
Notes for Course on Mathematical Methods of Physics, CMI, Spring 2025
Govind S. Krishnaswami, April 30, 2025

Please let me know at govind@cmi.ac.in of any comments or corrections

Course website http://www.cmi.ac.in/˜govind/teaching/math-meth-e25

Contents

1 Complex function theory 2
1.1 Some references on complex function theory and applications . . . . . . . . . . . . . . . . . . . . . 2
1.2 Real numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Complex numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Stereographic projection: Riemann sphere and the extended complex plane . . . . . . . . . . . . . . . 4
1.5 Convergence of a sequence and series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6 Convergence in the space of bounded continuous functions . . . . . . . . . . . . . . . . . . . . . . . 9
1.7 Power series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.8 Laurent series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.9 Analytic functions defined by convergent power series . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.10 Zeros and isolated singularities of an analytic function . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.11 Holomorphic functions: Cauchy-Riemann equations . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.12 Cauchy’s integral theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.13 Cauchy residue theorem and contour integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.13.1 Residue at infinity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.13.2 Summation of series using residue calculus . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.14 Cauchy principal value and the Hilbert transform . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.15 Sochotski-Plemelj (iε) formula and discontinuity in the Cauchy transform . . . . . . . . . . . . . . . 34
1.16 Multivalued functions, branch cuts and Riemann surfaces . . . . . . . . . . . . . . . . . . . . . . . 35
1.17 Analytic continuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.17.1 Example: Analytic continuation of the Gamma function . . . . . . . . . . . . . . . . . . . . 42
1.18 Entire functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2 Manifolds 46
2.1 Some references on manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.2 The concept of a manifold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.2.1 Analogy with cell phone networks and cartography . . . . . . . . . . . . . . . . . . . . . . . 46
2.2.2 Coordinate charts and transition functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.2.3 Refining an atlas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.3 Maps between manifolds: homeomorphisms, diffeomorphisms . . . . . . . . . . . . . . . . . . . . . 50
2.4 Submanifolds: immersions and embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.5 Connected and simply connected manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.6 Smooth functions or scalar fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.7 Vector fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.8 Covector fields or 1-forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.9 Tensors of rank two and 2-forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.9.1 Poisson tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.9.2 Metric tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.9.3 Two-forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.9.4 Mixed second rank tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.10 Higher rank tensor fields and forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.11 Pushforward and pullback of tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.12 Exterior algebra, exterior derivative and Bianchi’s identity . . . . . . . . . . . . . . . . . . . . . . . 71
2.13 Integration on manifolds and Stokes’ theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
2.14 Laplace-Beltrami operator on a Riemannian manifold from variational principle . . . . . . . . . . . . . 79
2.15 Hodge dual and volume form duals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3 Groups, Lie groups and their Lie algebras 85
3.1 Some references on groups and Lie algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.2 Concept and definition of a group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

1

http://www.cmi.ac.in/~govind/teaching/math-meth-e25


3.3 Cardinality, discrete and continuous groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.4 Subgroup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.5 Group homomorphisms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.6 Isomorphisms and automorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.7 Conjugation and conjugacy classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.8 Abelian and nonabelian groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.9 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.10 Lie groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.11 Matrix Lie groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.12 Transformation group acting on a set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.13 Coset spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.14 Normal subgroup and quotient or factor group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.15 Simple and semisimple groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.16 Direct product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.17 Semidirect product. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.18 Permutation group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.19 Lie group as a homogeneous manifold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.20 Lie algebra of a Lie group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.21 Circle group U(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.22 The orthogonal group O(3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.23 The Lie algebra of O(3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.24 Exponential map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.25 Lie bracket and structure constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.26 The group SU(2) and its Lie algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.27 Adjoint action or representation of group and Lie algebra . . . . . . . . . . . . . . . . . . . . . . . . 102
3.28 Two-to-one homomorphism from SU(2) to SO(3) . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

1 Complex function theory

Complex variables and complex analysis are useful in many parts of classical
physics (e.g., oscillation problems, incompressible irrotational planar flow, Laplace-
Fourier transforms in solving differential equations, etc.). Complex numbers enter
the very formulation of quantum mechanics (the i in the Schrödinger equation, wave
functions being elements of a complex vector space, etc.) and complex analysis finds
use in diverse areas of quantum physics (dispersion relations, analytic continuation in
complex energy and complex angular momentum in scattering theory (Regge poles),
coherent states, Wick rotation and the relation between statistical and quantum me-
chanics, etc.)
• A Cauchy (1789-1857) and B Riemann (1826-1866) played important roles in the
initial development of complex function theory. While Cauchy’s approach was an-
alytic, Riemann’s had a geometric flavor. Cauchy also did a lot of work on solid
mechanics and elasticity theory.

1.1 Some references on complex function theory and applications

1. L V Ahlfors, Complex Analysis

2. Dennery and Krzywicki, Mathematics for Physicists

3. J W Dettman, Applied Complex Variables

4. Byron and Fuller, Mathematics of Classical and Quantum Physics
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5. Stone and Goldbart, Mathematics for Physics

6. Ablowitz and Fokas, Complex Variables: Introduction and Applications

1.2 Real numbers

• Real numbers are familiar to us. They are numbers with a decimal expansion e.g.,
1.0423946 . . . and may be thought of as points along a line.
• In addition to being a vector space, the set R of real numbers is a field. We have
commutative operations of addition and multiplication (a + b = b + a, ab = ba)
with the latter distributing over addition: a(b + c) = ab + ac. Zero and one are the
additive and multiplicative identities: a+ 0 = a and a 1 = a for every a ∈ R. Every
real number a has an additive inverse −a while nonzero reals have multiplicative
inverses a−1 = 1/a, allowing us to divide by nonzero real numbers.
• The real number field is totally ordered: given distinct real numbers a 6= b, either
a < b or b < a with the transitivity property that if a < b and b < c then a <
c. Ordered sets come up in physics: the set of events in Minkowski space-time are
partially ordered by the property of lying in the causal past or future. Event E′ is in
the future of E if E′ lies in the future lightcone of E so that signals can reach E′ from
E. It is only partially ordered since a pair of events may not be causally connected at
all.
• Real numbers form a metric space. The distance between a and b is the absolute
value1 of their difference d(a, b) = |a−b|. The metric is a positive definite symmetric
function d : R× R→ R satisfying the triangle inequality:

(1) d(a, b) ≥ 0 with d(a, b) = 0 iff a = b,
(2) d(a, b) = d(b, a) and
(3) d(a, c) ≤ d(a, b) + d(b, c), (1)

for any three reals a, b, c.
• In fact, the real numbers form a complete metric space. This means that every
Cauchy sequence of real numbers converges to a real number. We will explain what
a Cauchy sequence is in §1.5.

1.3 Complex numbers

• A complex number is an ordered pair of real numbers z = (x, y). So they may be
viewed as points on the two-dimensional Euclidean plane, which is called the complex
or Argand plane. Commutative addition and multiplication are defined using those of
real numbers:

(x, y) + (x′, y′) = (x+ x′, y + y′) and
(x, y)(x′, y′) = (xx′ − yy′, xy′ + yx′). (2)

1The absolute value is an example of a norm on a vector space: a positive definite function satisfying
||λa|| = |λ|||a|| (for any scalar λ and any vector a) and the triangle inequality ||a+ b|| ≤ ||a||+ ||b|| for
any vectors a and b.
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While (0, 0) is the additive identity, (1, 0) is the multiplicative identity (x, y)(1, 0) =
(x, y). So we denote these by 0 and 1. Since C may be regarded as a two di-
mensional vector space, it is convenient to have a basis for it. The natural choice
of basis elements is (1, 0) = 1 and (0, 1). The latter has the interesting property
(0, 1)(0, 1) = (−1, 0) = −1. The special element (0, 1) is denoted i and we have just
seen that i2 = −1. Thus, any complex number can be written as a linear combination
z = (x, y) = x(1, 0) + y(0, 1) = x + iy. The real numbers x and y are called the
real and imaginary parts: <z = x and =z = y. One checks that the set of complex
numbers C forms a field. The multiplicative inverse of any nonzero complex number
z = x+ iy is (x− iy)/(x2 + y2).
• Unlike the reals, the complex numbers are not an ordered field: we do not have
a way of saying whether z is larger or smaller than z′ unless they both happen to be
real.
• Nevertheless, by viewing them as points on the plane R2, there is a natural notion of
magnitude. The absolute value of z = x+ iy is the Euclidean distance of (x, y) from
the origin: |z| =

√
x2 + y2. The absolute value or modulus defines a norm on C.

• We may use the absolute value to turn C into a metric space by defining the dis-
tance function d(z, z′) = |z − z′| =

√
(x− x′)2 + (y − y′)2. This is simply the

Euclidean distance between points on the plane. It satisfies the triangle inequality as
a consequence of the corresponding property of plane triangles.
•Using polar coordinates on the complex plane, we introduce the modulus-argument
form of a nonzero complex number: z = reiθ. Here r = |z| =

√
x2 + y2 is called

the modulus while the argument arg z = θ = arctan(y/x). We note that arg z is a
multivalued function of z, it is any angle θ such that x = r cos θ and y = r sin θ.
Evidently, any two such angles differ by an integer multiple of 2π. When z = 0, the
modulus vanishes and the argument is not defined or can be taken to be arbitrary.
• A key distinction between real and complex numbers is that the latter are alge-
braically closed unlike the former. In other words, a polynomial equation with real
coefficients a0 + a1x + · · · + anx

n = 0 need not have any real roots. On the other
hand, by the Fundamental Theorem of Algebra, a polynomial of degree n (an 6= 0)
with complex coefficients a0, · · · , an, is guaranteed to have n complex roots.
• The complex numbers admit an involution called complex conjugation, that takes
z = x + iy to z̄ = x − iy. The conjugate is also denoted z∗. It is clear that when
conjugation is applied twice, one gets the identity: (z∗)∗ = z (an involution is such
an operation). Conjugation is reflection in the horizontal axis (x, y) → (x,−y). It
reduces to the identity on the real numbers. The squared modulus is expressible as
|z|2 = x2 + y2 = z̄z.

1.4 Stereographic projection: Riemann sphere and the extended complex plane

• Complex numbers may also be viewed as points on a punctured sphere. Consider
the unit sphere S2 consisting of the points (x1, x2, x3) in 3d Euclidean space R3 with
x2

1 + x2
2 + x2

3 = 1. The equatorial x1-x2 plane will be viewed as the complex plane
C where we will denote x1 = x and x2 = y and put z = x + iy. The points (0, 0, 1)
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and (0, 0,−1) on the unit sphere are called its North and South poles. We will now
define a map from S2 \ {N} (sphere with North pole removed) to the complex plane
C. Its extension to the north pole will allow us to define the point at z = ∞ and the
extended complex plane.

z

y

x
P (x,y,z)

(X,Y) (X,Y)

P (x,y,z)
O

N North pole

S

Equatorial 
plane

Stereographic projection to equatorial plane

South pole

Sphere S2 
x2+y2+z2=1

(X,Y) are 
stereographic 
coordinates of 
point P ∊ S2

Figure 1: Stereographic coordinates (x, y) of a point P (x1, x2, x3) on the sphere S2

are given by the point of intersection with the equatorial plane of the line from the
North pole through P . In the figure, (x, y, z) is to be read as (x1, x2, x3) while (X,Y )
is to be read as (x, y).

• Suppose P is a point on S2 with Cartesian coordinates (x1, x2, x3). Its image P ′

under the stereographic projection is the point with coordinates (x, y) on the equatorial
plane through which the line passing throughN and P passes. Evidently, points in the
northern/southern hemisphere (x3 > 0 or x3 < 0) are mapped to points outside/inside
the unit circle (x2 + y2 = 1). The equator (x2

1 + x2
2 = 1, x3 = 0) is mapped to this

unit circle. Explicitly, the map is given by

x =
x1

1− x3
and y =

x2

1− x3
or z =

x1 + ix2

1− x3
. (3)

The map is clearly invertible, with inverse C→ S2 \ {N} given by

x1 =
2x

x2 + y2 + 1
, x2 =

2y

x2 + y2 + 1
and x3 =

x2 + y2 − 1

x2 + y2 + 1
. (4)

While the South pole is mapped to the origin z = 0, the North pole is in a limiting
sense, mapped to the ‘circle at infinity’ in the complex plane. We will identify all the
points on this ‘circle at infinity’ and denote them by z =∞. The set C∪{∞} is called
the one-point compactification of the complex plane and denoted C∞ or Ĉ. Equations
(3) and (4) imply that the North pole N(0, 0, 1) is mapped to the point z = ∞ and
vice versa if we take the limits x3 → 1 and x2 + y2 →∞.
• Under the stereographic projection, we may view z = x + iy as a stereographic
complex coordinate of a point on the unit sphere. We may develop the stereographic
projection from any point on S2. We need a minimum of two such stereographic
projections (say, from N and S) to assign a complex coordinate to all points on S2.
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These lead to two compatible coordinate systems covering all of S2. When viewed
this way, we call S2 the Riemann sphere. More on this when we study manifolds.
• The stereographic projection takes circles on the Riemann sphere with the North
pole excluded to circles on the complex plane. Circles passing through N are mapped
to straight lines.
•We may define a metric on the extended complex plane using natural notions of dis-
tance on the Riemann sphere such as the great circle distance or the chordal distance.

1.5 Convergence of a sequence and series

• Ideas of convergence were developed from practical considerations of obtaining so-
lutions of equations (algebraic or differential) by a sequence of approximations. The
current definition of convergence came out of thinking about accuracy of approxi-
mations, error estimates, tolerance for deviation and the number of iterations to be
performed. The French mathematical physicist Augustin-Louis Cauchy (1789-1857)
played an important role in developing ideas of convergence of sequences and series.
He also did a lot of work in continuum mechanics and elasticity.
• A sequence is a map from the set of natural numbers {1, 2, 3, . . .} to any set Ω.
The elements of the sequence s are written as s1, s2, s3, . . . with sn ∈ Ω for each
n = 1, 2, 3, . . .. Evidently, the natural numbers are used to index the elements in the
sequence. For example, Ω could be the set of complex numbers or a set of functions
of a complex variable. Thus, we can have sequences of complex numbers z1, z2, · · ·
or sequences of functions f1(z), f2(z), · · · . For example, we have the sequence of
bound state energies En of the 1d harmonic oscillator or those of the hydrogen atom.
We also have the sequence of bound state wave functions ψn(x) of the harmonic
oscillator. Sequences also arise elsewhere in physics: the sequence of states xn of a
discrete time dynamical system where n plays the role of time.
• Convergence of a sequence on a metric space. If Ω is a metric space (like C with
the Euclidean distance function), then we can introduce the idea of the convergence
of a sequence. This plays an important role in complex analysis, not least because
a complex analytic function is defined in terms of a convergent sequence of Taylor
polynomials. When the sequence represents successive states of a dynamical system,
convergence or the lack thereof tells us about the asymptotic behavior of the system.
• Convergent sequence. We will say that a sequence sn on a metric space Ω con-
verges to a point x ∈ Ω if, given any tolerance ε > 0 there exists a positive integer N
such that d(sn, x) < ε for all n > N . In other words, by going far enough down the se-
quence, its elements can be made as close as we want, to x. We write limn→∞ sn = x
or simply sn → x. As a consequence of the definition and the axiom d(x, y) > 0 if
x 6= y, a sequence can converge to at most one point.
• Bounded sequence. A sequence sn of complex numbers is bounded in magnitude
if there is a positive real number B such that |sn| ≤ B for all n ≥ 1. A bounded
sequence need not be convergent. For instance, the sequence whose elements einπ/3

go round and round the unit circle is bounded but does not converge. The sequence
(−1)n + 1

n whose even elements tend to 1 and whose odd ones tend to −1 is not
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convergent.
• Limit point or accumulation point. In situations such as the example above, it is
useful to introduce the idea of a limit point of a sequence. We say that z is a limit point
of the sequence of complex numbers zn if every disc centered at z contains an infinite
number of elements of the sequence. In other words, a subsequence of elements con-
verges to z. A convergent sequence has precisely one limit point. However, a bounded
sequence can have several or even infinitely many limit points. The sequence einπ/3

has six limit points while (−1)n + 1
n has two limit points. The even subsequence of

the latter converges of 1 while the odd subsequence converges to −1. Limit points are
useful in discussing long time behavior (attractors) of dynamical systems such as the
Logistic map: xn+1 = rxn(1 − xn) (for 0 ≤ xn ≤ 1) which models the population
of a species with growth rate 0 ≤ r ≤ 4 at successive instants of time n.
• A bounded sequence need not have a maximal or minimal element. E.g., the se-
quence of bound state energies (in electron volts) of the hydrogen atom−13.6/n2 has
a minimal element but no maximal element.
• Supremum and infimum. A sequence (or set) of real numbers is bounded above
by B if all elements are ≤ B. The smallest such upper bound is called the least upper
bound or supremum (abbreviated sup). Similarly, we have the notion of the greatest
lower bound or infimum (abbreviated inf) of a sequence (or set) of real numbers that
is bounded below. A bounded sequence of real numbers must have a supremum and
infimum irrespective of whether it is convergent.
• Limit supremum and limit infimum. We can combine the notions of limit points
and the supremum to define the limit supremum of a real sequence that is bounded
above. The lim sup is the supremum of its limit points. Similarly, the limit infimum
(lim inf) of a real sequence that is bounded below is the infimum of its limit points.
The lim sup and lim inf are only sensitive to the limit points, they do not depend on a
finite number of larger or smaller elements. On the other hand, supn xn and infn xn
depend on these outliers as well.
• Cauchy sequence. A sequence sn on a metric space is a Cauchy sequence if the
distance between elements can be made arbitrarily small by going far enough down
the sequence. In other words, given ε > 0, there is a positive integer N such that
d(sm, sn) < ε for all m,n > N . Although the points may get closer to each other,
a Cauchy sequence need not converge to a point in the metric space. For instance the
Cauchy sequence 1/n does not converge to a point in the open unit interval (0, 1).
Evidently, the open interval is missing its ‘limit points’ 0 and 1. We may include
these to get a complete metric space. On the other hand, sn = log n is not a Cauchy
sequence. This is because although the distance between successive elements goes to
zero, the distance between, say, log n and log 5n does not go to zero as n → ∞. It is
noteworthy that every Cauchy sequence can be shown to be bounded.
• Complete metric space. A metric space Ω is called complete if every Cauchy
sequence in it converges to a point of Ω. Under the Euclidean distance function, the
complex numbers are a complete metric space while the rational numbers are not.
• Convergent series. Given a sequence s1, s2, . . ., of real or complex numbers, we
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have the sequence of partial sums Sn =
∑n
k=1 sk. If the sequence of partial sums

S1, S2, . . . forms a convergent sequence, then we say that the sum of the sequence (or
simply, series) is convergent and write

lim
n→∞

n∑
k=1

sk =

∞∑
k=1

sk. (5)

If the partial sums do not converge, then we say that the series is divergent.
• For any fixed |z| < 1, the geometric series

∑∞
k=0 z

k is convergent, as we deduce
from the limit of the sequence of partial sums:

∑n
k=0 z

k = (1 − zn+1)/(1 − z).
It converges to 1/(1 − z) since zn+1 → 0 for any |z| < 1. It is a prototype for a
convergent series.
• Sometimes, we may determine whether a series is convergent by comparing its terms
with those of a geometric series, where the ratio of successive term is a constant.
• Ratio test for (absolute) convergence. A useful test for convergence is the ratio
test. A series

∑
k ak is convergent if the absolute value of the ratio of successive

terms has a limit that is less than one: limn→∞ |an+1/an| < 1. It diverges if this limit
exceeds one. The test is inconclusive if the limit equals unity. According to the ratio
test, the geometric series is convergent for |z| < 1. A refined version of the ratio test
applies even when the above limits do not exist. It states that the series converges if
lim supn |an+1/an| < 1 and diverges if lim infn |an+1/an| > 1. In fact, the ratio test
is a test for absolute convergence, a concept that we now introduce.
• Absolute convergence. A series

∑∞
k=1 ak is absolutely convergent if the series

of absolute values
∑∞
k=1 |ak| converges. Absolute convergence is a stronger condi-

tion that convergence. An absolutely convergent series is automatically convergent.
On the other hand, a series

∑
k ak may converge due to cancellations among terms,

which may fail to happen in the series of absolute values. For instance, the alternating
harmonic series

∑
k(−1)k+1/k converges to log 2 although not absolutely. The har-

monic series
∑∞
k=1(1/k) is logarithmically divergent (

∑n
k=1(1/k) ∼ log n+γ). The

series
∑
k(−1)k+1/k2 is absolutely convergent as is the geometric series

∑∞
k=1 z

k

for |z| < 1.
• A series is called conditionally convergent if it converges, though not absolutely.
For example, the series 1 − 1 + 1

2 −
1
2 + 1

3 −
1
3 + · · · converges to zero but the sum

of the absolute values is divergent (it is twice the harmonic series). In an absolutely
convergent series, we may rearrange the terms without affecting its sum. However,
according to Riemann’s theorem, this is not the case for conditionally convergent se-
ries. Terms in a conditionally convergent series may be rearranged (permuted) so that
the sum converges to any desired value (including ±∞) or even not converge at all.
• Comparison test for absolute convergence. If

∑
k dk is absolutely convergent and

|ck| ≤ |dk| for all sufficiently large k, then the series
∑
k ck is absolutely convergent.

