Mathematical Methods, Spring 2025 CMI

Assignment 9 Due by the beginning of the class on Wednesday Apr 23, 2025 Induced metric, Laplace-Beltrami operator, divergence

- 1. $\langle \mathbf{3} + \mathbf{3} + \mathbf{2} \rangle$ Consider the embedding $f : T^2 \to \mathbb{R}^3$ of the 2-torus in \mathbb{R}^3 (with Cartesian coordinates) given by $(\theta, \varphi) \mapsto ((R + r \cos \theta) \cos \varphi, (R + r \cos \theta) \sin \varphi, r \sin \theta)$ where R > r > 0 are fixed. (a) Indicate the meanings of r, R, θ, φ by drawing a figure. (b) Find the pullback f^*g of the Euclidean metric $g_{ij} = \delta_{ij}$ to obtain an induced metric on the torus. (c) Find the corresponding Riemannian volume form on T^2 expressed in the θ, ϕ coordinates.
- 2. $\langle \mathbf{1} + \mathbf{2} \rangle$ Consider plane polar coordinates θ, ϕ on the Euclidean plane with the negative horizontal axis and origin removed: $x = r \cos \theta$ and $y = r \sin \theta$. (a) Find the components of the metric $g = dx \otimes dx + dy \otimes dy$ in polar coordinates. (b) Find a formula for the Laplace-Beltrami operator Δf acting on the scalar field $f(r, \theta)$.
- (2+1+3+1) Consider the metric g = (dx ⊗ dx + dy ⊗ dy)/y² on the upper half plane U : (x, y) ∈ ℝ² with y > 0. (a) Suppose v = v^x∂_x + v^y∂_y is a vector field on U. Find a formula for its divergence div v. (b) Find the Riemannian volume form ω corresponding to this metric. (c) The Lie derivative of a 2-form along a vector field v is defined as the 2-form with components

$$(\mathcal{L}_v\omega)_{jk} = v^i \partial_i \omega_{jk} + (\partial_j v^i) \omega_{ik} + (\partial_k v^i) \omega_{ji}.$$
(1)

Find $\mathcal{L}_v \omega$ for the Riemannian volume form ω obtained earlier. Hint: How many independent components does $\mathcal{L}_v \omega$ have? (d) Since $\mathcal{L}_v \omega$ is a top order form on a 2d manifold, it must be a multiple of the volume form ω by some smooth function f depending on v. Find f and interpret it in this example.