ = ~F = e ~E +
e

c
~v × ~B, (146)

Now we wish to derive this equation of motion from a classical Hamiltonian. Having a hamilto-
nian helps in the passage to the quantum theory. The hamiltonian that does this job is

H =
1

2m

(
p− eA

c

)2

+ eφ =
p · p
2m

+
e2A ·A
2mc2

− ep ·A
mc

+ eφ. (147)

Let us work out Hamilton’s equations ṙj = ∂H
∂pj

, ṗj = −∂H
∂rj

and show that they reduce to the

Lorentz force law. Hamilton’s equations are

mṙj = m
∂H

∂pj
= pj −

e

c
Aj and − ṗj =

∂H

∂rj
= e

∂φ

∂rj
+

e2

mc2
Ai
∂Ai
∂rj
− e

mc
pi
∂Ai
∂rj

(148)

We need mr̈j , which is

mr̈j = ṗj −
e

c
Ȧj = −e ∂φ

∂rj
− e2

mc2
Ai
∂Ai
∂rj

+
e

mc
pi
∂Ai
∂rj
− e

c
Ȧj . (149)
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Here Ȧj =
∂Aj
∂t + dri

dt
∂Aj
∂xi

. Let us denote the velocity of the particle by vi = ṙi = dri
dt . Substituting

for pi = mṙi + e
cAi

mr̈j = eEj + e
vi
c

∂Ai
∂rj
− e

c
(v · ∇)Aj . (150)

From vector calculus,
(v · ∇)A = ∇(v ·A)− v × (∇×A) (151)

Thus

mr̈j = eEj +
e

c
(v ×B)j +

e

c

(
vi
∂Ai
∂rj
− ∂(v ·A)

∂rj

)
. (152)

The term in parentheses vanishes since

∂vi
∂rj

=
∂ṙi
∂rj

=
d

dt

∂ri
∂rj

=
d

dt
δij = 0. (153)

Thus, Hamilton’s equations for H = π2

2m + eφ where π = p − eA are equivalent to Newton’s
equation for a particle subject to the Lorentz force in an electromagnetic field. This interaction
of a charged particle with an electromagnetic field is called minimal-coupling.

4.4 Golden rule for radiative emission rate in first order perturbation theory

We would like to study a radiative transition of an atom from an initial (excited) state |i〉 to a
final state |f〉 while emitting a single photon with wave vector and polarization k, λ . There is
the analogous absorption process as well. The hamiltonian that governs these processes in the
leading approximation mentioned above is

H =

(
p2

2m
− e2

4πr

)
− e

mc
A · p = H0 +H1(t). (154)

A(r, t) is dependent on time. So we have a time dependent perturbation to the atomic hamil-
tonian, which we wish to treat to first order. For emission, our initial state at t = 0, |i〉 ⊗ |0〉
consists of an atom in state |i〉 and the radiation field in its vacuum state |0〉 . After a time T ,
we ask for the amplitude to make a transition to the state |f〉 ⊗ |1k,λ〉 consisting of the atom
in state |f〉 and the radiation field in the given 1-photon state. From 1st order perturbation
theory, assuming i 6= f , the transition probability is the absolute square of the

Amplitude(f, 1kλ ← i;T ) = − i
~

∫ T

0
〈f, 1k,λ|H1(t)|i〉 e−i(Ei−Ef )t/~ dt+ · · · (155)

Recalling that

A(r, t) =
c√
V

∑
k′,λ′

√
~

2ωk′
~ελ′
[
ak′,λ′e

i(k′·r−ωk′ t) + a†k′λ′e
−i(k′·r−ωk′ t)

]
, (156)

we see that only the term involving the creation operator a†k′,λ′e
iωk′ t for k′ = k and λ′ = λ can

have a non-vanishing matrix element between the vacuum initial state and the final 1-photon
state |1kλ〉 . On the other hand, for absorption of a photon with wave vector k and polarization
λ , only the annihilation operator term ak,λe

−iωkt can contribute.
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• Thus, without loss of generality, we may factor H1(t) = H̃1e
±iωkt where H̃1 is time-independent.