We say that the series
∑
k dk eventually dominates the series

∑
k ck.

• Cauchy’s nth root test for absolute convergence. A series
∑
n an is absolutely

convergent if lim sup |an|1/n < 1 and it diverges if lim sup |an|1/n > 1. Roughly, if
lim sup |an|1/n < 1, then for all but a finite number of terms in the sum, |an| < Rn
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for some positiveR < 1. Then the series converges by comparison with the geometric
series

∑
nR

n.

1.6 Convergence in the space of bounded continuous functions

• We now wish to go from discussing the convergence of sequences of numbers to
that of sequences of functions. For this we need a suitable metric space of functions,
which is furnished by bounded continuous functions.
• Continuous functions. Let us begin by recalling that a real-valued function f(x) of
a real variable x is continuous at x0 if given any ε > 0 there exists a δ such that |f(x)−
f(x0)| < ε for all x with |x− x0| < δ. In other words, for a continuous function, we
can make f(x) arbitrarily close to its value at x0 by choosing x sufficiently close to x0.
The Heaviside step function θ(x) which is equal to one for x ≥ 0 and zero otherwise
is continuous everywhere except at x = 0. It is the indicator or characteristic function
of the positive real line. The characteristic function of a subset of R is the one that is
equal to one on the subset and zero on the complement. The characteristic function of
the rational numbers is nowhere continuous. Polynomials are continuous everywhere.
On the other hand, the function f(x) which vanishes at x = 0 and is equal to sin(1/x)
elsewhere is discontinuous at x = 0. It cannot be made continuous by any other choice
of f(0).
• Supremum norm. The space of bounded complex-valued functions of a real vari-
able in a finite interval f : [a, b] → C is a metric space with distance function given
by the supremum norm

d(f, g) = sup
x∈[a,b]

|f(x)− g(x)| (6)

The sup norm measures the largest difference in heights between the graphs of the
functions.
• There are other interesting distance functions such as the one based on the L2 norm:

dL2(f, g) =

[∫ b

a

|f(x)− g(x)|2dx

]1/2

. (7)

• Uniform convergence. We may now define the notion of a uniformly convergent
sequence of functions. A sequence of functions fn : [a, b] → C is uniformly con-
vergent to the function f if given any ε > 0 there exists a positive integer N > 0
such that |fn(x) − f(x)| < ε for each n > N and any x ∈ [a, b]. In other words
fn(x) must come within ε of f(x) for all values of x, it is in this sense that the con-
vergence is uniform. If the value of N depended on x, then the convergence would
be called nonuniform or pointwise, rather than uniform. When a sequence converges
nonuniformly, the rate of convergence differs at distinct values of x.
• Uniform convergence is the same as convergence in the supremum norm since
|fn(x)− f(x)| < ε for all x if and only if sup |fn(x) < f(x)| < ε.
• Completeness and approximation by polynomials or Fourier series. This space
of bounded continuous functions is in fact a complete metric space under the sup
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norm. Thus, any Cauchy sequence of bounded continuous functions must converge to
a continuous function. It turns out that polynomials (as well as Fourier series) form
a dense subset of this space of bounded continuous functions on an interval. Thus,
we may realize any continuous function as the limit of a sequence of polynomials or
Fourier series. For instance, we may use Legendre polynomials for this purpose.

1.7 Power series

• A power series around the point z0 ∈ C is one of the form
∑∞
k=0 ak(z − z0)k for

constant complex coefficients ak.
• Radius of convergence. By the Cauchy nth root test, a power series converges
absolutely if lim supn |an|1/n|z − z0| < 1. Thus, a power series converges in a disk
of radius

R = [lim sup
n→∞

|an|1/n]−1 (8)

around z0. This is the radius of convergence of the series. Henceforth, unless other-
wise stated, we will consider power series around the origin and take z0 = 0.
• The geometric series

∑∞
n=0 z

n is a simple example of a power series. It converges
(absolutely) for |z| < 1 to 1/(1− z).
• We will soon see that

∑∞
n=1 nz

n,
∑∞
n=1 n

2zn and in fact
∑∞
n=1 n

kzn for k =
1, 2, 3, . . . are all absolutely convergent for |z| < 1.
• The exponential series

∑
n≥0 z

n/n! has an infinite radius of convergence. It defines
the exponential function ez . For any fixed z, the ratio of magnitudes of successive
terms |zn+1/(n + 1)!|/|zn/n!| = |z|/(n + 1) tends to zero as n → ∞. So the
exponential series converges for any z.
• Divergent series. On the other hand, the series

∑
n n!zn has zero radius of con-

vergence. The absolute ratio of successive terms is (n + 1)|z|, which tends to∞ as
n → ∞ for any fixed z 6= 0. Thus, this series is divergent for any z 6= 0. Such series
arise as perturbation series in quantum field theory. The n! arises because there are
that many Feynman diagrams.
• Term-by-term differentiation allows us to obtain a (possibly new) convergent
power series from a familiar convergent one. Suppose

∑
n anz

n has radius of con-
vergence R = [lim supn→∞ |an|1/n]−1. Then the differentiated series

∑
n nanz

n−1

has the radius of convergence

R′ = [lim sup
n→∞

|(n+ 1)an+1|1/n]−1. (9)

Now (n+ 1)1/n → n1/n → 1 and so

1

R′
= lim sup

n→∞
|an+1|1/n = lim sup

n→∞
|an+1|

1
n+1

n+1
n = lim sup

n→∞
|an+1|

1
n+1 =

1

R
.

(10)
So the term-by-term differentiated series has the same radius of convergence as the
original series.
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• Binomial series. For example, differentiating 1/(1− z) we get

1

(1− z)2
=

∞∑
k=1

kzk−1 =
∑
k≥0

(k + 1)zk. (11)

Splitting into two series,
∑
kzk +

∑
zk, we see that

∑
k kz

k = (1− z)−2− (1− z).
As anticipated, this series is absolutely convergent with radius of convergence unity.

Differentiating again,

1

(1− z)3
=

1

2

∑
k≥2

k(k− 1)zk−2 =
∑
k≥0

(k + 2)!

2

zk

k!
=
∑
k≥0

3 · 4 · · · (k+ 2)
zk

k!
. (12)

More generally,

1

(1− z)n
=

∞∑
r=0

n(n+ 1) · · · (n+ r − 1)
zr

r!
, (13)

which we recognize as a generalization of the binomial theorem.
• Logarithm. The logarithm is defined for |z| < 1 via the absolutely convergent
series

log(1 + z) = z − z2

2
+
z3

3
+ · · · (14)

Differentiating term by term,

d

dz
log(1 + z) = 1− z + z2 + · · · = 1

1 + z
(15)

Definingw = 1+z we arrive at a result familiar from the calculus of one real variable:
d logw/dw = 1/w at least for |w − 1| < 1.
•By composing the power series around the point z = 0, we can show that elog(1+z) =
1 + z at least for |z| < 1. In fact, the first few terms are

elog(1+z) = 1 + log(1 + z) +
log(1 + z)2

2!
+

log(1 + z)3

3!
+ · · ·

= 1 + z +

(
−1

2
+

1

2

)
z2 +

(
1

3
− 2

2!
+

1

3!

)
z3 + · · ·

= 1 + z +O(z4). (16)

We have exploited absolute convergence to rearrange the terms. Proceeding this way,
one must show that the coefficients of all higher powers of z vanish.

1.8 Laurent series

Laurent series with finitely many negative powers in a punctured disk. A Laurent
series around z = 0 with finitely many negative exponents is a power series with
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nonzero radius of convergence (R) plus a polynomial (of degree N ) in 1/z. Such a
Laurent series may be written as

f(z) =

∞∑
n=−N

anz
n. (17)

This series converges in the punctured disk 0 < |z| < R (we remove the origin from
an open disk of radius R). The nonnegative integer N is called the degree of the pole
of f at z = 0. The coefficient of 1/z, i.e., a−1 is called the residue of the pole at
z = 0. The significance of the residue will become clear when we discuss Cauchy’s
formula for contour integrals. If N = 1, i.e., f(z) = a−1/z + a0 + a1z + · · · , then
we say that f has a simple pole at z = 0, if N = 2, it has a double pole, etc.
•More generally, a Laurent series around z = z0 may be written as

∑
n≥−N an(z −

z0)n. The sum of the terms with strictly negative powers of (z − z0) is called the
singular part:

singular part of f at z0 =
a−N

(z − z0)N
+ · · ·+ a−1

(z − z0)
. (18)

The singular part is sometimes called the ‘principal part’ or the ‘pole part’.
• The convergent Taylor series in a Laurent series is called the regular part:

regular part of f at z0 =
∑
n≥0

an(z − z0)n. (19)

Doubly infinite Laurent series in an annulus. More generally, we may consider
Laurent series with a pole of possibly infinite order, i.e., doubly infinite series of the
form

f(z) =

∞∑
n=−∞

anz
n. (20)

The strictly negative powers (n < 0) comprise the singular part while the regular part
is given by the power series with nonnegative exponents (n ≥ 0). The regular part
is assumed to have a positive radius of convergence R > 0. The singular part can be
viewed as a power series in 1/z and is assumed to converge for |1/z| < 1/r. Hence
the singular part converges for |z| > r. Furthermore, if r < R, the doubly infinite
Laurent series converges for z in the annulus r < |z| < R. It could of course happen
that r → 0 orR→∞, in which case the domain of convergence becomes a punctured
disk or the exterior of a disk.
• For example, the Laurent series for the function e1/z:

∞∑
0

z−n

n!
= 1 +

1

z
+

1

2z2
+ · · · (21)

converges in the punctured complex plane |z| > 0 (R→∞ and r → 0). It has a pole
of infinite order at z = 0.
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1.9 Analytic functions defined by convergent power series

• Analytic function. A function f(z) of a complex variable is called analytic at the
point z0 if it is equal to an absolutely convergent power series f(z) =

∑∞
n=0 an(z −

z0)n within the circle of convergence of the series. When this is the case, the coeffi-
cients are uniquely determined and given by the so-called Taylor coefficients

an =
1

n!

dnf(z)

dzn

∣∣∣∣
z=z0

. (22)

The series is called the Taylor series of f around the point z0.
• In a similar fashion, an antianalytic function is one that may be represented by
an absolutely convergent power series in z̄ − z̄0 for any point z̄0 in its domain of
antianalyticity. For example, suppose f(z) is analytic in the open connected domain
D. Then, around any point z0 ∈ D, it may be represented by an absolutely convergent
power series f(z) =

∑
n≥0 an(z− z0)n. We may use this to construct an antianalytic

function g(z̄) in the domain D̄, which is the reflection of D in the real axis (complex
conjugate domain). Indeed, consider the complex conjugate function g(z̄) = (f(z))∗.
It admits an absolutely convergent series representation around any point z̄0 ∈ D̄,
given by g(z̄) =

∑
n≥0 ān(z̄ − z̄0). The condition for absolute convergence of this

conjugate series is met since |ān(z̄ − z̄0)| = |an(z − z0)|.
• Polynomials. The simplest examples of analytic functions are polynomials in z:
f(z) =

∑n
k=0 akz

k. The degree of the polynomial is n. Such a polynomial can be
rewritten as a polynomial (of the same degree) in z−z0 for any z0. Thus, a polynomial
defines a function that is analytic everywhere in C.
• Entire function. A function that is analytic at every z0 ∈ C is called an entire
function. Our previous remark shows that polynomials are entire. What is more,
polynomials have an infinite radius of convergence. More generally, a power series
with an infinite radius of convergence defines an entire function. The exponential
series ez =

∑∞
n=0 z

n/n!, which has an infinite radius of convergence, defines an
entire function.
• Sum, product and quotient of analytic functions. The sum and product of two
functions analytic at z0 is again analytic. The radius of convergence of a product of
two convergent series is at least as big as the smaller of the two radii of convergence.
On the other hand, the quotient of two analytic functions f/g is analytic at z0 provided
g(z0) 6= 0. We may then write g(z) = g(z0) + h(z) and

g(z)−1 = g(z0)−1(1 + h/g(z0))−1 = g(z0)−1

[
1− h

g(z0)
+

h2

g(z0)2
+ · · ·

]
. (23)

Here h(z) = g(z) − g(z0) vanishes at z0, is analytic and admits a convergent power
series expansion about z0. We multiply out these terms and then multiply by the series
for f(z) to obtain a convergent power series for f/g in powers of z − z0.
•Derivative of an analytic function is analytic. We have already noted that term-by-
term differentiation of a convergent series gives us another convergent series with the
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same radius of convergence. Thus, the derivative of an analytic function is automati-
cally analytic. In particular, a complex analytic function is infinitely differentiable. It
is worth bearing in mind that complex analyticity is a much stronger condition than
differentiability. A once differentiable function need not be twice differentiable. For
example, the function of one real variable given by f(x) = x2 sgn (x) where sgn (x)
is the signum function (equal to the sign of its argument) that vanishes at x = 0, has a
first derivative f ′(x) = 2x sgn (x) that is continuous but not differentiable at x = 0.
In other words, the second derivative f ′′(x) = 2 sgn (x) is discontinuous at x = 0.
•We will use the word domain for a nonempty open connected subset Ω of the com-
plex plane. It is connected if it comes in one piece: given any two points p, q ∈ Ω
there must be a continuous curve γ (thought of as parameterized by time t) that joins
them, i.e., γ : [0, 1]→ Ω with γ(0) = p and γ(1) = q.
• Regularity classes: Ck, C∞, Cω . It is useful to have notation for various regularity
classes of functions in some domain Ω. A C0 function is one that is continuous. A
C1 function is one whose first partial derivatives exist (for a function of two variables,
these are ∂f

∂x and ∂f
∂y ) and are continuous. A C2 function is one whose second partial

derivatives exist and are continuous. A Ck function is k times continuously differen-
tiable. A C∞ function is one for which all derivatives exist and are continuous, such
a function is called smooth. An analytic function (one that admits a convergent power
series representation in z = x + iy) is said to be of class Cω . If we denote the space
of Ck functions in Ω by Ck(Ω), then we have the strict inclusions

Cω(Ω) ⊂ C∞(Ω) ⊂ · · · ⊂ C2(Ω) ⊂ C1(Ω) ⊂ C0(Ω). (24)

A smooth (C∞) function need not be analytic (Cω). For example, f(x, y) = x − iy
has continuous partial derivatives of all orders and is smooth. However, it cannot be
expressed as a power series in x + iy. Another example comes from the calculus of
one real variable. The function defined by f(x) = e−1/x2

for x 6= 0 and f(0) = 0, is a
smooth function. Plot its graph! It has continuous derivatives of all orders. Moreover,
we find that all its derivatives vanish at x = 0. Thus, its Taylor coefficients are all zero
and the corresponding Taylor series T (x) = 0 does not agree with the function f(x).
Thus, f does not admit a Taylor series that converges to the function. We say that f is
not real analytic.

1.10 Zeros and isolated singularities of an analytic function

• Zeros of an analytic function. Suppose f is analytic in a domain Ω. We will say
that f has a zero at z0 ∈ Ω if f(z0) = 0. A more refined notion is a zero of order n.
We will say that f has a zero of order n if its first n− 1 derivatives vanish at z0 while
its nth derivative is nonvanishing:

f(z0) = f ′(z0) = · · · = f (n−1)(z0) = 0 but f (n)(z0) 6= 0. (25)

Note that if f has a zero of order n, then it cannot be identically zero. Since f is
assumed analytic, this means its first n Taylor coefficients around z0 must vanish and
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its convergent power series representation must be of the form

f(z) = an(z − z0)n + an+1(z − z0)n+1 + · · · (26)

with an 6= 0. We may thus factorize f as

f(z) = (z − z0)ng(z) where g(z) =

∞∑
k=0

an+k(z − z0)k (27)

is also analytic at z0. What is more, since an 6= 0, g(z0) 6= 0. By continuity, g must
be nonvanishing in an open neighborhood of z0. Since (z− z0)n is also nonvanishing
away from z0, we conclude that f must be nonvanishing in a punctured neighborhood
of z0. Thus, we have shown that the zeros of an analytic function must be isolated in
the domain of analyticity Ω if f is not identically zero in Ω. In particular, a noncon-
stant analytic function cannot have an accumulation point of zeros within the domain
of analyticity, such an accumulation can only occur at a boundary point. Such a point
is an example of a singular point of an analytic function.
• A point z0 where a function is analytic is called a regular point. A point where it
fails to be analytic is called a singular point.
• When the power series representing an analytic function ceases to be convergent,
the function could have a singularity. Suppose f admits a convergent power series
expansion around z1 with radius of convergence R. Then there must be a point z0 on
the circle |z − z1| = R at which the power series diverges. Such a point z0 cannot
be a regular point, it is a singular point of f . Thus, the radius of convergence is the
distance to the nearest singularity. For example, the geometric series 1 + z+ z2 + · · ·
diverges when we put z = 1, which is a singularity of the corresponding analytic
function 1/(1 − z). As this example indicates, not all points on the boundary of the
disk of convergence may be singular points.
• Analytic functions can have singularities of various sorts. We will consider isolated
singularities for now. An isolated singularity z0 is one where the function is analytic
in a punctured disc 0 < |z − z0| < R of nonzero radius R > 0 around the point.
Isolated singularities can be removable, poles of finite order or essential singularities.
We discuss each case.
• Removable singularity. Consider the function f(z) = sin z

z . It is defined every-
where except at z = 0. However, the function has the limiting value unity as z → 0.
We say that f has a removable singularity at z = 0, the singularity may be removed
by defining f(0) = 1. Once this is done, f defines an analytic function at z = 0.
In fact, f is an entire function and admits a Taylor expansion with infinite radius of
convergence

f(z) =
1

z

(
z − 1

3!
z3 +

1

5!
z5 − · · ·

)
= 1− 1

3!
z2 +

1

5!
z4 − · · · . (28)

• Generally speaking, we will say that f has a removable singularity at z = z0 if by
suitably defining the value of f at z0, we can make f analytic at z0.
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• Simple pole. A function analytic in a punctured disk around z = z0 is said to have
a simple pole at z = z0 if it may be expressed as a Laurent series

f(z) =
a−1

(z − z0)
+

∞∑
n=0

an(z − z0)n (29)

in a punctured disk (0 < |z − z0| < R) of some radius R > 0 around z0. The residue
at the pole is a−1.
• Notice that the function cannot be redefined at z0 to make it analytic at z0. However,
by multiplying f by (z − z0), we get a function g = (z − z0)f that is analytic at
z0. We will say that a simple pole is neither a removable singularity nor an essential
singularity.
• For example, consider f = 1/(z(z − 1)). On the face of it, f has simple poles at
z = 0 and z = 1. In fact, we may write

f =
1

z − 1
− 1

z
. (30)

The first term is the regular part around z = 0 while the second is the singular part
around z = 0. The two terms reverse roles around z = 1. We may also read off the
residues:

Resz=0f(z) = −1 and Resz=1f(z) = 1. (31)

These statements are confirmed by the Laurent series around z = 0 and z = 1:

f(z) = −1

z
− (z + z2 + z3 + · · · ) and

f(z) =
1

1− z
− ((z − 1)− (z − 1)2 + (z − 1)3 + · · · ). (32)

• Formulae for the residue at a simple pole. (i) If f has a simple pole at z = z0, then
the residue is expressible as the following limit:

Resz=z0f(z) = a−1 = lim
z→z0

[(z − z0)f(z)]. (33)

If the pole is not simple, then this limit would diverge. (ii) Suppose f(z) = g(z)/h(z)
is a quotient of functions that are analytic at z0. For example, g(z) and h(z) could
be polynomials. If h has a simple zero at z0 and g(z0) 6= 0, then near z0, h(z) ≈
h′(z0)(z − z0). It follows that f has a simple pole at z0 with residue given by

Resz=z0
g(z)

h(z)
=

g(z0)

h′(z0)
. (34)

