Mathematical Methods, Spring 2025 CMI Assignment 8 Due by the beginning of the class on Friday Apr 4, 2025 Differential forms

- (2+2) Closed, exact forms. Consider the 1-form α = (xdx+ydy)/r² on the punctured x-y plane ℝ² \ (0,0) where r² = x² + y². (a) Show that the exterior derivative dα = 0. Thus, α is closed. (b) Find a smooth function f(x, y) on the punctured plane such that α = df, thereby establishing that α is exact.
- 2. $\langle \mathbf{2}+\mathbf{2}+\mathbf{4}\rangle$ Integrating denominator. Consider the 1-form on \mathbb{R}^2 , $\omega(x, y) = y dx x dy$. Since $d(df) = d^2 f = 0$, a necessary 'integrability' condition for ω to be exact ($\omega = d\sigma$ for some σ) is that it be closed ($d\omega = 0$). (a) Show that ω disobeys the integrability condition. (b) Look for an integrating denominator $\tau(x, y)$ and function $\sigma(x, y)$ such that $\omega/\tau = d\sigma$ is exact on some open subset of \mathbb{R}^2 . (c) Examine whether τ is unique. Try to find the form of all such integrating denominators τ . Hint: Try to derive a differential equation for τ . Remark: For a class of 1-forms ω associated to the infinitesimal heat added reversibly to a system, the 2^{nd} law of thermodynamics guarantees the existence of an integrating denominator τ , which is the absolute temperature. σ is the entropy function on the thermodynamic state space.
- 3. $\langle \mathbf{1} + \mathbf{2} + \mathbf{2} \rangle$ Volume form. Consider \mathbb{R}^2 with Cartesian coordinates $x^i = (x, y)$ with the 'volume' (area) form $\Omega = \frac{1}{2}\Omega_{ij}dx^i \wedge dx^j$ where $\Omega_{ij} = \epsilon_{ij}$, the Levi-Civita symbol. (a) Show that $\Omega = dx \wedge dy$. (b) Suppose we change to polar coordinates $\tilde{x}^i = (r, \theta)$ via $x = r \cos \theta, y = r \sin \theta$ on the overlap of the coordinate systems. Find all the components $\tilde{\Omega}_{ij}$ in the polar system. (c) Express $\Omega = \rho(r, \theta)dr \wedge d\theta$ for suitable volume density ρ and relate ρ to the Jacobian.