The + sign is for emission and − sign for absorption. Thus the amplitude for emission is

Amplf,1kλ←i(T ) =
1

i~
〈f, 1kλ|H̃1|i〉

∫ T

0
e−i(Ei−Ef−~ωk)t/~ =

1

~
〈f, 1kλ|H̃1|i〉

[
e−i(Ei−Ef−~ωk)T/~ − 1

]
(Ei − Ef − ~ωk)/~

(157)
The transition probability is its absolute square

Probf,1kλ←i(T ) =
|〈f |H̃1|i〉|2

~2

4 sin2(ΩT/2)

Ω2
. (158)

where Ω = (Ei − Ef − ~ωk)/~ and |eiθ − 1|2 = 4 sin2(θ/2). Plot sin2(ΩT/2)/Ω2 as a function
of Ω for various times T and notice that this function is increasingly concentrated around
Ω = 0 as T grows. For long times T , the transition probability is significant only when
Ω = (Ei − Ef − ~ωk)/~ ≈ 0. Recalling the representation of the Dirac δ function,

2

π
lim
T→∞

sin2 1
2ΩT

Ω2T
= δ(Ω). (159)

we see that for long times, the transition probability is proportional to the time:

Probf,1kλ←i(T )→ 2π

~
|〈f |H̃1|i〉|2 T δ(Ei − Ef − ~ωk) (160)

We used ~−1δ(Ω) = δ(~Ω). Dividing by T , the transition probability per unit time (or transition
rate) approaches a constant for long times

Ratef,1kλ←i →
2π

~
|〈f |H̃1|i〉|2 δ(Ei − Ef − ~ωk) (161)

The same formula holds for absorption with the change −~ωk → +~ωk .

• In the case of emission, when the volume of our box V → ∞ , there is a continuous energy
spectrum of possible final state photons which could have wave vectors pointing in various
directions. So it is interesting to find the transition rate for photons emitted into an elemental
solid angle dΩ around the direction (θ, φ) and having an energy lying between ~ω and ~(ω+dω).
This rate is given by the product of the above rate by the number of photon states in this
range. We will eventually sum/integrate over all the possible states (energies, directions and
polarizations) of the emitted photon to find the total decay rate, but we go in steps.

• Now the energy of a photon is E = ~ωk = ~c|k| . So photon states in a given energy range
lie in a spherical shell in k-space. In general, we associate one quantum state to a phase region
of volume d3rd3p/h3 . So the number of photon states in a volume V (with fixed polarization -
we will sum over polarizations later) with wave vectors in the range [k,k + dk] is (p = ~k)

dn =
V d3p

(2π)3~3
=
V d3k

(2π)3
=

1

(2π)3
V k2 dk dΩ (162)

upon transforming to spherical polar coordinates. For photons emitted into the solid angle
dΩ, let us denote the number of photon states with energy in the interval [E,E + dE] by
ρ(E,Ω)dEdΩ. Then

ρ(E,Ω) dE dΩ = dn =
1

(2π)3
V k2 dk dΩ. (163)
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Thus, the density of states (E = ~ω = ~ck )

ρ(E,Ω) dE dΩ =
1

(2π)3
V k2 dΩ

dk

dE
dE =

V k2dΩ

(2π)3~c
dE =

V ω2dΩ

(2π)3~c3
dE. (164)

Multiplying by the previously obtained rate and integrating over photon energies (which is fixed
by the energy conserving δ -function), we obtain Fermi’s Golden Rule for the emission rate of
a photon with polarisation λ and wave vector k pointing in the solid angle dΩ around the
direction defined by θ, φ :

w(Ω)dΩ = dΩ
2π

~

∫
|〈f |H̃1|i〉|2 δ(Ei − Ef − ~ωk)ρ(E,Ω)dE =

2π

~
|〈f |H̃1|i〉|2ρ(Ek,Ω) dΩ (165)

where Ek = ~ωk = Ei − Ef . The letter w is a commonly used symbol to denote the rate of a
process in physics. This formula for w is called Fermi’s golden rule.

• Now let us apply this to the case of photon emission. The relevant interaction hamiltonian is
the coefficient of the creation operator a†k,λe

iωkt in −(e/mc)A · p :

H̃1 = − e

mc

c√
V

√
~

2ωk
e−ik·r ~ελ · p. (166)

Note that 〈1kλ|a†kλ|0〉 = 1, so we do not indicate the photon creation operator or photon state
any more. Thus the rate for photon emission into dΩ is

w(Ω)dΩ =
2π

~
e2~

2m2ωkV
|〈f |e−ik·r~ελ · p|i〉|2

V ω2
k

(2π)3

dΩ

~c3
=

e2ωk
8π2m2~c3

|〈f |e−ik·r~ελ · p|i〉|2 dΩ (167)

Notice that the factor of V in the density of states cancels the 1/V from the square of the
matrix element leaving a finite limit as V →∞ .