•Multiple pole. A multiple pole is defined in a similar way. Consider a function f(z)
analytic in a punctured disk around z0. It has a pole of order N = 1, 2, 3, . . . if the
function may be represented as a Laurent series

f(z) =
a−N

(z − z0)N
+ · · ·+ a−1

(z − z0)
+
∑
n≥0

an(z − z0)n. (35)
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in a punctured disk 0 < |z − z0| < R of some positive radius R > 0. Even if f has
a pole of order N > 1, the residue of f at z0 is defined as a−1. A formula for this
residue that generalizes the one for a simple pole (33) is given by

Resz=z0f(z) = a−1 = lim
z→z0

1

(N − 1)!

dN−1

dzN−1
[(z − z0)Nf(z)]. (36)

The multiplication by (z − z0)N and repeated differentiation serve to get rid of con-
tributions to the limit from poles of order greater than one in the Laurent series.
• If f has a pole of order N at z = z0, then (z − z0)Nf is regular at z0. As with a
simple pole, we say that a multiple pole is neither a removable nor essential singularity.
• Isolated essential singularity. An analytic function has an isolated essential singu-
larity at z0 if it has a pole of infinite order at z0. In more detail, suppose f is analytic
in a punctured disk around z0 and admits the Laurent series representation

f(z) =

∞∑
n=−∞

an(z − z0)n (37)

with an nonzero for infinitely many n < 0. Then we say that f has an isolated
essential singularity at z0. If f has an essential singularity at z0, then we cannot make
it analytic at z0 upon multiplication by (z − z0)N for any positive integer N . This is
the sense in which the singularity is essential.
• An isolated essential singularity can arise at a point of accumulation of values (say
zeros) of an analytic function.
• The function e1/z has an essential singularity at z = 0. Its Laurent expansion

e1/z =

∞∑
n=0

z−n

n!
= 1 +

1

z
+

1

2z2
+ · · · (38)

exhibits a pole of ‘infinite order’ at z = 0, with residue 1 and regular part equal to the
constant function 1. The behavior of an analytic function in the neighborhood of an
essential singularity is quite complicated. The function e1/z may be used to illustrate
some of these peculiar features. The function does not have a well defined limit as
z → 0: the behavior depends on how one approaches the essential singularity. For
instance when approached along the real axis, e1/x →∞ as x→ 0+ while e1/x → 0
as x → 0−. On the other hand, when approached along the imaginary axis, e1/iy

oscillates rapidly without approaching a limit as y → 0. When approached from the
right/left half planes with the real axis excluded, f oscillates increasingly rapidly with
growing/decaying amplitude as z → 0.
• This unbounded rapid oscillation is typical of the behavior of an analytic function
in the neighborhood of an essential singularity. According to the theorem of Sokhot-
ski, Casorati and Weierstrass, an analytic function must oscillate so rapidly and
unboundedly in any punctured neighborhood of an essential singularity that it comes
arbitrarily close to every complex value.
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•A stronger result on the behavior of an analytic function in the vicinity of an essential
singularity is Picard’s great theorem. It tells us that in every punctured neighborhood
of an essential singularity, an analytic function assumes every complex value (with one
possible exception) infinitely often. For instance, the function e1/z does not vanish
anywhere on the punctured complex plane2. However, Picard’s theorem asserts that
it takes every other complex value infinitely often as one approaches the essential
singularity at z = 0.
• Singularity at infinity. An analytic function can have an isolated singularity at
the point z = ∞ of the extended complex plane. To analyze the behavior around
z = ∞ we change variables to w = 1/z and consider the function g(w) = f(1/w)
in a punctured disc around w = 0. We say that f is regular or has a removable
singularity, a pole of finite order or an essential singularity at z =∞ if g(w) displays
such a behavior at w = 0. For example, the identity function f(z) = z corresponds
to g(w) = 1/w which has a simple pole at w = 0. So we say that f(z) = z has a
simple pole at z = ∞. More generally, a polynomial of degree N , f(z) = aNz

N +
aN−1z

N−1 + · · ·+ a0 (with aN 6= 0) has a pole of order N at z =∞.
•Meromorphic functions on C. An analytic function whose only singularities on the
finite complex plane are isolated removable singularities or isolated poles of finite or-
der is called a meromorphic function. Entire functions such as polynomials and the ex-
ponential function are automatically meromorphic. The simplest meromorphic func-
tions that are not entire are ratios of polynomials; they have a finite number of poles
in the complex plane. The trigonometric functions sec z, cosec z, tan z, cot z, sech z
as well as their hyperbolic counterparts are meromorphic; they have infinitely many
poles which accumulate at z = ∞. A meromorphic function cannot have a point of
accumulation of poles in the finite complex plane. Such a point would be a noniso-
lated singularity. For example, sin(1/z) has zeros at z = 1/nπ for integer n, which
accumulate at z = 0. Thus, its reciprocal cosec(1/z) has an accumulation of simple
poles at z = 0 and is therefore not a meromorphic function. In general, a meromor-
phic function f in a domain Ω is expressible as a ratio g/h of analytic functions in Ω
with poles of f occurring precisely at the zeros of h.
• A more restricted notion is that of a meromorphic function on the extended com-
plex plane or Riemann sphere. These are analytic functions that have no singularities
other than removable singularities and isolated poles of finite order in Ĉ. Polynomi-
als and rational functions are meromorphic on Ĉ but ez and related trigonometric and
hyperbolic functions that have an essential singularity at z =∞ are not.
• Nonisolated singularities. Analytic functions can have nonisolated singularities,
some of which we will discuss later. Possibilities include (a) accumulation points of
isolated singularities (e.g., poles) and (b) as branch cuts. The function cosec(1/z) has
an accumulation point of simple poles at z = 0. The square root

√
z and logarithm

log z are examples of analytic functions that display nonisolated singularities (branch
cuts).

2This is because ew = e<wei=w and e<w > 0 for all w.
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1.11 Holomorphic functions: Cauchy-Riemann equations

• Cauchy-Riemann equations. A complex-valued function f of a complex variable
z = x + iy may be written in terms of its real and imaginary parts: f = u + iv. We
will say that f is holomorphic if u and v are continuously differentiable functions of
x and y and satisfy the Cauchy-Riemann (CR)

∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x
. (39)

The CR equations are a pair of coupled linear partial differential equations.
• Examples. The identity function f(z) = z is holomorphic: u = x and v = y
implies ux = vy = 1 while uy = −vx = 0. On the other hand, the complex conjugate
function is not holomorphic: f(z) = z̄ implies u = x and v = −y so ux 6= vy .
• We will now interpret the CR equations in terms of (anti)holomorphic derivatives
and in terms of differentiation in the complex plane.
• Let us define the holomorphic and antiholomorphic derivatives

∂f =
1

2
(∂xf − i∂yf) and ∂̄f =

1

2
(∂xf + i∂yf). (40)

These definitions are motivated by the chain rule if we view z = x+iy and z̄ = x−iy
as functions of x and y and conversely x = (z+ z̄)/2 and y = (z− z̄)/2i as functions
of z and z̄ so that

∂ = ∂z =
∂

∂z
=
∂x

∂z
∂x +

∂y

∂z
∂y =

1

2
(∂x − i∂y) and

∂̄ = ∂z̄ =
∂

∂z̄
=
∂x

∂z̄
∂x +

∂y

∂z̄
∂y =

1

2
(∂x + i∂y) (41)

With these definitions, we see that

∂̄f =
1

2
(ux − vy + i(uy + vx)) = 0 (42)

is equivalent to the Cauchy-Riemann equations. Thus, the CR equations say that f can
depend on x and y through the combination z = x+ iy but not through z̄ = x− iy. A
holomorphic function is a function of x and y that lies in the kernel or nullspace of ∂̄.
• Examples. Thus, any polynomial in z is automatically holomorphic. However, the
absolute square function f(z) = z̄z = x2 + y2 is not holomorphic since it depends
nontrivially on z̄.
• Similarly, we will define an antiholomorphic function as one for which ∂f = 0,
i.e., one whose real and imaginary parts satisfy the ‘anti-CR’ equations ux = −vy and
uy = vx. Alternatively, an antiholomorphic function is one whose complex conjugate
is a holomorphic function. The only functions that are both holomorphic and anti-
holomorphic are constants. In other words, the intersection of the nullspaces (kernels)
of ∂ and ∂̄ consists of constant functions.
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• It is noteworthy that most functions of x and y are neither holomorphic nor an-
tiholomorphic. For example, f(x, y) = x2 + y2 = zz̄ is not annihilated by ∂ or
∂̄. Evidently, the condition of holomorphy is very stringent. Analytic function theory
owes its strength and limitations to this stringent condition.
• Complex derivative. Another viewpoint is based on the complex derivative. A
complex valued function of x, y can be viewed as a vector field on the plane: the real
and imaginary parts are its x and y components f = u(x, y) + iv(x, y) u(x, y)x̂+
v(x, y)ŷ. A continuously differentiable vector field is one one for which the partial
derivatives ux, uy, vx, vy exist and are continuous functions of x and y. In particular,
there need be no relation between ux and vy . The complex derivative is a very special
type of derivative, quite different from the partial derivatives. We say that f(x, y) has
a complex derivative if the following limit exists3:

f ′(z) = lim
h→0

f(z + h)− f(z)

h
. (43)

Here, we require that the limit of the difference quotient must be the same regardless
of how h approaches zero in the complex plane. If we choose real values for h, then
in terms of u and v, we get

f ′(z) = lim
h→0

u(x+ h, y) + iv(x+ h, y)− u(x, y)− iv(x, y)

h
= ux + ivx. (44)

On the other hand, if we choose imaginary values h = iε, then we get

f ′(z) = lim
ε→0

u(x, y + ε) + iv(x, y + ε)− u(x, y)− iv(x, y)

iε
= −iuy + vy. (45)

Equating these two expressions for f ′ we arrive at the CR equations. It may be shown
that other ways in which h may approach zero also lead to the same CR equations.
Thus, the CR equations are equivalent to the existence of the complex derivative.
• Holomorphic function and differential of type (1,0). We may view z and z̄ as an
alternative to the coordinates x and y on C. With a slight abuse of notation, if we view
f(z, z̄) = f(x, y) as a map from C→ C then the differential of f is

df =
∂f

∂x
dx+

∂f

∂y
dy =

∂f

∂z
dz +

∂f

∂z̄
dz̄. (46)

If f is holomorphic, the second term is absent and df = ∂fdz. In this case we say
that df is a differential form of type (1, 0). Similarly, the differential ∂̄g(z̄)dz̄ of an
antiholomorphic function g(z̄) is a differential form of type (0, 1). A holomorphic
function is one whose differential (or exterior derivative) is a 1-form of type (1, 0).
• Formula for derivative of a holomorphic function. Using the chain rule, the
derivative of f(z) may be written as

df(z)

dz
=
∂x

∂z

∂f

∂x
+
∂y

∂z

∂f

∂y
=

1

2
(fx − ify) =

1

2
(ux + vy) +

i

2
(vx − uy). (47)

3Till now, the symbol f ′(z) meant the term-by-term differentiation of a convergent power series. Now
we are, in effect, giving an alternate way of finding this derivative.
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If f is holomorphic, then the derivative may be written in several equivalent ways

f ′(z) = ux + ivx = −iuy + vy = ux − iuy = ivx + vy. (48)

• Holomorphic and complex analytic functions. The condition of holomorphy
∂̄f = 0 implies that f is a function of z and not z̄. A convergent power series in
z is automatically a holomorphic function. Conversely, it can be shown that a holo-
morphic function may be expanded in a convergent Taylor series around any point in
its domain of holomorphy. We will do this using the Cauchy contour integral formula
to solve the Cauchy-Riemann equations in §1.12. Thus, the concepts of complex an-
alyticity and holomorphy will be seen to coincide. For this reason, we will often use
the two terms interchangeably.
• Holomorphy and harmonic functions. A consequence of the Cauchy-Riemann
equations is that the real and imaginary parts u(x, y) and v(x, y) of a complex analytic
function f = u + iv are harmonic functions. In fact, assuming u and v are twice
continuously differentiable, the CR equations ux = vy and uy = −vx imply that
uxx = vxy = vyx = −uyy so that uxx + uyy = 0. Similarly, vxx + vyy = 0. The 2nd
order linear partial differential operator ∆ = ∂2

x + ∂2
y is called the Laplace operator.

A function annihilated by the Laplacian is called harmonic.
• Example. For example, consider the function f(z) = ez = ex+iy = ex cos y +
iex sin y. The real and imaginary parts are u = <f = ex cos y and v = =f =
ex sin y. We notice that uxx = u while uyy = −u, so that u is harmonic. Similarly,
vxx = v and vyy = −v so that ∆v = 0.
• Conjugate harmonic functions. We say that the real and imaginary parts of a
holomorphic function are a pair of conjugate harmonic functions.
•Derivative of a holomorphic function is again holomorphic. The Cauchy-Riemann
equations ensure that the derivative f ′(z) = ∂f of a holomorphic function is itself
holomorphic, provided u and v are C2 functions of x and y. In fact, ∂̄f ′(z) = ∂̄∂f =
∂∂̄f = 0. We have used the fact that for C2 functions, partial derivatives commute.
Thus, differentiation preserves holomorphy.

1.12 Cauchy’s integral theorem

• It is remarkable that the Cauchy-Riemann partial differential equations (subject to
suitable boundary conditions) may be explicitly solved via contour integration. This
is called the Cauchy integral formula. Let us see how this is done and how we can use
it.
• A smooth contour or curve on the complex plane is a map γ : [a, b] → C with
continuous derivatives of all orders. Here γ(t) = x(t) + iy(t) can be thought of as the
trajectory of a particle on the complex plane, parameterized by time. We will often
also consider piecewise smooth curves where the interval is broken up into a union of
nonoverlapping subintervals where the map is smooth. The image of such a curve in
C can have isolated ‘sharp corners’. A contour is simple if it does not intersect itself:
t 6= t′ must imply that γ(t) 6= γ(t′). A contour is closed if γ(a) = γ(b).
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• Given a complex-valued function f((x, y)), its integral along the smooth curve γ1 :
[a, b]→ C is denote

∫
γ1
fdz and defined as∫
γ1

fdz ≡
∫ b

a

f(γ1(t))
dγ1(t)

dt
dt (49)

For a piecewise smooth curve, we add up the contributions from each smooth segment.
•We would like to exploit Stokes’ theorem to know how this contour integral behaves
under a deformation of the contour holding the end points γ1(a) and γ1(b) fixed, when
f is a holomorphic function. To do so, suppose γ2 : [b, c] → C is another piecewise
smooth contour with the same end points (γ2(b) = γ1(a) and γ2(c) = γ1(b)), and
let γ = γ1 ∪ γ−1

2 be the closed contour where γ1 is traversed first followed by γ2

traversed in the opposite direction. For simplicity, we will assume that γ is a simple
closed contour that divides the complex plane into an interior Ω and an exterior (this
is guaranteed by the Jordan curve theorem). In particular ∂Ω = γ. Thus, we consider
the contour integral ∮

γ

fdz. (50)

We will view this contour integral as the line integral of a (complex-valued) vector
field A = Axx̂ + Ay ŷ (or corresponding one-form A = Axdx + Aydy) along the
curve γ(t) = (x(t), y(t)):∫

γ

A ≡
∫ c

a

(Axẋ+Ay ẏ)dt =

∫ c

a

A · dγ
dt

dt. (51)

Comparing with the complex contour integral (with γ(t) = x(t) + iy(t))∫
γ

fdz =

∫ c

a

(fẋ+ if ẏ)dt, (52)

we find that Ax = f and Ay = if . In other words, we have found a (complex-valued)
vector field whose line integral is the same as the contour integral of f .
• According to Stokes’ theorem,

∫
Σ

(∇×A) · dS =
∫
∂Σ
A · dl where Σ is a surface

(with infinitesimal area vector dS) and ∂Σ its boundary (with line element dl). Taking
Σ = Ω to be the above region on the plane, this may be written as∮

A · dγ =

∫
Ω

(∇×A) · ẑ dxdy or
∮
γ=∂Ω

A =

∫
Ω

dA. (53)

Here (∇×A) · ẑ = ∂xAy−∂yAx. On the other hand, dA is the differential or exterior
derivative of the 1-form A = Axdx+Aydy:

dA =

(
∂Ay
∂x
− ∂Ax

∂y

)
dx ∧ dy. (54)

In our case, putting Ax = f and Ay = if , we find

(∇×A) · ẑ = i∂xf − ∂yf = i(∂x + i∂y)f = −2∂̄f. (55)
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Similarly,
dA = (i∂xf − ∂yf) dx ∧ dy = −2∂̄f dx ∧ dy. (56)

We see that∇×A = 0 (or dA = 0) if and only if f is holomorphic (i.e., ∂̄f = 0). In
other words, the holomorphy of f is the curl-free nature of an associated planar vector
field.
• So if f is holomorphic,∮

γ=∂Ω

fdz =

∮
γ

A · dγ = −2

∫
Ω

∂̄f dxdy = 0 (57)

Thus, if f is holomorphic in the region Ω between the two curves, then we may deform
γ1 to γ2 without affecting the value of

∫
γ1
fdz.

• Cauchy’s integral theorem4 states that the contour integral
∮
fdz along a closed

curve γ vanishes if f is holomorphic on and inside the region bounded by γ.
• For instance,

∮
γ
zndz = 0 for n = 0, 1, 2, . . . and any closed curve γ in the complex

plane.
• The case n = −1 is an interesting exception. The function f = 1/z is holomorphic
everywhere except at the origin so we cannot apply Cauchy’s theorem to a contour
that encircles the origin. So we need to evaluate the integral by some other method.
Suppose γ is a contour that goes round the origin once counterclockwise. To facilitate
the integration, we may deform γ to the unit circle γ(t) = eit for 0 ≤ t ≤ 2π without
affecting the value of the integral (this freedom to deform follows from Cauchy’s
theorem, say by including a narrow ‘bridge’ between the two contours to create a new
closed contour that is simple and closed). Noting that γ̇ = ieitdt,∮

S1

dz

z
=

∫ 2π

0

eit

eit
idt = 2πi. (58)

The nice thing about the unit circle is that the integrand became a constant function of
t.
• On the other hand,

∮
γ
zndz = 0 for n = −2,−3, . . .. In these cases, we can use a

circular contour γ(t) = eit for which∮
S1

zndz =

∫ 2π

0

ieiteintdt =
ei(n+1)t

(n+ 1)

∣∣∣∣2π
0

=
e2πi(n+1) − 1

n+ 1
= 0. (59)

•We may summarize these results using the Kronecker delta:

1

2πi

∮
γ

dz

zn
= δn,1. (60)

4Morera’s theorem furnishes, in a sense, a converse to Cauchy’s theorem. Suppose f(z) is a continuous
function in some connected open domain D (it need not be simply connected) and suppose

∮
γ f = 0

for every piecewise continuous closed contour γ in D. Then Morera’s theorem tells us that f must be
holomorphic in D.
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Notice that in this example, among poles, it is only the simple pole that contributes
nontrivially to the contour integral. Recalling that the coefficient of 1/z is called the
residue in a Laurent series representation of a function around z = 0, we may also
write ∮

γ

dz

zn
= 2πi Resz=0

(
1

zn

)
. (61)

Here γ is a contour that encloses the origin and winds around it once.
• Winding number. If the contour went round the origin n times (for some integer
n), e.g., γn(t) = eint for 0 ≤ t ≤ 2π, then∮

γn

dz

z
= 2πin (62)

We say that the winding number of the curve γn around the origin (or any point in the
interior of the unit disk) is n.
• On the other hand, if a curve γ does not enclose the point z0, then∮

γ

dz

z − z0
= 0 (63)

since 1/(z − z0) is holomorphic on the contour and in the region within it.
• Solution of CR equations via Cauchy integral formula. The Cauchy integral
theorem allows us to solve the Cauchy-Riemann equations for a function holomorphic
in a region D, given the values of the function on the boundary ∂D = γ. The solution
is expressed as a contour integral. To see this, suppose f is holomorphic in the region
D enclosed by the closed curve γ = ∂D and let z0 lie in the interior of D. Then
f(z)−f(z0)

z−z0 is also holomorphic in D. Despite appearances, z0 is not a singular point
since, by Taylor’s theorem5 for the differentiable function f(z), f(z)−f(z0) vanishes
at least as fast at z − z0. Thus∮

γ

f(z)− f(z0)

z − z0
dz = 0 or f(z0)

∮
γ

dz

z − z0
=

∮
γ

f(z)

z − z0
dz. (64)

Hence we arrive at the promised integral expression for f(z0) when z0 lies inside D:

f(z0) =
1

2πi

∮
γ

f(w)

w − z0
dw. (65)

This formula is sometimes called the Cauchy transform. It gives an integral repre-
sentation of a holomorphic function in the interior of a region in terms of the value of
the function on the boundary. It is an example of a linear integral transform since the
RHS depends linearly on f .

5In more detail, f(z) = f(z0) + f ′(z0)(z − z0) + r(z)(z − z0) where r(z)→ 0 as z → z0.
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• Cauchy differentiation formula. In fact, we can get integral expressions for all the
derivatives of f at z0 by differentiating under the integral sign (this is allowed since
the integrands at each stage are C1 functions of both w and z):

f ′(z0) =
1

2πi

∮
γ

f(w)dw

(w − z0)2
, · · · , f (n)(z0) =

n!

2πi

∮
γ

f(w)dw

(w − z0)n+1
. (66)

• Analyticity from holomorphy. On the other hand, we can use (65) to obtain a
convergent power series for f within the region D where it is holomorphic. We write
(65) as

f(z) =
1

2πi

∮
γ

f(w)dw

w − z0 − (z − z0)
. (67)

Expanding (w − z0 − (z − z0))−1 in a power series,

1

w − z0 − (z − z0)
=

1

w − z0

[
1 +

z − z0

w − z0
+

(
z − z0

w − z0

)2

+ · · ·

]
(68)

This series is absolutely convergent as long as |z − z0| < |w − z0|, i.e., provided z
lies within a disc centered at z0 that lies within D. Inserting this series in (67) and
exchanging the order of integration and summation (which is justified since we have
uniform convergence6 in w) we get

f(z) =
1

2πi

∮
γ

f(w)dw

w − z0
+
z − z0

2πi

∮
γ

f(w)dw

(w − z0)2
+

(z − z0)2

2πi

∮
γ

f(w)dw

(w − z0)3
+ · · · .

(69)
Thus we have a convergent power series for f(z) around any z0 ∈ D. It follows that
a holomorphic function is also complex analytic in the domain of holomorphy.
• Comparing with the Taylor series, we recover the Cauchy differentiation formulas
(66) for the derivatives of f at z0.
• Summing up, we showed that an analytic function is automatically holomorphic, as
it is annihilated by ∂̄. Then we showed that holomorphy implies the Cauchy integral
formula. Finally, we showed that the Cauchy integral formula implies a convergent
power series expansion (analyticity). Thus, we have explained that the three concepts:
(a) analyticity, (b) holomorphy and (c) admitting a Cauchy contour integral formula,
all describe the same class of functions. This is the class of analytic or holomorphic
functions that we will work with7.

1.13 Cauchy residue theorem and contour integrals

• Cauchy’s Residue Theorem. Suppose γ is a simple closed contour that lies in a
region where the function f(z) is holomorphic except for isolated poles and essential

6Suppose g1, g2, . . . is a sequence of functions in a region Ω such that their sum
∑∞

1 gn(z) converges
uniformly to a function g(z) in Ω. Then the contour integral of their sum is the same as the sum of their
contour integrals along any piecewise smooth curve γ lying in Ω. Thus, uniform convergence allows us to
perform term by term integration.

7Note that this also means that antiholomorphic functions are the same as antianalytic functions.
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singularities that do not lie on γ. If γ encloses the singularities at z1, z2, . . . , zn and
goes round them once counterclockwise, then∮

f(z)dz = 2πi

n∑
k=1

Resz=zkf(z). (70)

The same formula applies to a meromorphic function where the number of poles en-
closed may be infinite and the sum on the RHS may be an infinite sum. The formula
is established by deforming the contour so that it it looks like a bunch of back and
forth tracks on bridges between small circles around each of the isolated singularities.
The contributions from the back and forth tracks cancel leaving small circles, each of
which contributes to the contour integral as in the residue formula (61).
• The residue theorem is often applied to evaluate integrals. Three interesting classes
of functions may be identified: rational functions integrated over the real line, peri-
odic trigonometric functions over one period and more generally contour integrals of
meromorphic functions (such as built from trigonometric and rational functions).
• Real integral of a rational function. For example, suppose we wish to evaluate
the integral over the real line, of a rational function f(x) (such as the Lorentzian
1/(x2 + a2)) with no real poles. This may be done by ‘completing’ the real interval
(−R,R) with a semicircular contourReiθ in the upper (0 ≤ θ ≤ π) or lower (0 ≥ θ ≥
−π) half planes to get a closed (counterclockwise/clockwise) contour that encloses all
the poles zk in the upper/lower half plane. Assuming the function decays at least as
fast as 1/|z| as |z| → ∞, the semicircular contour does not contribute to the integral
in the limit R→∞. We thus arrive at∫ ∞

−∞
f(x)dx = 2πi

∑
=zk>0

Resz=zkf(z) = −2πi
∑
=zk<0

Resz=zkf(z). (71)

• Examples.

1.
∫∞
−∞

dx
x2+1 = π, since (z2 +1)−1 = 1/(z+ i)(z− i) has simple poles at z = ±i

with residues ±(1/2i).

2.
∫∞
∞

dx
(x2+a2)(x2+b2) = π

ab(a+b) for a, b > 0. The function has simple poles at
±ia and ±ib with residues ±i/[2a(a2 − b2)] and ±i/[2b(b2 − a2)]. Adding
2πi× the residues, say in the upper half plane, we get the given result.

• Integral of meromorphic function (such as those built from exponentials and poly-
nomials), say over the real line. One or other formula in (71) usually applies in this
case, provided we close the contour in the half plane where the integrand decays as
|z| → ∞. If it decays in neither half plane, it may be possible to split the integrand
into summands to which (71) applies.
• Examples.

1.
∫∞
∞

eix

1+x2 dx = π/e. Here, eiz/(1 + z2) decays exponentially (e−=z) as we let
R → ∞ at any point on the contour z = Reiθ for 0 < θ < π in the upper half
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plane. It has a simple pole at z = i with residue 1/2ie. Thus, upon closing the
contour in the upper half plane, the integral evaluates to 2πi/2ie = π/e.

2.
∫∞
∞

e−ix

1+x2 dx = π/e. Here, we need to close the contour in the lower half plane
resulting in a clockwise contour. The residue at z = −i is −1/2ie. The inte-
gral evaluates to π/e. This is not a surprise since the integral is the complex
conjugate of the previous one.

3.
∫∞
∞

cos x
1+x2 dx = π

e . Here, cos z/(1 + z2) has simple poles at z = ±i but cos z
grows exponentially in both the upper and half planes. So a common contour
does not work. Instead, we split the integrand as the average of e±ix/(1 + x2)
(or the real part of either) and find that the integral is the average of the previous
two results.

4.
∫
γ
ez

zn = 2πi Resz=0
ez

zn = 2πi
(n−1)! where γ is any closed contour that goes round

the origin once counterclockwise. This is a very useful formula, we will return
to it when we study the Gamma function.

• The integral of a periodic trigonometric function g(θ) over one period, say 0 ≤
θ ≤ 2π in the real angular variable θ can often be converted via the substitution
z = eiθ to the integral of a meromorphic function f(z) around the unit circle |z| = 1
counterclockwise.
• For example, consider the integral

I =

∫ 2π

0

dθ

a− b cos θ
for a > b ≥ 0. (72)

Substituting cos θ = 1
2 (z + 1/z) and using dθ = dz

iz , we get

I =

∮
|z|=1

dz

iz(a− (b/2)(z + 1/z))
= 2i

∮
|z|=1

dz

bz2 − 2az + b
(73)

Now, bz2 − 2az + b = b(z − z−)(z − z+) where

z± = c±
√
c2 − 1 with 0 < z− < 1 < z+ for c =

a

b
> 1. (74)

Thus, the pole at z = z− is the only one that contributes:

I = (2πi)(2i) Resz=z−
1

b(z − z−)(z − z+)
=

4π

b(z+ − z−)
=

2π√
a2 − b2

. (75)

1.13.1 Residue at infinity

• Residue at z = ∞. We defined the residue of an analytic function f at an isolated
singularity z0 ∈ C (pole or essential singularity) to be the coefficient of the 1/(z−z0)
term in the Laurent series expansion around z0. The residue at a regular point is
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postulated to vanish. By Cauchy’s theorem (70), the residue at z0 is expressible as a
contour integral around a closed curve γ that goes round the singularity (and no other
singularity) once counterclockwise

Resz=z0f(z) =
1

2πi

∮
γ

f(z) dz. (76)

• Sometimes, contour integrals may be evaluated in a simpler way by viewing the
contour as going round the point at infinity. In this context, it is noteworthy that the
contour z = eit for 0 ≤ t ≤ 2π is counterclockwise with respect to an interior point
(such as z = 0) but is clockwise when viewed from infinity.
• Suppose an analytic function f is regular at z = ∞ or has an isolated pole or
essential singularity at z =∞. The residue at infinity is obtained by making a change
of variable to w = 1/z, dw = −(1/z2)dz in (76) and considering a contour Γ that
encircles the pointw = 0 counter clockwise but does not enclose any pointwk = 1/zk
where zk is a finite singular point of f :

Resz=∞f(z) = − 1

2πi

∮
Γ

f(1/w)

w2
dw. (77)

•We observe that the residue at z =∞ is the coefficient of 1/w in the Laurent series
for − f(1/w)

w2 around w = 0. Note the factor of −1/w2 coming from the integration
element.
•We see that the function f(z) = 1/z, has the nonzero residue−1 at z =∞, although
the function is regular there.
• On the other hand, the residue of f(z) = z vanishes at z =∞ although the function
has a simple pole there.
• Notice that the definition of the residue at infinity does not depend on the behavior
of the function outside a neighborhood of infinity. In particular, the function may
have nonisolated singularities (like branch cuts) in the finite complex plane without
affecting the residue at infinity. However, in some cases, the residue at infinity may be
related to the singularities of the function in the finite complex plane.
• If f has only isolated poles or essential singularities in the extended complex plane,
we may express the residue at z =∞ in terms of an integral along a counterclockwise
contour Γ̃ that encloses all its singularities zk in the finite complex z plane:

Resz=∞f(z) = − 1

2πi

∮
Γ̃

f(z) dz = −
∑
k

Resz=zkf(z) (78)

The minus sign ensures that this formula agrees with (77) where the contour was
counterclockwise when viewed from the point at infinity. Alternatively, upon includ-
ing the minus sign, we can view this contour as going counterclockwise around the
point z =∞ and not enclosing any other singularities of f .
• Under these circumstances, the residue at infinity of f is simply the negative of the
sum of residues at isolated singularities in the finite complex plane. In particular, if f

28



is entire, then its residue at z =∞ vanishes even though f must be singular at infinity
if it is not a constant. This is reasonable since a contour that encircles the point at
infinity can be shrunk to a point in the finite complex plane without encountering any
singularities.

1.13.2 Summation of series using residue calculus

•We wish to evaluate the sum S =
∑∞
n=1 sn. Suppose we can realize the summands

sn as the residues of some function f(z) that has poles at n = 1, 2, 3, . . .. Then
the series may be written as (1/2πi) times the integral of f(z) around contours that
encircle the poles. In favorable cases, by deforming the contour, say to go around a
finite number of other poles of f , we may be able to evaluate the integral more easily.
• Recall (from Assignment 3) that the poles of π cotπz are simple and occur at every
integer z = n with residue equal to one. To get a desired residue at these integer
points, we may multiply π cotπz by a suitable function that is regular and nonvan-
ishing there. The contour integration method is particularly effective if sn is an even
function of n, so that we may write S = 1

2

∑
n6=0 sn. Otherwise, we might end up ex-

pressing one infinite sum in terms of another infinite sum. The power of this method,
when it works, is that it helps us convert an infinite sum into a finite sum.
• Let us consider the well known series S =

∑∞
n=1

1
n2 . Its convergence is ensured by

the integral test. We now notice that

1

n2
= Resz=n

π cotπz

z2
for integer n 6= 0. (79)

Putting f(z) = π cotπz
z2 , it follows that

S =
1

2

∑
n 6=0

1

n2
=

1

2

∑
n 6=0

Resz=nf(z) =
1

2

1

2πi

∑
n6=0

∮
γn

π cotπz

z2
dz. (80)

Here, γn is a small circular contour winding once counterclockwise around the pole
at z = n and enclosing no other singularities of f . By deforming these contours, we
may merge them into a pair of counterclockwise hairpin contours, one on the right
half plane enclosing the poles at z = 1, 2, 3, . . . and another on the left half plane
enclosing the poles at z = −1,−2,−3, . . .. These hairpin contours are shaped so that
their legs asymptotically approach straight lines at constant angles±θ0,∓θ0+π where
0 < θ0 < π/2 is any convenient positive angle. Next, we close these contours in the
upper and lower half planes using large circular arcs to get a new hourglass/damaru
(with bulging top and bottom) shaped contour γ that encloses only one pole of f : the
pole of order three at z = 0. The circular contours do not contribute to the integral
since cotπz is bounded (approaches one in magnitude) as =z → ±∞ (show this!) so
that for z = Reiθ, f(z)dz ∼ πRdθ/R2 in magnitude as R → ∞. The integrals over
−θ0 + π < θ < θ0 and −θ0 > θ > θ0 − π both vanish as R → 0. By Cauchy’s
residue theorem,

S = −1

2

1

2πi

∮
γ

π cotπz

z2
dz = −1

2
Resz=0

π cotπz

z2
. (81)
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Now, since π cotπz is an odd function with a simple pole at the origin with unit
residue, we have the Laurent expansion

π cotπz =
1

z
+ a1z + a3z

3 + · · · or
π cotπz

z2
=

1

z3
+
a1

z
+ a3z + · · · . (82)

Thus, the residue of f at z = 0 is a1 and S = − 1
2a1. It remains to find the linear Taylor

coefficient a1 of π cotπz. By repeated differentiation, we find tan′ = sec2, tan′′ =
2 tan sec2 and tan′′′ = 2(sec2 +3 tan2 sec2) so that tan′′′(0) = 2 and

tan z = z +
2z3

3!
+ · · · . (83)

It follows that

cot z =
1

z

(
1 +

z2

3
+ · · ·

)−1

=
1

z
− z

3
+O(z3). (84)

Consequently,

π cotπz =
1

z
− π2

3
z +O(z3), (85)

so that a1 = −π2/3. We conclude that S =
∑∞
n=1

1
n2 = − 1

2a1 = π2/6. This is
a famous result (Basel problem) originally due to Euler (1734), who obtained it in a
different way (using an infinite product representation of the entire sine function).
• A similar technique can be applied to sum series such as

∑∞
n=1

1
n2+a2 using the

function f(z) = (π cotπz)/(z2 + a2).
• The technique also extends to alternating sign series. In this case, we replace
π cotπz by π cosecπz, whose only poles are simple poles at the integers z = n
with residues (−1)n.

1.14 Cauchy principal value and the Hilbert transform

• So far, in contour integrals
∫
γ
fdz, our integrands were regular on the contour of

integration. If f has a simple pole along the contour, then the integral diverges in the
Riemann sense. However, it is still possible to assign a finite Cauchy principal value to
such singular integrals via a symmetric limiting procedure. For concreteness, suppose
the integral is over a real interval [a, b] and f has a simple pole at x = c, then we
define

P
∫ b

a

f(x)dx = lim
ε→0+

[∫ c−ε

a

f(x)dx+

∫ b

c+ε

f(x)dx

]
. (86)

Loosely speaking, the positive and negative infinities from contributions on either side
of the pole cancel out to give a finite answer. This works for simple poles but generally
not for higher order poles.
• Cauchy principal value integrals may be evaluated using residue calculus by a judi-
cious choice of contour before taking the appropriate limit.
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• Let us consider an example

I = P
∫ ∞
−∞

eiz

z
dz. (87)

We notice that |eiz| = |ei<ze−=z| = e−=z decays exponentially as =z → ∞. Thus,
we will close the contour on the upper half plane: Reiθ for 0 ≤ θ ≤ π. In the limit
R → ∞, this semicircular arc does not contribute. However, the integrand eiz/z has
a simple pole at z = 0, which lies on the contour along the real axis. To implement
the Cauchy principal value prescription we will skirt this pole by taking a detour in
the upper half plane made of a semicircular arc of radius ε: z = εeiθ with θ running
from π to 0. The resulting closed contour consisting of the semicircular arcs of radius
ε clockwise and R counterclockwise (when viewed from z = 0) and real intervals
[−R,−ε] and [ε, R] does not enclose any poles of eiz/z. Thus, by the Cauchy integral
theorem,

P
∫ ∞
−∞

eiz

z
dz + lim

ε→0

∫ 0

π

iεeiθdθ
exp (iεeiθ)

εeiθ
= 0. (88)

In the limit ε→ 0, the second integral is simply −iπ. Hence, we get

I =

∫ ∞
−∞

eiz

z
dz = iπ. (89)

We may use this result to evaluate the Dirichlet integral∫ ∞
0

sinx

x
dx =

1

2
=P

∫ ∞
−∞

eiz

z
dz =

π

2
. (90)

• Another interesting consequence is the Fourier transform of the ‘Cauchy kernel’
ε(x) = 1/πx:

ε̃(k) = P
∫ ∞
−∞

e−ikx

πx
dx = −i sgn k, (91)

where sgn k is ±1 for k > 0 and k < 0 while sgn 0 = 0. To see how we arrive at
this, we first observe that ε̃(0) = 0 as the integrand is odd, resulting in the principal
value integral vanishing. Next, notice the reality property ε̃(−k) = ε̃(k)∗. It therefore
suffices to consider k > 0 and put z = kx. Then dz/z = (kdx)/kx = dx/x so that

ε̃(k) = P
∫ ∞
−∞

e−iz

πz
dz =

I∗

π
= −i for k > 0. (92)

The reality property then implies that ε̃(k) = i for k < 0. Combining, we get ε̃(k) =
−i sgn k. We will make use of this result shortly in discussing the Hilbert transform.
• Indenting and completing the contour using semicircular arcs is a technical tool to
enable us to use Cauchy’s theorem to evaluate the principal value integral. These
are not part of the definition of the Cauchy principal value given in (86), which only
involves the symmetric limit of the integrals along the two horizontal intervals. In
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particular, we could evaluate the Cauchy principal value by closing the contour using
a small arc below the pole at z = 0.
• Hilbert transform. The Hilbert transform is a linear integral transform of a real-
valued function u(x) of a real variable x. It is defined as the Cauchy principal value
of the convolution of u(x) with the Cauchy kernel 1/πx:

(Hu)(x) =
1

π
P
∫ ∞
−∞

u(y)

x− y
dy. (93)

Although we do not discuss this aspect here, the Hilbert transform is important in
complex analysis because it relates the real and imaginary parts of a complex analytic
function. More precisely, if u(x) is the boundary value along the real axis of the
real part of a function f(z) analytic in the upper half plane, then (Hu)(x) is the
corresponding boundary value of the imaginary part =f(z = x+ i · 0).
• We should think of H as a linear operator that takes as input a vector u and trans-
forms it into the vector Hu. The vectors u and Hu live in suitable function spaces
like L2(R). A linear transformation A (u 7→ Au) on a finite dimensional vector space
with an inner product can be expressed in a basis ei in terms of its matrix elements
Aij = (ei, Aej) with (Au)i =

∑
j Aijuj . Being an integral transform, we may think

of the Hilbert transform in terms of its integral kernel ε(x, y), which are the matrix
elements of H in the position basis:

(Hu)(x) = P
∫ ∞
−∞

ε(x, y)u(y)dy where ε(x, y) =
1

π

1

x− y
. (94)

In Dirac notation, ε(x, y) = 〈x|H|y〉 where |x〉 and |y〉 are position eigenstates with
eigenvalues x and y. Evidently, the operator is not diagonal in position space: its
matrix elements are nonzero even if x 6= y. However, since the kernel is translation
invariant (depends on x and y only through their difference, so that x 7→ x + a and
y 7→ y+a leaves ε unchanged), we might expect it to be simpler (diagonal) in Fourier
or wave number space.
• Thus, we consider the Fourier transform of the kernel8:

ε̃(k, l) = P
∫∫

dxdyei(kx−ly)ε(x, y) = P
∫
dxdyei(kx−ly) 1

π

1

x− y
= P

∫∫
dxdy eik(x−y)ei(k−l)y

1

π(x− y)
. (96)

8In Dirac notation, ε̃(k, l) = 〈k|H|l〉 where |k〉 and |l〉 are states of definite wave number. The relative
sign i(kx − ly) in the Fourier transform arises since we must take a hermitian adjoint to go from a ket
vector to the dual bra vector:

ε̃(k, l) = 〈k|H|l〉 =

∫
〈k|x〉〈x|H|y〉〈y|l〉dxdy =

∫
eikxε(x, y)e−ilydxdy. (95)

Here, we have used the completeness relation or resolution of the identity in the position basis∫∞
−∞ |x〉〈x|dx = I which says that the sum of the projections to the position eigenstates is the identity

operator.
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Now we change variable from−∞ < x <∞ to z = x−y, which has the same range,

ε̃(k, l) =

∫ ∞
−∞

ei(k−l)ydy P
∫ ∞
−∞

dz
eikz

πz
= 2πδ(k − l) i sgn k. (97)

We used the Fourier representation of the Dirac delta function and the Fourier trans-
form of the Cauchy kernel (91). Note that 2πδ(k − l) are the matrix elements 〈k|I|l〉
of the identity operator in the momentum basis. As expected, the kernel of the Hilbert
transform is diagonal in wave number space. Since the diagonal entries are purely
imaginary, this is the kernel of an antihermitian or skew-adjoint operator. It is a mul-
tiplication operator. The multiplier is i sgn k. Thus, the amplitude of a positive wave
number (k > 0) mode ũ(k) is multiplied by i while negative wave number modes
(k < 0) are multiplied by −i.
• Since the diagonal entries of the Hilbert transform kernel in Fourier space have a
common value for k < 0 and reverse sign for k > 0, ε̃(k, l) can be used to model the
Dirac vacuum (in null or light cone coordinates) where all negative momentum states
are filled and positive momentum states are empty (more on this shortly).
• In fact, the Hilbert transform kernel squares to the negative identity. This is again
possible to see, at least formally, in Fourier space9. Indeed,

ε̃2(k,m) =

∫
ε̃(k, l)ε̃(l,m)

dl

2π
=

∫
2πi sgn (k)δ(k − l)2πi sgn (l)δ(l −m)

dl

2π
= −2πδ(k −m) sgn k sgnm = −2πδ(k −m) = −〈k|I|l〉. (98)

In position space, this means

(H(Hu))(x) = −u(x). (99)

• Suppose v(x) = (Hu)(x), then (Hv)(x) = −u(x). We say that u and v form a
Hilbert transform pair.
• The quadratic condition H2 = −I can be used to encode the Pauli principle for a
system of many fermions (like electrons or quarks). It can be rewritten as the condition
that the ‘density matrix’ ρ = 1

2 (I + iH) is a hermitian (symmetric) operator that is
a projection: ρ2 = ρ. Since the eigenvalues of ρ may be interpreted as occupation
numbers of states, there can either be zero or one fermion in each state of definite
momentum, as required by the Pauli principle. In fact, we see that ρ is diagonal in the
Fourier basis and its eigenvalues are one for k < 0 and zero for k > 0. We say that
the sea of negative wavenumber states are filled and the positive ones empty. This is
called the Dirac vacuum.