4.5 Electric dipole approximation

To determine the emission rate, we must evaluate the matrix element

〈f |e−ik·r ~ελ · p|i〉 (168)

between the initial and final atomic states |i〉, |f〉 . Here k,~ελ are the photon wave vector and
polarization while r,p are the position and momentum operators of the electron. Computing this
matrix element between atomic energy eigenstates is in general quite difficult since it involves the
exponential of the position operator. To make progress we would like to expand the exponential
in a series.

e−ik·r = 1− ik · r− (k · r)2 + · · · . (169)

This is a reasonable approximation if we are considering EM radiation in the visible/UV/IR
region of the spectrum. The wave number of k = 2π

λ of visible light corresponds to wave lengths
of several thousands of angstroms while atomic wave functions are spread over lengths of the
order of an angstrom. So the order of magnitude of

〈k · r〉 is
size of atom

wave length of light
∼ 10−3. (170)
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The electric dipole approximation E1 consists in approximating e−ik·r by 1. Retaining the next
term e−ik·r ≈ 1 − ik · r is called the electric quadrupole approximation E2. We expect the
quadrupole term to be a thousand times smaller than the dipole term.

• To compute the transition rate in the long wavelength E1 approximation, we need to find the
matrix element

〈f |~ελ · p|i〉 = ~ελ · 〈f |p|i〉. (171)

The matrix elements of position between hydrogen energy levels are somewhat easier to compute
(by direct integration), than the momentum matrix elements. We may relate them using a trick:
the commutator of the hydrogen hamiltonian with position is proportional to momentum:

[r, H0] = [r,
p2

2m
] = i

~
m

p (172)

Bearing in mind that |i〉 and |f〉 are eigenstates of H0 with energies Ei,f we get

i
~
m
〈f |p|i〉 = 〈f |[r, H0]|i〉 = (Ei − Ef )〈f |r|i〉 = ~ωk〈f |r|i〉. (173)

Thus
〈f |~ελ · p|i〉 = −imω~ελ · 〈f |r|i〉 and |〈f |~ελ · p|i〉|2 = m2ω2|~ελ · 〈f |r|i〉|2 (174)

So the transition rate in the E1 approximation becomes

w(Ω)dΩ =
e2ω3

8π2~c3
|~ελ · 〈f |r|i〉|2 dΩk. (175)

4.6 Selection rules for E1 transitions

• Selection rules state that the matrix element for electric dipole transitions 〈f |r|i〉 vanish for
certain initial and final states. So there can be no E1 transitions for certain quantum numbers
of the initial and final states.

• The parity selection rule states that an E1 transition is forbidden if the initial and final atomic
levels |i〉, |f〉 have the same parity. To see this first recall that parity acts as

Pψ(r) = ψ(−r) and P2 = I ⇒ P−1 = P. (176)

It follows that parity anti-commutes with position, for

(Pr + rP)ψ(r) = −rψ(−r) + rψ(−r) = 0. (177)

Therefore P−1rP = PrP = −r . Using this, the dipole matrix element satisfies

〈f |r|i〉 = −〈f |PrP|i〉 = −PfPi〈f |r|i〉 ⇒ (1 + PfPi)〈f |r|i〉 = 0. (178)

Hence, either the matrix element vanishes or the product of parities PfPi is −1. So the parity
must change in an E1 transition.

• Recall that the parity of the hydrogen level |nlm〉 is (−1)l . So the E1 transition |nlm〉 →
|n′l′m′〉 is forbidden if l + l′ is odd. In particular, l′ − l = 0 is forbidden. So for instance there
cannot be E1 transitions between two S-wave states or two P-wave states or two D-wave states
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etc. In fact, combining with the angular momentum selection rule (see below), this implies
∆l = ±1.