9For k = m 6= 0, sgn k sgnm = 1. Some further justification is needed when both k and m are zero.
In position space we would need to show that P

∫
ε(x, y)ε(y, z)dy = δ(x − z). Use contour integration

to show that the integral vanishes for x 6= z.
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1.15 Sochotski-Plemelj (iε) formula and discontinuity in the Cauchy transform

• Let us consider the function g of the complex variable z defined by an integral over
the real interval [a, b]:

g(z) =

∫ b

a

f(x)

x− z
dx, (100)

for some continuous function f of the real variable x. Here, g is called the Cauchy
transform of f . Notice that this is not a principal value integral. For reasons similar
to those that appeared in the discussion surrounding (69), the integral converges and
defines an analytic function of the complex variable z away from the real interval
[a, b]. We call the real segment [a, b] a branch cut of g (this is simply a name for now,
more on branch cuts later). It is natural to ask how g behaves as one approaches a point
x0 ∈ [a, b] from above or below. In fact, the discontinuity of g across the branch cut
is an interesting quantity that arises in many physics and mathematics problems. For
instance, the discontinuity of the resolvent of the Hamiltonian across the branch cut
along the continuous spectrum is related to the density of energy states. We will now
derive a formula for the behavior of g as one approaches the cut from the upper/lower
half planes. Such a formula was obtained and used by Sokhotsky and Plemelj in a
related setup where the real interval is replaced by a closed contour in the complex
plane and the upper and lower half planes are replaced by the regions outside and
inside the contour.
• The iε prescription for the Cauchy transform. Suppose f(x) is an analytic func-
tion10 on the real interval [a, b] that does not vanish at any x0 ∈ [a, b]. Then for any
such x0, f(x)/(x − x0) has a simple pole at x0. As it stands, the Cauchy transform∫ b
a

f(x)
x−x0

is not defined for x0 ∈ [a, b]. One way of making sense of this integral was

via the Cauchy principal value P
∫ b
a

f(x)
x−x0

dx for a < x0 < b, where a symmetric limit
from either side of the simple pole was taken. There is another way of ‘regularizing’
the corresponding singular integral11. We modify the real contour of integration near
x0 via a semicircular arc of small radius ε > 0 in the lower or upper half plane, thereby
skirting the pole at x0. Since f is analytic at every point of the interval, it must also be
analytic in a small neighborhood of the interval in the complex plane. The resulting
integrals are denoted

g(x0 ± iε) =

∫ b

a

f(x)

x− (x0 ± iε)
dx. (101)

The notation x0 ± iε which literally means that the pole at x0 has been shifted to the
upper or lower half planes is often used to convey that the contour of integration has
been modified to go around the pole at x0 via a semicircular arc of radius ε centered

10Analyticity of f may be replaced by a weaker condition such as C1 or C0 for most of the results in
this section.

11Regularization is a process by which a divergent quantity is made finite by changing its definition
through a regulator, here called ε. One then studies what happens when the regulator is removed (here by
taking ε→ 0) and asks if the limit is finite and if so whether it depends on how the regulator is removed.
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at x0 in the lower or upper half planes respectively. Whether one indents the contour
or shifts the pole, the limiting answers are the same. Henceforth, we will imagine
indenting the contours. The horizontal portions of both these integrals tend to the
Cauchy principal value as ε → 0. However, the limiting values of the semicircular
integrals are not the same. Indeed, putting z = x0 + εeiθ (where θ ∈ [π, 2π] for the
lower semicircle and θ ∈ [π, 0] for the upper semicircle), we find using dz/(z−x0) =
iεeiθdθ/(εeiθ) = idθ that

lim
ε→0

g(x0 ± iε) = lim
ε→0

∫ b

a

f(x)

x− x0 ∓ iε
dx = P

∫ b

a

f(x)

x− x0
dx± iπf(x0). (102)

The first term on the RHS involves the Cauchy principal value integral (−π times
the Hilbert transform of f ); it does not depend on how the contour was modified in
the vicinity of the pole. The second term on the RHS retains a memory of whether
the contour went below/above the pole. It is a real version of the Sokhotsky-Plemelj
formula where the integration is over a simple closed contour in the complex plane
and one considers the limiting values of g as one approaches the contour from inside
or outside. This result may also be written in a short-hand notation:

lim
ε→0

1

x− (x0 ± iε)
= P

(
1

x− x0

)
± iπδ(x− x0), (103)

Here, δ(x − x0) is the Dirac delta distribution supported at x0. This relation among
distributions is to be understood as applicable upon multiplying by a function f(x)
and integrating over a real interval containing x0. We may say that the iε prescrip-
tion relates the integral transforms obtained from convolution by the Cauchy principal
value and Dirac delta kernels.
• As noted, g(x0± iε) do not have a common limit as ε→ 0. In fact, the difference is
given by

lim
ε→0

[g(x0 + iε)− g(x0 − iε)] = 2πif(x0), (104)

since the Cauchy principal value cancels out. This difference is simply the disconti-
nuity in the Cauchy transform g(z) across its branch cut [a, b].

1.16 Multivalued functions, branch cuts and Riemann surfaces

• arg z as a multivalued function. We met our first example of a multivalued func-
tion quite early: the argument of a complex number arg z. At the point z = x + iy,
with |z| 6= 0, arg z is any angle θ such that x = |z| cos θ and y = |z| sin θ. Evidently,
if arg z = θ is one such angle, then so is θ+ 2nπ for any integer n. We say that arg z
is multivalued and that it has infinitely many branches labelled by the integers n. The
origin is clearly singular, we could assign any value for θ at the origin and the above
equations would be satisfied. Moreover, if we follow a simple closed curve coun-
terclockwise around the origin, arg z does not return to its initially assigned value,
but a value that is 2π larger. We call the origin a branch point. More generally, a
branch point of a function is one with the property that the function does not return to
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its initially assigned value upon going round it via an arbitrarily small simple closed
contour. In particular, the function cannot be defined as a continuous function in any
neighborhood of the branch point. Points on the complex plane other than the origin
are not branch points of arg z. The arg z function can be defined as a continuous
function in a small disk around any z0 6= 0. On the other hand, the point at infinity
z = ∞ is another branch point of arg z since arg(1/w) displays a similar feature
around w = 0, which is seen by putting w = |w|eiφ.

We could eliminate the multivalued nature of arg z by choosing the ‘branch’ where
−π < arg z < π and call it the principal branch Arg z. Notice that the principal
branch Arg z is discontinuous across the negative real axis: limε→0± Arg (x + iε) =
±π for x < 0. We call the negative real axis a branch cut. We observe that in this
example, the branch cut joins the two branch points.
• The logarithm and its Riemann surface. We will be interested in multivalued
holomorphic functions. It is easy to see that arg z is not a holomorphic function. It is
real-valued and nonconstant (ux, uy 6= 0, vx = vy ≡ 0) and therefore cannot satisfy
the Cauchy-Riemann equations. However, one verifies that arg z = arctan(y/x) is
harmonic. Thus, it may be realized12 as, say, the imaginary part v(x, y) of a holomor-
phic function f = u + iv. Putting v(x, y) = arctan(y/x) we find vy = x

x2+y2 and
vx = − y

x2+y2 . Thus

ux = vy =
x

x2 + y2
and uy = −vx =

y

x2 + y2
. (105)

Now, we see that the function u(x, y) = 1
2 log(x2 + y2) has precisely these partial

derivatives. So we have found the harmonic conjugate of v = arg z, it is u = ln |z|,
which is uniquely defined at all points in the complex plane punctured at the origin.
Thus, we are led to consider the holomorphic function log z ≡ ln |z|+ i arg z, which
inherits the multivalued features of arg z. In particular, z = 0 is a branch point:
log z increases by 2πi when we go once counterclockwise round the origin. The same
applies to z =∞ if we consider the function g(w) = log(1/w) = − logw and follow
a contour counterclockwise around the origin of the w plane: g(w) decreases by 2πi.
On the other hand, upon following a small closed curve that does not enclose z = 0
or w = 0, log z returns to its initial value. So log z has only two branch points. If
we ‘cut out’ a curve (called the branch cut) joining the branch points z = 0,∞, then
we may define a singlevalued holomorphic function on the complement. For instance,
following the same convention as for arg z, we take log z to have a branch cut along
the negative real axis. We can then define a sequence of functions labelled by the
integers, each of which is singlevalued in the complex plane with the negative real
axis cut out:

logn z = ln |z|+ i(θ + 2nπ) for − π < θ < π and |z| > 0. (106)

12There is another way of constructing a holomorphic function from v = arg z. Since it is harmonic,
∂̄∂v = 0, so ∂v must be holomorphic. In our case, ∂v = 1

2
(∂x − i∂y) arctan(y/x) = − 1

2
(y/(x2 +

y2) + ix/(x2 + y2)) = −i/2z. However, the resulting holomorphic function −i/2z is singlevalued in
this case.
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Here logn(z) is a holomorphic function on the cut complex plane with a discontinuous
increase of 2πi as one crosses the cut from below to above. The part of the plane just
above the cut (θ = π − δ) is called the upper lip while the part just below the cut
(θ = −π + δ) is the lower lip. Interestingly, there is no such discontinuity between
the values of logn and logn+1 as one crosses the cut:

lim
δ→0+

logn(|z|, π − δ) = lim
δ→0+

logn+1(|z|,−π + δ) = ln |z|+ 2nπ + iπ. (107)

It is as though these functions are part of a ‘larger’ continuous (in fact analytic) func-
tion. Riemann’s idea was to assemble all these functions on the cut complex plane
into one function on a larger surface, now called a Riemann surface. Thus, the multi-
valued logarithm becomes singlevalued when considered as a function on its Riemann
surface Σ. The Riemann surface of the logarithm is obtained by stacking the cut com-
plex planes (‘sheets’ labeled by n) one on top of the other with the upper lip of the
nth sheet glued to the lower lip of the n + 1st sheet. The Riemann surface is shaped
like a helix: a spiral staircase, with the central pillar shrunk vertically to a point, the
branch point at the origin. The Riemann surface of the logarithm is an infinite sheeted
cover13 of the punctured complex plane. Sketch it. The function logn is viewed as a
singlevalued function on the nth sheet. It is called the nth branch of the logarithm.
Moreover, log0 is designated the principal branch. The branch points at z = 0 and
z = ∞ are singular points of the logarithm, viewed as an analytic function on its
Riemann surface. However, the branch cut singularity has been dispensed with. Upon
making a counterclockwise circuit around the origin, we ascend from one Riemann
sheet to the next. A branch point is said to be of order k = 0, 1, 2, 3, · · · if upon
making a minimum of k+ 1 complete cycles around it counterclockwise, the function
returns to its original value. The logarithmic branch points at z = 0 and z =∞ are
of infinite order. We call them transcendental branch points.
• There are multivalued analytic functions that have branch points of finite order,
where the corresponding Riemann surface has finitely many sheets. Examples are
provided by algebraic functions such as f(z) = z1/2 or z1/3 which have so-called
algebraic branch points.
• The square-root function f(z) =

√
z and its Riemann surface. We are familiar

with the possibility of two distinct square-roots (that differ by a sign) for a complex
number other than zero. Putting z = reiθ where r > 0 and say, 0 ≤ θ < 2π, we
see that f1(z) =

√
reiθ/2 and f2(z) = −

√
reiθ/2 =

√
rei(θ+2π)/2 are both possible

square-roots. Thus, f(z) =
√
z is a multivalued (actually double-valued) function.

Moreover, if we follow a curve around the origin once counterclockwise, we see that
both f1 and f2 return to the negative of their initial values: fj(r, θ + 2π) = −fj(r, θ)
for j = 1, 2. Thus, z = 0 is a branch point. In a similar fashion, z = ∞ is also a
branch point. Putting w = 1/z = reiθ, g(w) = f(1/w) = 1√

r
e−iθ/2 has the same

13This means there is a covering map or projection π from the Riemann surface Σ to the complex plane
punctured at the origin C∗ (called the base). The projection π : Σ→ C∗ has the property that every point
z ∈ C∗ in the base, has an open disk Dz around it whose inverse image (preimage) under π is a disjoint
union of open disk-like neighbourhoods Dnz (for n ∈ Z) in Σ, one on each sheet, with π : Dnz → Dz
being an invertible continuous map when restricted to Dnz for each n ∈ Z.
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sign reversal feature when a curve is followed once around w = 0. There are no other
branch points for the square-root function. Given that we picked θ to lie between
zero and 2π, we will choose a branch cut along the positive real axis that joins the
branch points at z = 0 and z = ∞. We notice that f1(z) is discontinuous across the
branch cut: f1(r, 0+) =

√
r while f1(r, 2π−) = −

√
r so f1 jumps up by 2

√
r when

going from the lower lip of the cut to the upper lip. On the other hand, f2 takes the
values −

√
r and

√
r just above and below the cut. So f2 drops down by 2

√
r when

going from the lower lip of the cut to its upper lip. Thus f1 just below the cut agrees
with f2 just above the cut and f2 just below the cut agrees with f1 just above the
cut. Given these properties, we may define the Riemann surface for

√
z as consisting

of two sheets of the cut complex plane with the lower lip of sheet one glued to the
upper lip of sheet two across the cut and vice-verse. Try to draw this surface. This
2-sheeted Riemann surface (away from the branch points) is a double cover of the
complex plane. On this Riemann surface, we may define a single-valued continuous
(indeed analytic) function

√
z, equal to f1 on the first sheet and f2 on the second sheet.

We see that winding twice around the origin, the function returns to its original value
although this did not happen after one cycle. Thus, the square-root branch points at
z = 0 and z =∞ are of order one.
• nth root branch points. In a similar vein one may consider the multivalued function
f(z) = z1/n for n = 2, 3, 4, . . .. In each case, there are nth root branch points of order
n− 1 at z = 0 and z =∞. All these are algebraic branch points. They may be joined
by a branch cut running along the positive real axis. The corresponding Riemann
surfaces have n sheets with the lower lip of the nth sheet being glued to the upper lip
of the first one.
• The function f(z) =

√
z2 − 1 or more generally f(z) =

√
(z − a)(z − b) for a 6= b

has square-root branch points at z = a, b and its branch cut can be chosen to lie along
the line segment joining a and b (what is another nice choice?). The corresponding
Riemann surface has two sheets. Although f(z) fails to return to its initial value upon
following a closed contour around any one of the branch points, it does return to its
initial value when the cycle encloses both branch points.
• The function f(z) = zα where α is irrational (and possibly complex) has branch
points at z = 0,∞. However, these are not algebraic branch points, they are some-
times called winding points and are examples of transcendental branch points. Putting
z = reiθ, we see that when θ 7→ θ+2nπ, zα 7→ e2nπiαzα. For irrational α the prefac-
tor cannot equal one. So these winding points are branch points of infinite order. The
corresponding Riemann surfaces have infinitely many sheets labelled by an integer n,
just as for the logarithm. In fact, the two functions are related: zα = eα log z .

1.17 Analytic continuation

• Analytic functions are rigid. The condition of analyticity is a very strong one. In
particular, it allows us to find the behavior of an analytic function elsewhere from the
knowledge of its values on a rather restricted set of points. Analytic functions are
rigid in this sense. Cauchy’s integral formula (65) is one manifestation of this: if f is
analytic on a simple closed curve γ and in the domainD enclosed by γ, then its values
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in D are determined by its values on γ.
• Identity theorem: an analytic function is determined by its values on a set
with an accumulation point. If we are willing to forego an explicit formula like
Cauchy’s, then we can make do with less than the knowledge of f on the boundary of
D. Indeed, suppose f is analytic in an open connected domainD. Then its values inD
are uniquely determined by its values on a set of points Σ in D which have a point of
accumulation z∞ inD. To see the uniqueness, let us suppose there is another function
g(z) that is also analytic in D and agrees with f on Σ. Then the difference f − g is
analytic in D and has an accumulation point of zeros at z∞. From the discussion in
§1.10, we deduce that f − g must be identically zero in D, whence f = g.
• In particular, if two functions f1(z) and f2(z) that are analytic in D agree on a
segment of a curve14 or in an open neighborhood15 of a point of D, then they must
coincide on D. A limitation of these uniqueness theorems is that they do not tell us
how to find the values of f = f1 = f2 on the rest of D. A strategy to do this would be
to use the values of f , say, along the curve, to compute all its derivatives at some point
z0 on the curve and then use the method of analytic continuation described below.
•As alluded to, knowledge of all derivatives of f at one point z0 in the given connected
domain D of analyticity allows us to determine it throughout D and even extend it
beyond in favorable cases. This leads to the idea of analytic continuation. Given that
f is analytic at z0 ∈ D, we may expand it in a convergent Taylor series f(z) =∑∞
k=0 ak(z − z0)k where ak = 1

k!f
(k)(z0). This series has a nonzero radius16 of

convergence r0. Now, suppose z′ is another point in D. If |z′ − z0| < r0 we may
determine f(z′) simply by evaluating this series. Even if z′ lies outside the disk of
convergence D0 = {z : |z − z0| < r0}, connectedness guarantees that there is a
continuous curve γ : [0, 1] → D that joins them: γ(0) = z0 and γ(1) = z′. Next,
given any other point z1 ∈ D0 that lies on γ, we may differentiate the convergent
Taylor series term by term to evaluate f(z1) and all derivatives of f at z1. These are
used to obtain the Taylor series of f around z1.

f(z) =

∞∑
k=0

1

k!
f (k)(z1)(z − z1)k. (108)

This Taylor series around z1 will have a positive radius of convergence r1. Now, it
is always possible to choose z1 ∈ γ ∩ D0 in such a way that a portion of the disc
D1 = {z : |z − z1| < r1} of convergence around z1 lies outside D0 and covers
a portion of γ outside D0. This allows us to evaluate f outside D0 but inside D1.
We have thus extended the domain of knowledge of f to D0 ∪ D1 and thereby to a
larger segment of the curve γ. Repeating this procedure, we cover the curve γ by a

14For example, the real segment [−1, 1] has the sequence zn = 1/n that accumulates at the point z = 0
within the segment.

15For example, the neighborhood |z| < 2 has the sequence zn = 1/n that accumulates at the point
z = 0.

16Notice that the radius of convergence r0 is at least as large as the distance from z0 to the nearest point
on the boundary ∂D. This is because (by assumption) f does not have any singularities within D, so the
nearest singularity can only occur on ∂D. Illustrate with a figure.
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finite sequence of, say, n + 1 overlapping disks in each of which f has a computable
convergent Taylor expansion. In this manner, we arrive at a convergent Taylor series
for f around a point zn whose disk of convergence includes the point z′. We say that
we have analytically continued f from z0 to the point z′. By the identity theorem, the
analytic continuation of f from D0 to the point z′ is unique. We are guaranteed to get
the same answer for f(z′) regardless of which curve γ we pick and which sequence
of points z1, z2, · · · , zn on γ that we pick in the above procedure.

In fact, as long as we do not hit a singularity along such a curve γ (where the radii
of convergence of successive disks would shrink to zero), we can use this method to
analytically continue f even outside the originally known domain D of analyticity. It
is also noteworthy that this method can in principle also be used to find the singularities
of f : the radii of convergence of the successive disks would shrink to zero if the chosen
curve γ passed through a singularity. Analytic continuation naturally stops there. On
the other hand, as long as f is singlevalued, by analytically continuing it, we may find
its full domain of analyticity. The boundary of this domain (if any), beyond which the
function cannot be analytically continued is called its natural boundary. We will see
examples of such a natural boundary below. In fact, even if f is multivalued, we can
use analytic continuation to find its Riemann surface and all branches of the function
starting from the knowledge of its Taylor series at just one point!
• Example. As an application of this method of analytic continuation, consider the
analytic function f(z) = 1 + z + z2 + · · · defined by this geometric series17 on the
unit disk |z| < 1. Suppose we wish to analytically continue this function to z′ = −1.
We choose the curve γ to be a line segment from z = 0 to z′ = −1. We pick the point
z = −1/2 and use the formula for the sum of the geometric series to evaluate

f ′(z) = 1/(1− z)2, f ′′ =
2

(1− z)3
, · · · , f (n)(z) = n!

1

(1− z)n+1
. (109)

Thus, we get the Taylor series for f around z1 = −1/2, which we denote f1:

f1(z) =

∞∑
0

(2/3)n+1(z +
1

2
)n. (110)

This series converges for

(2/3)|z +
1

2
| < 1 or |z +

1

2
| < 3/2 (111)

So the radius of convergence is 3/2 and the disk of convergence includes the point
z′ = −1. Thus, although the original geometric series would not work, we evaluate
this new series at z′ = −1 to get f(−1) and differentiate it to find the derivatives at
−1. We find

f (n)(−1) =
n!

2n+1
(112)

17In this case, we know that this series represents the function 1/(1− z) within the unit disk. However,
the method we describe works even without such a formula.
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Thus we arrive at a convergent Taylor series for f around −1

f2(z) =

∞∑
0

(z + 1)n

2n+1
, (113)

with radius of convergence equal to 2. We have analytically continued f well outside
the unit disk.
• Natural boundary. The power series

f(z) =

∞∑
k=0

z2k and g(z) =

∞∑
k=0

zk! (114)

are absolutely convergent in the open disk |z| < 1. Thus, they define analytic functions
f and g on the open unit disk. However, it can be shown that f has singularities at
every 2k

th root of unity, which are densely distributed on the unit circle. Similarly,
g has singularities at every point on the unit circle. Consequently, neither function
can be analytically continued outside the unit disk. We say that the unit circle is a
natural boundary for the analytic functions f and g. These are examples of lacunary
series. Both power series have large lacunae (gaps) between powers of z with nonzero
coefficients.
•Analytic continuations of each other. Sometimes, we say that two functions f1 and
f2 are analytic continuations of each other. To understand what this means, suppose f1

and f2 are analytic in open domainsD1 andD2 that intersect nontrivially and suppose
they agree on the overlap D1 ∩D2. Then by uniqueness, the analytic continuation of
f1 to D2 must coincide with f2 there and the analytic continuation of f2 to D1 must
coincide with f1 there. In other words, there is a common analytic function on the
union D1 ∪D2 which restricts to f1 and f2 on the subdomains. We say that f1 and f2

are analytic continuations of each other. It is noteworthy that the intersection D1∩D2

need not be connected and D1 ∪D2 need not be simply connected.
• Permanence of functional equations under analytic continuation. In practice,
there may be more convenient ways to achieve analytic continuation than through
power series. For instance, functional equations can be useful. Suppose f is analytic
in D and satisfies a sufficiently nice18 functional equation R(f(z), z) = 0 such as the
periodicity condition f(z + 1) − f(z) = 0 whenever z and z + 1 are in D. Then
the analytic function g(z) = f(z + 1)− f(z) is identically zero when z, z + 1 ∈ D.
Suppose f is analytically continued to a larger domain D′. Then g(z) = f(z + 1) −
f(z) can also be analytically continued to places where z, z+ 1 ∈ D′ and must be the
zero function by the uniqueness of analytic continuation (identity theorem). Thus, the
relation f(z+1)−f(z) = 0 must also hold when z, z+1 ∈ D′. This is the permanence
of functional equations. In the present example, we may use periodicity to extend the
function and thereby arrive at its analytic continuation (at least to some parts of the
complex plane) without having to use power series. For example, we could use its 2π

18By nice, we mean that the operations involved in the relationR(f(z), z) (such as sums, products, etc.)
do not destroy analyticity.
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periodicity to analytically continue the function sin z if it was originally defined, say,
in the strip 0 < <z < 2π. In the case of the Gamma function, a functional equation
enables us to analytically continue it to the left half plane (see §1.17.1).

1.17.1 Example: Analytic continuation of the Gamma function

For n = 1, 2, 3, . . . the factorial is defined as n! = n · (n− 1) · . . . · 2 · 1, with the
recursive property n! = n(n − 1)!. Euler’s Gamma function generalizes the factorial
to complex arguments. It is defined by Euler’s integral of the second kind:

Γ(z) =

∫ ∞
0

e−ttz−1dt. (115)

This integral converges absolutely for <z > 0. For z = 0, the integral diverges due to
the 1/t behavior of the integrand as t → 0+. The integral also converges uniformly
on bounded subsets on the right half of the complex z plane. Thus, by a general
theorem on such integral representations, it defines an analytic function for <z > 0.
Alternatively, one may differentiate under the integral sign and see that Γ′(z) exists
for <z > 0 so that Γ is holomorphic on the open right half plane. Although, the
integral (115) does not converge for <z ≤ 0, we would like to extend (analytically
continue), to the extent possible, the Gamma function to an analytic function on the
left half plane. To do so, it would help to relate Γ(z) to Γ(z+1) (the recursion formula
n! = n(n− 1)! suggests that such a relation may exist).
• Functional equation. It is clear that Γ(1) =

∫∞
0
e−tdt = 1. Integrating by parts,

for <z > 0 we get

Γ(z + 1) =

∫ ∞
0

e−ttzdz = [−tze−t]∞0 +

∫ ∞
0

e−tztz−1dt = zΓ(z). (116)

Thus, for a natural number, Γ(n+1) = n!. If Γ may be analytically continued outside
the right half plane, then by the permanence of functional equations, the relation

Γ(z + 1) = zΓ(z) (117)

must hold also for <z ≤ 0. To begin with, we may use it to define Γ in the strip
−1 < <z ≤ 0 in terms of its values in the strip 0 < <z ≤ 1:

Γ(z) =
1

z
Γ(z + 1) =

1

z
Γ(1) + Γ′(1) +O(z). (118)

In particular, we see that Γ must be regular in this strip aside from a simple pole at
z = 0 with residue Γ(1) = 1.
• The constant γ = Γ′(1) ≈ 0.57721566 . . . is called Euler’s constant.
• Next, we define Γ in the strip −2 < z ≤ −1:

Γ(z+ 1) = zΓ(z) = z(z−1)Γ(z−1) ⇒ Γ(z−1) =
1

(z − 1)z
Γ(z+ 1) (119)

42



As before, we find that Γ is regular in this strip except for a simple pole at z = −1. In
fact,

Γ(z−1) =
1

z(z − 1)
Γ(1)+

1

z(z − 1)
zΓ′(1)+O(z) = −Γ(1)

z
−Γ′(1)+O(z). (120)

So the residue of the simple pole at z = −1 is −Γ(1) = −1.
•More generally,

Γ(z − n) =
Γ(z + 1)

(z − n)(z − n+ 1) · · · z
=

Γ(1)

(−1)nn(n− 1) · · · 1
1

z
+O(z0). (121)

Thus Γ has a simple pole at every nonpositive integer −n = 0,−1,−2,−3, . . . with
residue (−1)n/n! and is regular everywhere else. In particular, it is a meromorphic
function.

1.18 Entire functions

• An entire function f(z) is one which is complex analytic at every point z of the
finite complex plane. Entire functions are also called integral functions. The partition
function of a classical statistical mechanical system with a finite number of degrees
of freedom must be an entire function of the inverse temperature. When one takes the
thermodynamic limit (number of particles to infinity and volume to infinity, holding
the density finite) it can develop singularities at some temperatures which may be
interpreted in terms of phase transitions.
• Polynomials are the simplest entire functions. An entire function (such as ez) that
is not a polynomial is called a transcendental entire function. Since they are gener-
alizations of polynomials, it is worth noting some relevant properties of polynomials.
• A polynomial of degree N has a pole of order N at z = ∞. To see this, we put
w = 1/z and examine the behavior around w = 0. Transcendental entire functions
(such as ez) have essential singularities at z =∞.
•Nonconstant polynomials are unbounded. The same applies to entire functions. This
is called the Cauchy-Liouville Theorem, which states that a bounded entire function
must be a constant.
• By the fundamental theorem of algebra, a polynomial of degree N with complex
coefficients

p(z) = cNz
N + cN−1z

N−1 + · · ·+ c1z + c0 with cN 6= 0, (122)

has N complex roots z1, z2, · · · , zN (repeated according to multiplicity). A polyno-
mial may be factorized into linear factors, one for each root:

p(z) = cN

N∏
k=1

(z − zk). (123)

Thus, the polynomial is determined (up to the constant cN ) by the locations of its
zeros. One may ask if a similar result holds for entire functions: to what extent are
they determined by their zeros?
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• The exponential function ez is entire. It has no zeros on the finite complex plane.
Thus, the exponential of an entire function is also entire and again has no zeros19. Ex-
amples include ez

3+3z+2i and ee
z

. It follows that an entire function without any zeros
is determined at best up to multiplication by the exponential of an entire function.
• This is more or less the general pattern. An entire function f(z) is determined by
its zeros z1, z2, · · · up to multiplication by eh(z) for some entire function h. Assum-
ing f is not identically zero, the zeros, if infinite in number, cannot have any finite
accumulation point since f would have to be singular there. Thus, the zeros can only
accumulate at infinity. So when there are infinitely many zeros, we will assume that
the sequence zk → ∞. As with a polynomial, an entire function is expressible as
a (possibly infinite) product. Hadamard developed a canonical form for this product
for entire functions of finite genus (to be defined below). This was generalized by
Weierstrass. The linear factor (z − zk) for each nonzero root is written as (1− z/zk)
times a nonvanishing entire function to ensure that the product converges. Thus, we
denote the nonzero roots by zk 6= 0 and allow for f to have a zero of order m ≥ 0 at
the origin. Hadamard’s infinite product representation of an entire function takes the
form

f(z) = zmeQ(z)
∏
k≥1

(
1− z

zk

)
exp

(
z

zk
+

1

2

z2

z2
k

+ · · ·+ 1

p

zp

zpk

)
. (124)

Here Q(z) is a polynomial of degree q. On the other hand, p is the smallest nonnega-
tive integer such that the reciprocal root power sum

∞∑
k=1

1

|zk|p+1
(125)

converges.
• The Hadamard product for ez is ez , it has no zeros so the product is empty so that
p = 0. In this case, Q(z) = z so q = 1.
• On the other hand, sinπz has zeros at every integer zk = k and although the har-
monic sum

∑∞
k=1

1
k1 diverges,

∑∞
k=1

1
k1+1 = π2/6. So p = 1. It has the Hadamard

canonical product
sinπz = πz

∏
k∈Z,k 6=0

(1− z/k)ez/k. (126)

• Similarly, cosπz has zeros at odd multiples of 1/2, and we find that the reciprocal
root square sum again converges so that p = 1. It admits the canonical product

cosπz =
∏

k∈Z,k odd

(1− 2z/k)e2z/k. (127)

•We will say more about infinite products and their convergence later if time permits.

19In fact, any nonvanishing entire function may be expressed as the exponential of an entire function,
which is called its holomorphic logarithm.
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• The genus of an entire function that admits a Hadamard product representation
is defined as the larger of the integers p and q: g = max{p, q}. Evidently, it is the
largest power that appears in the exponential factor in the product. So the genus tells us
something about how the function grows for large |z|. A polynomial has genus zero
as there is no exponential factor at all. The exponential function ez has genus one.
The transcendental entire functions ez

n

for n = 1, 2, 3 · · · have genus n. Through
p, the genus also encodes the rate at which the roots approach infinity. For example,
sin z has roots at integer multiples of π and cos z has roots at odd multiples of π/2.
One sees that the smallest nonnegative integer for which the series (125) converges
is p = 1 in both cases. Moreover, the polynomial Q vanishes in both cases. So the
entire functions sin z and cos z also have genus one. If the roots approach infinity
more slowly, then p would have to be larger. On the other hand, if there are only a
finite number of roots, then p = 0. A transcendental entire function with finitely many
zeros is a polynomial times the exponential of an entire function.
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2 Manifolds

2.1 Some references on manifolds

1. Loring Tu, An Introduction to Manifolds.

2. Bernard Schutz, Geometrical Methods of Mathematical Physics.

3. Govind Krishnaswami, Classical Mechanics: From Particles to Continua and
Regularity to Chaos, Appendix B.

2.2 The concept of a manifold

By a manifold, we have in mind a space like a circle (denoted S1), the plane, the
surface of a sphere (S2) or the 3d Euclidean space R3 in which a particle can move. A
manifold is a space where every point20 has an open neighborhood21 that looks like22

Euclidean space Rn for some fixed positive integer n, which is called the dimension of
the manifold. By considering sufficiently many such overlapping open neighborhoods
of points, we obtain an open covering of the space. Thus, roughly, a manifold is a
space that can be covered by charts or ‘coordinate’ patches, as in Fig. 2a and Fig. 3a.
The charts together are said to furnish an atlas for the manifold. The terminology
is borrowed from cartography, where an atlas consists of several overlapping charts
which can, for instance, together describe a continent.

The idea is to use existing notions on smooth functions, vector fields, differentials
and Cartesian tensors on Rn to develop corresponding notions for the manifold via
a combination of patchwork and consistency conditions between overlapping charts.
It took a long time for a satisfactory definition of a manifold to be arrived at (in the
work of Hermann Weyl (1912) and Hassler Whitney (1930s)), with examples playing
a key role. Here, we will introduce a number of concepts and technical terms from
the theory of manifolds. The reader who is meeting these for the first time should not
despair, as they are invariably accompanied by illustrative examples.

2.2.1 Analogy with cell phone networks and cartography

The idea of covering a space with overlapping patches of a simple sort is practi-
cally realized in cell phone networks, which we caricature now. For instance, a city

20In Section 2.13 we will extend the concept of a manifold to one with a boundary. The points on the
boundary will not have open neighborhoods homeomorphic to Rn and need to be treated differently.

21The open neighborhoods we have in mind are simple ones: they must come in one piece and be con-
tractible (shrunk continuously to a point). Examples: In 1d they are continuously deformed (stretched/bent)
versions of open intervals (a, b) on the real line. In 2d and 3d they are continuous deformations of the open
disk x2 + y2 < 1 and open ball x2 + y2 + z2 < 1. The open interval, disk and ball is each continuously
deformable into R,R2 and R3. Similarly, we have open balls in higher dimensions. Our neighborhoods
look like them. By contrast, a pair of disjoint intervals on the real line does not come in one piece and may
be shrunk to a pair of points but not to a single point. Similarly, an annulus 1 < x2 +y2 < 2 can be shrunk
to a circle but not to a point.

22By ‘looks like’, we mean continuously deformable into. A rubber balloon undergoes continuous defor-
mation as it is inflated. More precisely, by ‘looks like’, we mean homeomorphic to. A homeomorphism is
a continuous map with a continuous inverse. An untied balloon is homeomorphic to a disc-shaped rubber
sheet since the latter can be stretched into a balloon without tearing the rubber sheet.

46



is covered by cells (say disks), each serviced by a cell phone tower. Each point in the
city lies in at least one such cell and communication to/from the cell phone is trans-
mitted via some protocols associated to the corresponding tower (manner of storage,
encryption, etc.). If a phone lies in the intersection of two cells, then two towers can
simultaneously communicate with it. The data received by the two towers can be re-
lated to each other via a suitable transformation between the protocols followed by
each tower. This is crucial when a person is traveling in the back seat of a car and
speaking on a cell phone. When moving from one cell to another, the two towers must
agree on what the person is saying when the phone is in the intersection, before the
‘future’ tower takes over from the ‘past’ tower. Evidently, the city is our manifold and
the cells are our coordinate patches. The transformations between data received by
two towers from the overlap of two cells play the role of transition functions that we
will soon encounter. A similar analogy, which explains much of the terminology, may
be made with cartography, where the charts or maps prepared by two explorers have
to be related (e.g., the scales of magnification may be different) in regions they both
explore. �

3 overlapping 
patches

(a) Circle S1

Manifold Not manifolds

(b) Closed interval [0,1] (c) Flag with pole

0 1

Figure 2: (a) The circle manifold S1 covered here by three overlapping open neigh-
borhoods. (b) The closed interval [0, 1] is not a manifold as 0 and 1 do not have open
neighborhoods that look like R: it is a manifold with boundary. (c) A flag with pole
is not a manifold: open neighborhoods do not all have the same dimension (1 on the
pole and 2 on the flag) and the neighborhoods of all points do not look alike.

2.2.2 Coordinate charts and transition functions

Returning to our definition of a manifold, why do we insist on open neighborhoods
of the same dimension to cover a manifold? Examples of spaces we do not want to
regard as manifolds will reveal why. For instance, the closed interval C = [0, 1] ⊂ R1

is not a manifold23. The points 0 and 1 do not have any open neighborhoods24 lying in
C while all other points 0 < x < 1 have open neighborhoods (see Fig. 2) of the form
(x− ε, x+ ε) ⊂ C for some sufficiently small ε [we could take ε to be the smaller of
x/2 and (1− x)/2]. Intuitively, C looks different in the vicinity of 0 and 1 from how
it looks elsewhere. We do not want to allow such ‘inhomogeneities’ in a manifold.
This is why we insist on open neighborhoods. Similarly, the space that is shaped like

23However, [0, 1] may be viewed as the manifold (0, 1) with boundary included, see Section 2.13.
24‘Closed-open’ neighborhoods of 0 such as [0, 1/2) are not homeomorphic to R.
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the multiplication sign × is not a manifold: it looks different at the center and the
extremes compared to how it looks elsewhere. A cloth flag attached to a pole is also
not a manifold: points on the lower part of the pole look different from points on the
cloth: the former typically have 1d open neighborhoods while the latter typically have
2d open neighborhoods (see Fig. 2). This is why we insist that all neighborhoods have
the same dimension.

M

U

V

x

y

x(U) ⊂ Rn

y(V) ⊂ Rn

x 
○ 

y⁻
¹

y 
○ 

x⁻
¹

xi(p)

p

yj(p)

Coordinate charts for a manifold

Transition 
functions

(a)

𝜃1  =3𝜋/4
𝜃2 =𝜋/4

𝜃2  =7𝜋/4
𝜃1  = -3𝜋/4

Coordinate patches on S1

Northern overlap

Southern overlap
(b)

Figure 3: (a) Coordinate charts and transition functions for a manifold M (which can
be thought of as the surface of a sphere S2). (b) Overlapping coordinate patches for
the circle S1 (dashed curve) as a manifold. A minimum of two (open) coordinate
patches is needed to cover the circle: here they are the Eastern and Western patches
indicated by thick and thin solid curves. The angle θ is measured counterclockwise
from the the horizontal axis.