• Angular momentum selection rule. As we argue heuristically below, in E1 transitions the
emitted photon carries angular momentum jγ = 1 in units of ~ . (See QM2 lecture notes for
a more detailed treatment or see a book on quantum mechanics) Suppose ji, jf are the total
angular momentum quantum numbers of the initial and final electronic states. Then the selection
rule states that an E1 transition is forbidden if

∆j = jf − ji 6= 0,±1. (179)

Moreover the transition from ji = 0 to jf = 0 is also forbidden. Heuristically, in the matrix
element 〈f |r|i〉 , the operator r behaves as if it has angular momentum one16. Then we are adding
the angular momentum ji of the initial state to this, ji ⊗ 1 and we know that if ji 6= 0, 1

2 , the
resulting system behaves as if it has angular momentum jf = ji − 1 or ji or ji + 1. So ji and
jf must differ by 0 or ±1. If ji = 1

2 then jf must be 1
2 or 3/2. If ji = 0 then jf = 1, so

0→ 0 E1 transition is forbidden.

• In particular, the ‘metastable’ 2S state of hydrogen is stable to radiative decay in the E1
approximation. In fact, it is stable to decay via all 1 photon electric and magnetic multipole
transitions, it decays via 2 photon emission. This accounts for its unusually long mean lifetime
of 0.12 seconds.

4.7 Polarization and direction averaged E1 emission rate

So far we have found that the E1 transition rate i→ f accompanied by the emission of a photon
into solid angle dΩ with polarization λ is

w(Ω)dΩ =
e2ω3

8π2~c3
|~ελ · 〈f |r|i〉|2 dΩ. (180)

From here on, we are interested in the rate of emission, irrespective of the direction or polar-
ization of the outgoing photon. To do this averaging, it is convenient to write the square of the
dot product in terms of the angle Θλ between the unit polarization vector ~ελ and the dipole
vector matrix element 〈f |r|i〉 ≡ rfi

|rfi · ελ| = |rfi| cos Θλ. (181)

Then

w(Ω) dΩ =
e2ω3

8π2~c3
|rfi|2 cos2 Θλ dΩ (182)

To do the sum over polarizations λ , let us work in a real right-handed orthonormal basis ε1, ε2, k̂
with ε1 × ε2 = k̂ and define spherical polar coordinates θ, φ : rfi makes an angle θ with k and
the projection of rfi onto the ε1 − ε2 plane makes an angle φ with ε1 . Then

cos Θ1 = sin θ cosφ and cos Θ2 = sin θ sinφ. (183)

16To motivate this, notice that r = (x, y, z) = r(cos θ, sin θ cosφ, sin θ sinφ) so 1
r
(z, x ± iy) = (cos θ, sin θe±iφ)

which we notice are proportional to the l = 1 spherical harmonics Y10, Y1,±1 .
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Then the sum over polarizations just gives a sin2 θ factor

2∑
λ=1

w(Ω)dΩ =
e2ω3

8π2~c3
|rfi|2 (cos2 Θ1 + cos2 Θ2)dΩ =

e2ω3

8π2~c3
|rfi|2 sin2 θ dΩ (184)

• There is another way of summing over polarizations to show that∑
λ

|~ελ · 〈f |r|i〉|2 = |rfi|2 sin2 θ (185)

where θ is the angle between the dipole matrix element and k . To do this we abbreviate
〈f |r|i〉 ≡ r = (r1, r2, r3), write in components and use the completeness of the orthonormal

system ε1, ε2, k̂ :

∑
λ

|~ελ · 〈f |r|i〉|2 =
∑
λ

riελir
∗
j ελj =

3∑
i,j=1

rir
∗
j

∑
λ

ελiελj =
∑

rir
∗
j (δij − k̂ik̂j) = |r|2 − |r · k̂|2 = r2 sin2 θ.

(186)

• Before performing the average over directions we remark that to obtain the energy radiated
per unit time into solid angle dΩ we must multiply the above polarization averaged rate by the
energy per photon ~ω

PowerdΩ =
e2ω4

8π2c3
|rfi|2 sin2 θ dΩ (187)

The power is proportional to the fourth power of ω and to the square of the matrix element
of the electric dipole moment of the electron er . Moreover, it has a sin2 θ angular dependence
where θ is the angle between the dipole moment matrix element and the direction of propagation
k̂ . No energy is radiated along the direction of the dipole moment (‘it is darkest underneath the
candle’ !). This is reminiscent of the formula for the intensity of energy radiated by an oscillating
electric dipole17 p(t) = 2p0 cosωt ẑ in classical E & M, which may be described by the flux of
the time-averaged Poynting vector 〈S〉 across the element r2dΩr̂ . In HL units (see Griffiths and
put ε0 = 1)

〈S〉 · r2dΩr̂ =
ω4

8π2c3
p2

0

sin2 θ

r2
r̂ · r2dΩr̂ =

ω4

8π2c3
p2

0sin2 θdΩ. (188)

Here 2p0 = 2q0s is the maximum value of the dipole moment and s is the separation between
the oscillating charges ±2q(t) = ±2q0 cosωt .