On the other hand, the unit circle S1 defined as the set of points (x, y) on the plane
with x2+y2 = 1 is a one-dimensional manifold. As shown in Fig. 3b, the circle can be
covered by two patches: the Eastern and Western neighborhoods−3π/4 < θ1 < 3π/4
and π/4 < θ2 < 7π/4 defined in terms of a polar angle measured counterclockwise
with respect to the positive x-axis. θ1 and θ2 are called local25 coordinates in their re-
spective patches. Thus, the circle is one-dimensional. Each of these angular patches is
continuously deformable (by stretching) into the real line R since every open interval
can be continuously mapped to the whole real line (e.g., tan : (−π/2, π/2) → R).
These patches intersect in a pair of ‘upper’ and ‘lower’ intervals: running from North-
East to North-West and from South-West to South-East. When a point lies in such
an intersection, either of the coordinates can be expressed in terms of the other via a
‘transition function’ or coordinate transformation. For the circle, we have in the upper
intersection θ1 = θ2 and in the lower intersection θ1 = θ2 − 2π. The manifold is
differentiable if these transition functions between coordinate systems in each such
intersection is a differentiable map from Rn → Rn (or between open subsets of Rn
which are homeomorphic to Rn). In the circle example, the transition functions are
linear maps of one real variable, so the circle is a differentiable manifold of dimension
one. If the transition functions are infinitely differentiable (as is the case here), we say

25Local means coordinates are defined on a patch rather than globally on the whole manifold.
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the manifold is smooth26 or C∞. Note that the circle cannot be covered by a single
open coordinate chart: the largest ones such as −π < θ1 < π unfortunately exclude
one point while −π < θ1 ≤ π or 0 ≤ θ1 ≤ 2π fail to be open subsets of R.

Sometimes we are lucky, and a single coordinate patch is sufficient to cover the
whole manifold or the portion we are interested in. This is the case with the plane or
a disk (x2 + y2 < 1) or 3d Euclidean space R3, which can be covered by a single
patch with, say, Cartesian coordinates. In particular, Rn for each27 n = 1, 2, 3, . . . is
automatically a smooth manifold, as are all the open subsets of Rn that may be con-
tinuously shrunk to a single point. Unfortunately, the circle, which is a 1d manifold, is
not an open subset of R1 and S2 is not an open subset of R2, so we cannot cover them
with a single chart28 and need to work harder to find an atlas for these manifolds. The
circle or the 2-sphere S2 require a minimum of two coordinate patches. For S2, the
patches (each continuously deformable into a disk) consisting of all latitudes strictly
above the Tropic of Capricorn and all latitudes strictly below the Tropic of Cancer
furnish one possible atlas. These patches intersect over the tropics.

Given a manifold M , suppose a point p ∈ M lies in the intersection of two co-
ordinate patches so that p may be assigned the coordinates x = (x1, · · · , xn) or
y = (y1, · · · yn). Then the ‘transition function’ from x to y is given by the equa-
tions for the coordinate transformation yi = yi(x) and conversely xj = xj(y) for
1 ≤ i, j ≤ n. For the manifold to be smooth, both the transformation x 7→ y and its
inverse y 7→ x must be smooth29 maps between open subsets of Rn (see Fig. 3a).
• Example: Inertial and noninertial coordinates for Newtonian spacetime. New-
tonian spacetime may be viewed as a manifold. For simplicity, suppose space is one
dimensional, then the spacetime manifold is simply R2. A coordinate patch on space-
time is sometimes called a coordinate frame. Newton’s first law says that spacetime
admits a special frame called an inertial frame where isolated bodies move at con-
stant velocity. We usually use the globally defined Cartesian coordinates (t, x) for
such an inertial frame, which covers all of R2 with a single patch. Other coordinate
frames are also of interest. Galileo found that inertial frames are not unique, for in-
stance a uniformly moving frame (relative to one guaranteed by Newtons 1st law)
is also inertial. The coordinate transformation to such a boosted frame is given by
t′− t, x′ = x− ct where c is the relative velocity of the frame. Since these coordinate
transition formulae are linear (and hence invertible and infinitely differentiable both
ways), Newtonian space-time is a smooth manifold. Noninertial coordinate frames are

26If the transition functions are continuous, we call it a C0 manifold or a topological manifold. If they
are once differentiable with a continuous derivative, we call it a C1 manifold. More generally, we have
the notion of a Ck manifold if the transition functions are continuously differentiable k times for some
k = 0, 1, 2, . . ..

27For some purposes, it is convenient to regard R0 as a zero-dimensional manifold with only one point.
A zero-dimensional manifold is either a point or a discrete set of points. For example, the zero-dimensional
sphere S0 is the pair of points {−1, 1} satisfying x2 = 1 in R1.

28If we could cover S1 with a single chart, the chart (and hence S1) would be an open subset of R1.
Note, however, that merely being an open subset of Rn does not mean we can cover a manifold with a
single chart, since our charts are assumed to be homeomorphic to open balls. For instance, the annulus
1 < x2 + y2 < 2 is an open subset of R2, but we need a minimum of two charts to cover it.

29yi(x) is smooth if partial derivatives of all orders (∂yi/∂xj , ∂2yi/∂xj∂xk, · · · ) exist.
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also of interest. An example is one that is accelerating uniformly relative to an inertial
frame. The coordinate transformation to such a (noninertial Cartesian) frame is given
by t′ = t, x′ = x− 1

2at
2 (assuming the origins of the two frames are the same).

2.2.3 Refining an atlas

Given a smooth manifold (which must necessarily come with an atlas of smoothly
interrelated coordinate charts), we are free to add a chart to the atlas, provided we are
consistent. For instance, if the new chart with coordinate y overlaps an existing chart
with coordinate x, the transformation y = y(x) and its inverse must be smooth. For
the Euclidean plane, the Cartesian coordinates (x1 ∈ R, x2 ∈ R) furnish a one-chart
atlas. Suppose we wish to add a chart consisting of plane polar coordinates (y1 = r,
y2 = φ). We can do this provided we choose the polar coordinate chart to be an
open set on which the transformation to/from Cartesian coordinates is smooth. This
is the case, for instance, if we choose the polar coordinate chart to be defined on R2

with the origin and negative horizontal axis excluded so that y1 = r ∈ (0,∞) and
y2 = φ ∈ (−π, π). The Cartesian product (0,∞)× (−π, π) is clearly an open subset
of R2 continuously deformable into R2. Note that if we retained the negative real axis,
the patch consisting of the punctured plane (plane with the origin removed) would not
be continuously deformable into R2. In this region of overlap we have the familiar
coordinate transformation y1 =

√
(x1)2 + (x2)2 and y2 = arctan(x2/x1) and the

inverse transformation x1 = y1 cos y2 and x2 = y1 sin y2 which are both seen to be
smooth. The smoothness of the transition function would fail at the origin and on the
negative horizontal axis.

2.3 Maps between manifolds: homeomorphisms, diffeomorphisms

Having defined manifolds, we can now consider maps between manifolds. We
will use such maps to say when two manifolds are to be considered the same. Two
manifolds are topologically equivalent (or homeomorphic) if they are related by an
invertible continuous map. The surface of a cube can be continuously deformed into
that of a sphere, so they are homeomorphic. If two differentiable manifolds can be
related via an invertible differentiable map, then they are called diffeomorphic.

To make precise the notion of a continuous, differentiable or smooth map between
manifolds, we make use of the corresponding concept for maps between Euclidean
spaces or open subsets thereof. So to begin with, a map f : Rp → Rq given by
yi = f i(x) is continuous if yi are continuous functions of xj . It is differentiable if
all the first partials ∂yi

∂xj exist (it is continuously differentiable if these partial deriva-
tives exist and are continuous). Finally, it is smooth if partial derivatives of all orders
exist. Moving on from Euclidean spaces to manifolds, a map φ : Mp → Nq is
continuous/differentiable/smooth if in each coordinate patch, the corresponding maps
between Rp and Rq are continuous/differentiable/smooth. For consistency, if coordi-
nate patches overlap, then the individual maps should agree on the overlap.

Two manifolds M,N are said to be homeomorphic if there is a continuous bijec-
tive (one-to-one and onto) map f : M → N with continuous inverse. They are diffeo-
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morphic if continuity is replaced with smoothness. Homeomorphic or diffeomorphic
manifolds must have the same dimension and cannot be distinguished insofar as their
topological/smooth structure is concerned. The circles x2 + y2 = 1, x2 + y2 = 2
and the ellipse x2 + 2y2 = 1 are all diffeomorphic (see Prob. ??) as are the sphere
x2 +y2 +z2 = 1 and the ellipsoid x2 +y2 +2z2 = 1 or the open interval (0, 1) and the
real line R (see Prob. ??). On the other hand, the surface of a cube is not smooth (due
to the sharp edges and corners), so it is not diffeomorphic to the sphere, though the
two are homeomorphic. Similarly, the surface of a sphere and that of a torus (inflated
tyre tube or vadai) are not homeomorphic: one can show that there is no continuous
bijection between them since the latter has a ‘hole/handle’ which the former lacks.

The concept of a manifold that we have defined does not possess any notion of dis-
tances between points or lengths of tangent vectors or angles between tangent vectors.
To define these ‘geometric’ concepts we need additional structure on the manifold,
such as a metric (see Section 2.9). At present, our manifolds are either topological
manifolds (if the transition functions are continuous) or differentiable/smooth mani-
folds (if the transition functions are differentiable/smooth). Thus, our manifolds cur-
rently lack any geometric rigidity of shape or size. In particular, the surface of a
triaxial ellipsoid (x2/a2 + y2/b2 + z2/c2 = 1 with no two among a2, b2, c2 equal)
and that of a round sphere (x2 + y2 + z2 = 1) are identical as topological or smooth
manifolds since they can be continuously or smoothly deformed into each other.

2.4 Submanifolds: immersions and embeddings

It is tempting to think of a submanifold as a subset of a manifold M that acquires
a manifold structure when charts of M are suitably restricted. However, this is a little
too restrictive for some purposes. While the unit circle x2+y2 = 1 is a submanifold of
the Euclidean x-y plane R2 in this sense, we would also like to admit the cubic curve
and 3-petaled rose shown in Fig. 4 (c) and (d) (but not the cardioid (a) and cycloid
(b)) as suitable submanifolds of R2. On the face of it, these curves are not manifolds
due to the self-intersections. However, there is a simple way to view them as images
of bona fide manifolds sitting inside (‘included in’) the plane. Without attempting
to be very precise, we outline a framework for the idea of a submanifold. Given an
n-dimensional manifold M , an s-dimensional manifold S (s ≤ n) and an ‘inclusion’
map i : S ↪→M , we can specify what we mean by immersed and embedded subman-
ifolds. For example, S could be R, thought of as an infinitely long (or open stretch of)
rope and M could be the plane R2. The inclusion map is some way of laying the rope
on the plane. The question is one of whether S sits insideM in a sufficiently nice way.
For example, we readily admit the x-axis contained in R2 and the interval (0, 1) ⊂ R
as submanifolds. Questions arise, for instance, when the image of S in M involves
sharp corners (as in the curve that looks like the character V or the cardioid and cy-
cloid of Fig. 4 (a) and (b)) or self-intersections (as in the curve that looks like α or the
3-petaled rose of Fig. 4(d)). Very roughly, if the tangent to S behaves nicely (sharp
corners are absent), we will say that S is an immersed submanifold while we will call
it an embedding if it has neither sharp corners nor self-intersections. The manner in
which S sits inside M can be encoded in properties of the inclusion map i : S ↪→ M
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which takes any point x ∈ S to the corresponding point i(x) ∈ M . If the derivative
of the inclusion map, which is the n× s Jacobian matrix of first partials, has the max-
imum possible rank30 s everywhere, then S is said to be an immersed submanifold
(this eliminates sharp corners but allows for self-intersections, as in the symbol α or
the planar cubic curve y2 = x3 + x2 of Fig. 4(c)). Thus, in an immersion, the inclu-
sion map need not be 1-1, though its derivative must be 1-1. An immersion where the
inclusion map is also 1-1 (this eliminates self-intersections) is called an embedding.
The n-sphere Sn = {x ∈ Rn+1 such that (x1)2 + (x2)2 + · · ·+ (xn+1)2 = 1} is an
embedded submanifold of Rn+1 for n = 0, 1, 2, . . .. An important theorem of Whit-
ney states that essentially any smooth n-dimensional manifold M (defined as above
using an atlas) can be realized as a smoothly embedded submanifold31 of R2n.

-1

1

-1

(a)

-3 -2 -1 0 1 2 3

1 (b)

-1.0 -0.5 0.5
-0.5

0.5
(c)

-.4 .4 .8

.4

-.4

.8

-.8

(d)

Figure 4: Plane curves (a) cardioid x = cos t(1−cos t), y = sin t(1−cos t) (b) cycloid
x = (t − sin t)/2, y = (1 − cos t)/2 (c) cubic y2 = x3 + x2 and (d) 3-petaled rose
r = cos 3θ given in parametric, implicit and polar forms. The cardioid and cycloid
fail to be immersed submanifolds of the plane since the rank of their Jacobians drop
from 1 to 0 at the sharp corners. E.g., for the cycloid, the transpose of the Jacobian is
J t = (ẋ, ẏ) = ((1 − cos t)/2, (sin t)/2) = (0, 0) at t = 2nπ where n is an integer.
The cubic curve and the rose are immersions but not embeddings: they have no sharp
corners but display self-intersections. If we think of the image curve as the path traced
by an ant walking on the plane, the Jacobian is the velocity vector. If the ant does not
momentarily come to rest, its path may be modeled as an immersion (self-intersections
occur when an ant returns to an earlier location while at a sharp corner, the ant must
momentarily come to rest and abruptly change direction). If the curve is the world
line of a massive particle in space-time parametrized by proper time, then it must be
an embedding since the 4-velocity (??) cannot vanish and the world line cannot have
self-intersections.

• The circle (x1)2 + (x2)2 = 1 is a smooth embedding of S1 in R2. Note that here
we take S = S1 (and not S = R) and furnish it with an atlas with at least two charts.
If we lay the real line in the shape of a circle on the plane, then we would not get an
embedding (although it would still be an immersion) since the inclusion map would
be many-to-one.
• The 3-petaled rose is an immersion of S1 in the plane. It is not an embedding. It
may also be viewed as an immersion of R in the plane.

30The row (column) rank of a matrix is the number of linearly independent rows (columns). They can be
shown to be equal and this common number is called the rank of the matrix.

31In favorable cases, one may be able to embed the n-dimensional manifold M in a Euclidean space of
dimension less than 2n, as is the case with Sn ↪→ Rn+1.
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2.5 Connected and simply connected manifolds

A manifold is connected if it comes in one piece. For example, the disjoint union
of two open real intervals (0, 1) ∪ (2, 3) is not connected. To define the concept of
connectedness, we imagine a point-like ant walking on the manifold M . If it can
reach any point from any other point via a continuous path γ(t) that lies in M , then
M is connected. More precisely, M is path connected if any two points p, q ∈ M
can be joined by a continuous path γ : [0, 1] → M with γ(0) = p and γ(1) = q.
For example, Rn and Sn for n = 1, 2, 3, . . . are connected. If a manifold is not path
connected, then it is called disconnected. The real line punctured32 at the origin is
a disconnected manifold. For a disconnected manifold, the connected component of
p ∈ M is the submanifold consisting of points q ∈ M that can be reached from p
via continuous paths lying in M . The line punctured at the origin has two connected
components (−∞, 0) and (0,∞). The connected component of the point 2 is the right
half-line. Similarly, S0 = {−1, 1} is disconnected, it has two connected components:
{−1} and {1}.

The orthogonal group O(3) (3 × 3 real matrices with AtA = AAt = I) is dis-
connected, it has two connected components. The connected component in which the
identity matrix lies is the subgroup SO(3) where the determinant is always equal to
one. The other component (where the determinant is minus one) consists of orthogo-
nal transformations which involve reflections in an essential way.

A connected manifoldM is called simply connected if any nontrivial closed curve
in M can be continuously deformed (shrunk) to a point while remaining in M . The
two-sphere S2 is simply connected, a rubber band on a globe can always be shrunk to
a point while remaining on the globe. On the other hand, S1, the torus, the surface of
an infinite circular cylinder and the punctured plane are all connected but not simply
connected (see Fig 5).

2.6 Smooth functions or scalar fields

In essence, a smooth real function (or a ‘scalar field’) f on a smooth manifold M
is a way of assigning a smoothly varying real number to each point on the manifold.
They are important since the observables or dynamical variables of a mechanical sys-
tem are smooth functions on the phase space manifold. More precisely, scalar fields
are smooth real-valued functions of the coordinates in any given patch with the con-
sistency condition that, when p ∈M lies in the intersection of coordinate patches, the
value of the function at p must be the same irrespective of which coordinate system
is used to describe p. In other words, if the function is described by the formulae
f(x) and g(y) in two coordinate patches, then we must have g(y(x)) = f(x) at
each point p of the overlap. Sometimes, we turn this around and say that given a
scalar field f(x) in one coordinate system, under a change from x 7→ y given by
the transformation y = y(x) (and its inverse x = x(y)), the formula for the func-
tion becomes F (y) = f(x(y)). Henceforth, we will mostly take this second view-
point and speak in terms of how objects transform under a change of coordinates

32To puncture the line R is to remove (or excise) one point from it.
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Figure 5: (a) The plane with a hole (disk excised) is homeomorphic to the once punc-
tured plane. Any two points p, q can be joined by a continuous path γ: it is path
connected. However, it is not simply connected: the closed curve D cannot be contin-
uously shrunk to a point. It is multiply connected: there are many paths from p to q
that are not continuously deformable into each other: direct (γ), around the hole (γ′),
winding twice around the hole, etc. Though γ is not homotopic to γ′ (they cannot be
continuously deformed into each other), γ and γ′′ are homotopic to each other (a rub-
ber band stretched from p to q along γ can be deformed to γ′′). A homotopy between
γ, γ′′ : [a, b] → M is a continuous map Γ : [a, b] × [0, 1] → M with Γ(t; 0) = γ(t)
and Γ(t; 1) = γ′′(t). (b) The torus too is path connected but not simply connected:
the closed curves A, B winding around the torus cannot be shrunk to a point, though
C can. C is a contractible closed curve or one that is homotopic to a point.

in a region of overlap between two coordinate patches. The space of smooth func-
tions on M is denoted C∞(M) or F(M). If M is the phase space of a classical
system, then the set of observables is given by F(M). It is a commutative alge-
bra: it is closed under real linear combinations af + bg ∈ F and pointwise products
(fg)(x) = f(x)g(x) = g(x)f(x) = (gf)(x) for all f, g ∈ F(M), with products dis-
tributing over sums. The property fg = gf encodes the fact that classical observables
commute under multiplication, a feature that is not always true in the quantum theory,
where observables are Hermitian operators.

2.7 Vector fields

Given local coordinates xi in a chart on an n-dimensional manifold M , we have
the notion of coordinate vector fields. These are defined as the first order partial
differential operators ∂

∂x1 , ∂
∂x2 , · · · , ∂

∂xn , which are often abbreviated ∂xi or ∂i for
i = 1, · · · , n. We may think of these differential operators as acting on smooth func-
tions to produce other smooth functions (their partial derivatives).

Geometrically, we may think of the coordinate vector fields at a point p as tangent
vectors to M at p. For instance, ∂1 is the tangent vector to the coordinate curve
parametrized by x1 passing through p holding x2, · · · , xn fixed. As a consequence,
∂x is a tangent vector field on the x−y plane R2 that points rightward at every point, as
shown in Fig. 6a. More generally, we may view any vector at p as the velocity vector
of some smooth (or at least differentiable) curve passing through p. For instance if
(x(t), y(t)) is a curve on the plane R2, then its velocity vector at the point on the
curve corresponding to parameter t is (ẋ(t), ẏ(t)). In the language introduced above,
this velocity vector is written as ẋ(t) ∂

∂x + ẏ(t) ∂∂y . Tangent vectors at p may thus be
regarded as equivalence classes of curves passing through p. For this purpose, two
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curves are considered equivalent if they possess the same velocity vector at p.
Coordinate vector fields furnish a basis for more general vector fields on M . A

general vector field is given by a linear combination

v =
∑n

i=1
vi(x)

∂

∂xi
≡ vi(x)∂i. (128)

The set of n functions vi(x) are called the components of v in the coordinate basis.
A vector field restricted to a point p ∈ M is called a tangent vector at p. The set of
tangent vectors at p is the tangent space Tp(M), a real vector space of dimension n.
The coordinate tangent vectors ∂1, · · · , ∂n at p furnish a basis33 for Tp(M). E.g., the
tangent space to the 2-sphere at a point on the equator may be visualized as a vertical
tangent plane spanned by the coordinate tangent vectors ∂

∂φ and ∂
∂θ (see Fig. 6b).
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Figure 6: (a) Coordinate vector field ∂x on the x-y plane. (b) Azimuthal coordinate
vector field ∂φ = −y∂x + x∂y on the unit sphere with the z-axis pointing vertically
upwards. At the North and South poles x = y = 0 and z = ±1. At the poles, ∂φ
vanishes, they are zeros of ∂φ. In fact, there is no nonvanishing smooth vector field
on a sphere: loosely speaking, it is not possible to comb hair on the sphere. Here, a
smooth distribution of hair combed tangent to a sphere may be regarded as a vector
field on the sphere. The vector field has a zero at a bald spot where there is no hair.