• The ω4 dependence is also expected classically from the Larmor formula which states that
the power radiated is proportional to the square of acceleration [acceleration ∼ ω2 from the
formula for p(t)].

• Returning to the rate of E1 transitions wdΩ , we follow the polarization sum by the integral
over directions∫ π

0

∫ 2π

0
sin2 θ sin θ dθ dφ = 2π

∫ 1

−1
sin2 θ d(cos θ) = 2π × 2

∫ 1

0
(1− t2) dt =

8π

3
. (189)

So the polarization and direction averaged emission rate is

w =
∑
λ

∫
wdΩ =

e2ω3

3π~c3
|rfi|2 =

(
e2

4π~c

)
4ω3

3c2
|rfi|2 =

4αω3

3c2
|rfi|2 (190)

17The factors of 2 are because eiωt + e−iωt = 2 cosωt and we used exponentials in the quantum theory.
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It has dimensions of inverse time. Here α = e2

4π~c is the fine structure constant. We have
computed this rate to first order in perturbation theory in the electric dipole approximation.
Multiplying by the photon energy ~ω we also get the power radiated in all directions

Power =
e2ω4

3πc3
|rfi|2. (191)

This too is reminiscent of the classical formula for the power radiated by the above oscillating
electric dipole. In HL units (see Griffiths and mind the factor of two in the definition of dipole
moment)

〈Power〉classical =

∫
〈S〉 · r̂ r2dΩ =

ω4p2
0

3πc3
. (192)

This increase in power with the fourth power of the frequency is used to explain the blueness of
sunlight scattered by the atmosphere.

• Sakurai points out that Heisenberg obtained the formula for the rate w prior to the develop-
ment of the quantum theory of radiation, by a use of the correspondence principle.

4.8 Life-time of 2p state of hydrogen: Lyman α transition

• The mean lifetime τ of state |i〉 is defined as the reciprocal of the sum of transition rates to
all possible final states |f〉 allowed by the selection rules and energy conservation

1

τi
=
∑
f

wf←i. (193)

The sum over final states
∑

f wf←i is called the total decay rate of the state i , the summands
being the partial decay rates. Γf←i = ~wf←i is called the partial energy width, Γtot =

∑
f Γf←i

is called the total energy width of the unstable state i . The lifetime τ = ~/Γtot . Note that we
do not speak of partial life-times.

• Now consider the first excited states of hydrogen, they are of course degenerate, including
the 2s and 2p levels. The only lower level they can decay to is 1s (Note that 2p → 2s has zero
rate since ω = 0). The 2s → 1s electric dipole transition is forbidden since they have the same
parity. The 2p to 1s E1 transition is allowed by the selection rules. Spectroscopists call it the
Lyman α transition. The Lyman α transition has been a useful tool in cosmology. The Lyman
alpha ‘forest’: absorption lines in light from very far away quasars due to excitation of hydrogen
in inter-stellar gas. One sees not one line but several lines, indeed a forest of lines, because of
the shifting of spectral lines due to relative motions of the various clouds of intervening gas. But
all the lines are believed to correspond to the same Lyman α atomic transition.

• τ2p in the E1 approximation is given by

τ−1
2p = w =

4αω3

3c2
|〈1s0|r|2pml〉|2 (194)

The rate is the same for all the values of ml = 0,±1. Let us compute it for ml = 0. Recall that
the hydrogen wave functions are given by ψnlm(r, θ, φ) = Rnl(r)Ylm(θ, φ). We have

R1s =
2√
a3
e−r/a, Y00 =

1√
4π
, R2p =

1√
24a3

r

a
e−r/2a, Y10 =

√
3

4π
cos θ (195)
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Note that the R2p decays twice as slowly as R1s , excited states are more spread out. Also
R2p(r) has one more node than R1s as we expect of the first excited state. The pre-factors are
fixed by normalisation

∫
|ψ|2r2drdΩ = 1,

∫
|Ylm|2dΩ = 1. So

〈1s0|r|2p0〉 =

∫
drdθdφ r2 sin θ

1√
4π

√
3

4π
cos θ

2√
a3
e−r/a

1√
24a3

r

a
e−r/2a (x, y, z) (196)

Now r = (x, y, z) = r(cos θ, sin θ cosφ, sin θ sinφ). We see that only z component contributes
to the matrix element, the x, y components vanish since they are proportional to the integrals∫ 2π

0 cosφdφ and
∫ 2π

0 sinφ dφ . So we only need

〈1s0|z|2p0〉 =

∫ 2π

0
dφ

∫ π

0
dθ sin θ

1√
4π
· cos θ ·

√
3

4π
cos θ

∫ ∞
0

dr r2 2√
a3
e−r/a · r · 1√

24a3

r

a
e−r/2a.

(197)

where a = ~
mcα = 4π~2

me2
= .53 Angstroms is the Bohr radius. Doing the integrals we get a matrix

element that is of order of the Bohr radius

〈1s0|z|2p0〉 =
256

243
√

2
a = 0.74a = 3.9×10−9cm ⇒ |rfi|2 = 0.55a2 = 1.52×10−17cm2. (198)

The energy of the emitted photon is

~ω = E2p − E1s = −mc
2α2

2

(
1

22
− 1

12

)
=

3mc2α2

8
= − e2

8πa

(
1

22
− 1

12

)
=

3e2

32πa
= 13.6× 3

4
= 10.2 eV.

(199)

Since ~ = 6.52× 10−16 eV.s, ω = 1.56× 1016 /s corresponding to the wave length λ = 2πc/ω =
1216 Angstroms of the Lyman α line. With α = 1/137 and c = 3 × 1010 cm/s we get the
numerical values of the 2p-1s Lyman α transition rate and mean lifetime of the 2p level

w =
4αω3

3c2
|rfi|2 = 0.6× 109 s−1 ⇒ τ2p ≈ 1.6 ns (200)

• The energy widths of excited levels that decay via E1 transitions are of order Γ = ~/τ ∼
αω3

c2
|rfi|2 . Now the dipole matrix element is of order the Bohr radius |rfi|2 ∼ a2

0 while ~ω is of
the order of a Rydberg Ry = 1

2mc
2α2 . Let us write the width in natural units, where a0 = 1

αm .
We get Γ ∼ Ryα3 = mα5 . This gives a simple way of estimating its numerical value, τ ∼ 1

mα
1
α4 .

We can restore factors of c, ~ by not ing that cτ is a length, so it must be a multiple of the
Compton wave length of the electron, so cτ = ~

mcα
1
α4 . The first factor is the Bohr radius a0 .

Putting in a0 = .53 Angstroms, α = 1/137 and c = 3× 108 m/s we get τ ∼ 10−9 s.

• A similar calculation can be performed to find the rates for E1 transitions between other
hydrogen levels that are not forbidden by the selection rules. For small values of n , the dipole
matrix element |rfi| is of order the Bohr radius and ω ≈ 1016 Hz, resulting in lifetimes on the
order of nanoseconds or tens of nanoseconds. Some of these allowed decays are 2p-1s, 3s-2p,
3p-1s, 3p-2s, 3d-2p e.t.c.

• When a decay is forbidden in the electric dipole approximation we go to the next approx-
imation: the electric quadrupole approximation E2 coming from the second term in e−ik·r =
1 − ik · r + . . . . One must also consider the magnetic dipole approximation M1 due to Pauli’s
coupling of the magnetic dipole moment of electrons to the radiation field. The lifetimes of
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excited states that decay to leading order via E2 and M1 transitions are about a million times
as long as those that decay via E1

τE2,M1 ∼
(
λ

a0

)2

τE1 ∼ 10−3 s. (201)

• The 2s level cannot decay in the E1 approximation due to the parity selection rule, the only
lower level 1s has the same parity. In fact is is forbidden to decay even via E2 or M1. It
eventually decays via 2 photon emission. This is in fact the superposition of two amplitudes,
one coming from treating the interaction hamiltonian − e

mcA ·p to second order in perturbation

theory and by treating the dielectric term ( e2

2mc2
A2 ) in first order perturbation theory. The 2s

level consequently has a long lifetime τ2s ≈ .12 s.
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