Transformation of vector fields on the overlap between two patches. The set
of n functions vi(x) are called the components of v in the coordinate basis. Though
each is a function within a coordinate patch, they do not transform as scalar functions
under a change of coordinates. The components of a vector field have a special trans-
formation law that follows from the chain rule in multivariable calculus. Suppose the

33A noncoordinate basis for vector fields is a collection of n vector fields e1, · · · , en that are linearly
independent at each point but whose pairwise commutators [ei, ej ] are not all zero. The latter condition
ensures that they are not expressible as ∂xi in any local coordinate system xi. For example, e1 = y∂x and
e2 = x∂y furnish a noncoordinate basis for vector fields, say, in the first quadrant of the Euclidean plane
(x > 0, y > 0). We find that [e1, e2] = y∂y − x∂x = (y/x)e2 − (x/y)e1 6= 0.
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same vector field is expressed in another coordinate system yi:

v = ṽj(y)
∂

∂yj
. (129)

Since y = y(x), we may relate the two sets of coordinate vector fields via a Jacobian:

∂

∂xi
=
∂yj

∂xi
∂

∂yj
= Jji

∂

∂yj
so that v = vi

∂

∂xi
= vi

∂yj

∂xi
∂

∂yj
. (130)

Comparing with (129) we find how the components of a vector field transform:

ṽj(y) = vi(x(y))
∂yj

∂xi
or ṽj = Jji v

i. (131)

Thus, the components of a vector field transform via the Jacobian matrix34: the new
jth component is a linear combination of all the old components (quite unlike how
n scalar fields would transform). Such a transformation is called contravariant. The
prefix contra35 arises from the manner in which the coordinate vector fields transform,
i.e., via the inverse of the Jacobian matrix36:

∂

∂yj
=
∂xi

∂yj
∂

∂xi
= (J−1)ij

∂

∂xi
. (132)

Thus, tangent vector fields are also called contravariant vector fields. A vector field
on a smooth manifold is called smooth if the components vi(x) are smooth functions
of the coordinates in each patch and components in overlapping patches are related by
the above transformation formula. The matrix elements Jji entering the transformation
formula for vi between overlapping coordinate patches are automatically smooth since
the manifold is smooth.
• Example: On R2 we have a single patch Cartesian coordinate system (x, y). We also
have plane polar coordinates (r, φ) consisting of radial and azimuthal coordinates on a
suitable open set (say on the complement of the negative horizontal axis x ≤ 0, y = 0).
Then the azimuthal coordinate vector field ∂φ can be expressed in the Cartesian basis.
Using x = r cosφ, y = r sinφ, we find

∂

∂φ
=
∂x

∂φ

∂

∂x
+
∂y

∂φ

∂

∂y
= −y ∂

∂x
+ x

∂

∂y
(133)

on the overlap of the two coordinate patches. The RHS makes sense on all of R2 and
allows us to extend the azimuthal coordinate vector field to all of R2. We see that this
vector field has a zero at the origin.

34We may view this as the product of a matrix with a column vector by regarding Jji as the entry in the
jth row and ith column of a square matrix J and vi as the element in the ith row of a column vector.

35In Section 2.8 we will meet covector fields. Coordinate covector fields (137) transform via J rather
than J−1, so covector fields are called covariant.

36The Jacobians for x 7→ y and y 7→ x are inverse matrices. This is seen by using the chain rule to

differentiate xi(y(x)) = xi with respect to xk to get ∂x
i

∂yj
∂yj

∂xk
= δik .
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Action of vector fields on smooth functions. A vector field v can act on a func-
tion on M and give its derivative ‘along’ v. In a coordinate chart,

v(f) = vi
∂f

∂xi
. (134)

v(f) is a function onM and generalizes the concept of the directional derivative v·∇f
from vector calculus in R3. v(f) is also called the Lie derivative of f along v and de-
noted Lvf . To find Lvf at a point x0 ∈M , we consider the integral curve x(t) (136)
of v through x0 with x(0) = x0. Then Lvf = lims→0[{f(x(s))− f(x(0))} /s]. In
other words, we ask how the function varies between nearby points on the integral
curve of v through x0.

Evidently, a vector field acts linearly on the space of functions: v(af + bg) =
av(f) + bv(g) for any pair of scalar fields f, g and real numbers a, b. Since a vec-
tor field is a first order differential operator, v acts as a derivation on the space of
functions: verify that the Leibniz rule v(fg) = fv(g) + v(f)g is satisfied. Thus,
we may view a vector field simply as a linear map from F(M) → F(M) that sat-
isfies the Leibniz rule. The set of vector fields on M is denoted Vect(M), it is an
infinite-dimensional real vector space since the coefficients vi can be arbitrary smooth
functions in any given patch. For instance, if M = R with coordinate x, then the
tangent space at any point is one dimensional (and isomorphic to the vector space R).
However, the vector fields ∂x and x∂x are linearly independent over the real num-
bers: there is no nontrivial real linear combination that vanishes identically. In fact,
polynomial vector fields (of degree d) on the real line can be written as

∑d
l=0 clx

l∂x
where c0, c1, . . . , cd are suitable real coefficients and xl denotes the lth power of x.
Evidently, the space of polynomial vector fields on the real line is infinite dimensional:
the whole number d can be arbitrarily large.

Commutator of vector fields. Given a pair of differentiable vector fields on a man-
ifold M , we may define their commutator, which is another vector field. In local
coordinates, suppose u = ui∂i and v = vi∂i. Then their commutator [u, v] is

[u, v] = (uj∂jv
i − vj∂jui)∂i. (135)

Given a function f : M → R, both u(v(f)) and v(u(f)) are functions on M . The
commutator [u, v]f measures the extent to which the two differ. Notably, u(v(f)) and
v(u(f)) involve both first and second order derivatives, so the composition of vector
fields is not a vector field. Pleasantly, we verify that these second order derivatives
cancel out in the commutator.

It is easily checked that coordinate vector fields commute since mixed partials of
a smooth function are equal: [∂xi , ∂xj ]f = 0 for any smooth function f and any
1 ≤ i, j ≤ n. For example [∂x, ∂y] = 0 on R2.

By making a change of coordinates, one may check that this first order differential
operator in (135) transforms as a contravariant vector field.

The commutator is also called the Lie bracket of vector fields since it is linear37

[au + bv, w] = a[u,w] + b[v, w], antisymmetric [u, v] + [v, u] = 0 and satisfies the
37Note that [fu, v] 6= f [u, v] in general for a nonconstant smooth function f , see Prob. ??.
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Jacobi identity [u, [v, w]] + [w, [u, v]] + [v, [w, u]] = 0 (Prob. ??) for any three vector
fields u, v and w and real numbers a, b. Consequently, the linear space of vector fields
Vect(M) equipped with the commutator Lie bracket is called a real Lie algebra38.

The commutator [u, v] is also called the Lie derivative of v along u and is written
Luv = [u, v]. From (135), we see that the Lie derivative39 of v along u includes
two contributions: the first is the ‘obvious’ change in v in the direction of u while
the second accounts for the fact that the components of u themselves change with
location. It is noteworthy that if we omitted this second term, the first term by itself
would not transform as a vector field under a coordinate transformation.

Finally, we note that given a smooth function f , the Lie derivative of a vector field
satisfies the Leibniz rule: Lu(fv) = (Luf)v + fLuv, as we verify in Prob. ??.

Integral curves of a vector field. Given a vector field v on a manifold, it defines a
flow on the manifold. By this, we mean that there is a family of curves on M that are
everywhere tangent to v. Precisely, the integral curve through the point x0 ∈M is the
solution xi(t) to the system of first order ODEs

dxi

dt
= vi(x) with xi(0) = x0. (136)

Here, xi are coordinates in a neighborhood of x0. This system is generally nonlinear
since the components vi(x) can depend on x in a nonlinear fashion. It can be shown
that if v is a C1 vector field (continuously differentiable), then the solution of the
above system of ODEs exists and is unique for some time interval. This means that
through each point of M there is precisely one integral curve of v. The set of integral
curves of a (nonvanishing) vector field on a manifold is sometimes called a congruence
(or a congruence of curves).

∗ Gradient of a function. The gradient of a scalar function f is an example of a
vector field. However, to define it, we need additional structure on the manifold. For
instance, we may combine the notion of the differential of a function and the inverse
of a metric tensor to define the gradient (grad f)i = (∇f)i = gij∂jf . These concepts
will be introduced in Section 2.8 and Section 2.9. �
• Tangent bundle. As a set, the union of all tangent spaces on an n-dimensional man-
ifold M is called the tangent bundle TM . It is a ‘fibre bundle’ whose ‘base space’ is
M and whose fibres are the tangent spaces. It is a manifold of dimension 2n. Locally
it is a Cartesian product of a coordinate neighbohood and Rn (the tangent spaces are
isomorphic to Rn). For each coordinate neighborhood of M with coordinates xi we
get coordinates on T ∗M given by (x1, · · · , xn, v1, v2, · · · , vn). Here v = vj∂j are
tangent vectors at the point with coordinates xi. If M is the configuration space of a

38The Lie algebra of vector fields may be regarded as the Lie algebra of the group of diffeomorphisms of
M .

39It is tempting to mimic the geometric approach to the Lie derivative of a function to define Luv as the
s → 0 limit of a difference quotient {v(x(s)) − v(x(0))}/s, where x(t) is the integral curve (136) of
u through x0 with x(0) = x0. However, there is a difficulty since v(x(s)) and v(x(0)) live in different
tangent spaces and cannot be subtracted. One needs a way to ‘push’ one of the vectors to the tangent space
where the other lives before subtracting. This can be done using the pushforward defined in Section 2.11.
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mechanical system, then the initial conditions for Newton’s or Lagrange’s equations
(xi, ẋi) define a point in the tangent bundle. The tangent bundle of the circle S1 is
diffeomorphic to a cylinder S1 × R.

2.8 Covector fields or 1-forms

Motivating examples. On the Euclidean plane, the differentials dx and dy are exam-
ples of covector fields or 1-forms. They are to be thought of as dual to the coordinate
vector fields ∂

∂x and ∂
∂y via the ‘pairing’ dx(∂x) = 1, dx(∂y) = 0, dy(∂x) = 0

and dy(∂y) = 1 which is defined to be linear: for instance, dx(f∂x + g∂y) =
fdx(∂x) + gdx(∂y) = f(x, y) for any two smooth functions f and g. A general
covector field is a linear combination φ = a(x, y)dx + b(x, y)dy where a and b are
smooth functions. A 1-form is also called a Pfaffian differential expression after the
German mathematician J F Pfaff who studied equations40 of the form a(x, y, z)dx +
b(x, y, z)dy + c(x, y, z)dz = 0. Physically, for a particle moving on a plane, while
the velocity q̇(t) = q̇1(t)∂x + q̇2(t)∂y is a tangent vector at each point (x(t), y(t)) on
a trajectory, the momentum p(t) = p1dx + p2dy is a covector at each such point on
the configuration plane.

Covector fields are also encountered on the thermodynamic state space. The ther-
modynamic state space of a gas with a fixed number of molecules is a 3d manifold M
with coordinates U, V, S which are the internal energy, volume and entropy of the state
of the gas (other choices of coordinates are also possible). An infinitesimal process is
represented by a tangent vector v = a∂U + b∂V + c∂S . We have two distinguished
1-forms on M , the work and heat 1-forms. The work 1-form is ω = pdV . The work
done in this infinitesimal process is ω(v) = pdV (v) = pb. According to the 1st law
of thermodynamics, the heat 1-form is φ = dU + pdV . The infinitesimal heat added
to a gas is given by the action of the heat 1-form φ on the tangent vector representing
the infinitesimal process. In our notation, the heat added is a+ pb. Equilibrium states
form a 2d hypersurface determined by an equation of state (EOS). Tangent vectors to
this EOS surface represent infinitesimal reversible processes. When restricted to this
equilibrium surface, the second law postulates that the heat 1-form may be expressed
as φ = TdS, where T and S are the absolute temperature and entropy. T is defined
only on the equilibrium submanifold.
Dual to tangent space. More generally, a covector field or covariant vector field or
1-form is simply a (smoothly varying) assignment of a covector at each point of a
manifold. In more detail, given local coordinates xi in a patch, we have the coordinate
basis 1-forms given by the differentials of the coordinates dx1, · · · , dxn. At a point
p ∈ M , the basis 1-forms dxi(p) are said to span the cotangent space to M at p. The
cotangent space is denoted T ∗p (M) and is the vector space dual to the tangent space
Tp(M). Indeed, {dxi} is the dual basis to {∂i} defined via the pairing dxi(∂j) =
δij . In general, a covector field on M is a linear combination of the basis 1-forms

40The Pfaffian differential equation φ = a dx + b dy + c dz = 0 is said to be integrable if it admits an
integrating denominator T (x, y, z) (or integrating factor 1/T ) such that φ/T = dS is an exact differential.
Then dS = 0 and the solutions of the Pfaffian differential equation are given by S(x, y, z) = σ for any
constant σ.
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φ = φi(x)dxi. The n real-valued quantities φi(x) in a coordinate patch are called the
components of the covector field. As with the components of a vector field, they are
not scalar functions on M but satisfy a special transformation law. Indeed, suppose
yj is another local coordinate system defined on a chart that has an overlap with that
of the xi. On the overlap, the coordinate 1-forms are related by the chain rule

dyj =
∂yj

∂xi
dxi = Jji dx

i. (137)

We see that coordinate 1-forms transform via the Jacobian matrix (as opposed to its
inverse, as was the case for coordinate vector fields in (132)). For this reason, covector
fields are called covariant vector fields. Now suppose the same covector field φ is
expressed in the y basis: φ = φ̃j(y)dyj = φ̃jJ

j
i dx

i. Comparing, we see that the
components of a covector field transform via the inverse of the Jacobian41:

φi = φ̃j
∂yj

∂xi
or φ̃j = (J−1)ijφi. (138)

Compare this with the corresponding formula (131) for components of a vector field.
If the components of φ in all charts are smooth functions of the local coordinates on a
smooth manifold, then φ is called a smooth covector field. Since covectors are dual to
vectors at each point of M , covector fields are linear functions on the space of vector
fields. The value of φ = φidx

i on the vector field v = vj∂j is the smooth function or
scalar field

φ(v) = φidx
i(vj∂j) = φiv

jdxi(∂j) = φiv
jδij = φi(x)vi(x). (139)

We used linearity of the action of a covector on a vector to pull the components vj(x)
out. φ(v) is called the contraction of φ with v. More generally, for vector fields v, w,

φ(fv + gw) = f φ(v) + g φ(w) for any f, g ∈ F(M). (140)

The space of covector fields on M is denoted Ω1(M) and is dual to Vect(M) over
F(M). In particular, if φ and ψ are 1-forms and f, g scalar fields, then fφ + gψ is
also a 1-form. Note that fφ = φf , the order does not matter.

On the other hand, we can also evaluate a vector field v on a 1-form φ to get a
scalar field. In fact, since they are dual bases, we also have ∂i(dxj) = δji so that
v(φ) = vj∂j(φidx

i) = viφi = φ(v). This allows us to reinterpret vector fields
as linear functions on the space of 1-forms. This viewpoint will soon be useful in
generalizing vector fields to contravariant tensor fields.

An important class of 1-forms are differentials of functions on M : φ = df =
∂f
∂xi dx

i. So the partial derivatives of a function should be thought of as components

41If we view (J−1)ij as the entry in the ith row and jth column of a matrix and φi as the entry in the
ith column of a row vector, then this is the product (from the left) of a row vector with the square matrix
J−1 producing the row vector with jth column entry φ̃j .
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of a covector rather than a vector42. Sometimes, it is convenient to regard functions
as covector fields of degree zero and call F(M) Ω0(M). Thus, the differential d is a
linear map (over R) from Ω0(M) to Ω1(M) satisfying the Leibniz rule.
Lack of a canonical isomorphism. The tangent space Tp(M) and the cotangent
space T ∗p (M) are both n-dimensional real vector spaces and are therefore isomorphic.
However, there is no preferred or canonical isomorphism between them. If a basis,
such as a coordinate basis is chosen for vector fields then one gets an isomorphism that
maps ∂i to dxi and vice versa. However, this depends on the choice of coordinates43.
Thus, given a smooth manifold, there is no distinguished or natural way to relate
vectors to covectors, there are many ways to do this, but none of them is special. The
situation changes if the manifold is equipped with a metric tensor. In this case, there
is a standard way (called lowering an index) of mapping vectors to covectors, which
does not depend on the coordinates chosen, as we will see in Section 2.9.
• Cotangent bundle. As a set, the union of all cotangent spaces on an n-dimensional
manifoldM is the cotangent bundle T ∗M . This is a ‘fibre bundle’ whose ‘base space’
is M and whose fibres are the cotangent spaces. It is a manifold of dimension 2n.
Locally it is a Cartesian product. For each coordinate neighborhood of M with coor-
dinates xi we get coordinates on T ∗M given by (x1, · · · , xn, φ1, φ2, · · · , φn). Here
φ = φjdx

j is any cotangent vector at the point with coordinates xi. If M is the con-
figuration space of a mechanical system, then the phase space is its cotangent bundle.
Hamilton’s equations are equations for a vector field on this cotangent bundle.

2.9 Tensors of rank two and 2-forms

Vector fields v = vi∂i that we encountered in Sect. 2.7 are called contravariant
tensor fields of rank one (or of type (1,0) as their components (vi) have one upper
index), while 1-forms introduced in Sect. 2.8 are called covariant tensor fields of rank
one (or of type (0,1)). More generally, one may define tensors of higher rank that
find varied uses in physics and mathematics. For instance, as we will see later in this
section, the metric is a symmetric tensor of rank two that is used to define lengths
and angles on a manifold while the symplectic form is an antisymmetric second rank
tensor on phase space that arises in Hamilton’s equations.

At a point p ∈ M lying in a patch with local coordinates xi, we may consider the
tensor product of the tangent space with itself Tp(M) ⊗ Tp(M). This is the space of
dimension n2 with basis consisting of ∂i ⊗ ∂j for 1 ≤ i, j ≤ n. A type (2,0) tensor
field or second rank contravariant tensor field is then a linear combination

t = tij(x)∂i ⊗ ∂j . (141)

42There is a related vector field, the gradient of f , introduced in Sect. 2.7. However, it requires an inverse
metric tensor for its definition (grad f)i = gij∂jf . The components of df and grad f are numerically equal
if gij = δij , see Section 2.9.

43For example, on R with coordinate x, we have an isomorphism mapping dx ↔ ∂x. If we change to
a new coordinate y = 2x, then dy = 2dx and ∂y = 1

2
∂x. The new isomorphism between cotangent and

tangent spaces dy ↔ ∂y is different since it takes dx to 1
4
∂x. Thus, there are many isomorphisms between

the spaces of covectors and vectors, none of which can be considered coordinate-independent or standard.
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Without further ado, we note that upon changing coordinates x 7→ y, the components
tij transform via the Jacobian matrix, just as for contravariant vector fields, except
that there are now two Jacobian factors

t = t̃kl
∂

∂yk
⊗ ∂

∂yl
where t̃kl = Jki J

l
jt
ij and Jki =

∂yk

∂xi
. (142)

Just as vector fields act linearly on 1-forms to produce functions, second rank con-
travariant tensors act bilinearly44 on a pair of 1-forms to produce functions:

t(φ, ψ) = tij∂i ⊗ ∂j(φkdxk, ψldxl) = tijφkψl∂i(dx
k)∂j(dx

l) = tijφiψj . (143)

2.9.1 Poisson tensor

A physically important example of a (2,0) tensor is the Poisson tensor on the phase
space of a mechanical system: r = rij∂i ⊗ ∂j , which has the further property of an-
tisymmetry: rij = −rji. The Poisson bracket of a pair of smooth functions (observ-
ables) is the function {f, g} = r(df, dg) = rij∂if∂jg. For a particle moving on a
line, M = R2 with canonical coordinates ξ = (q, p) and rij = (0, 1| − 1, 0). Given
a Hamiltonian function H on phase space, the Poisson tensor allows us to define the
Hamiltonian vector field VH . It is the vector field which acts on any 1-form φ via
VH(φ) = r(φ, dH). The Hamiltonian vector field defines time evolution of any ob-
servable through ḟ = VH(df). Trajectories on phase space are the integral curves of
VH . They are governed by the ODEs ξ̇i = V iH = rij∂jH . For the canonical Poisson
tensor on R2, they reduce to Hamilton’s canonical equations ξ̇1 = q̇ = r12∂2H = ∂H

∂p

and ξ̇2 = ṗ = r21∂1H = −∂H∂q . �
Similarly, we have covariant tensor fields of rank two or tensors of type (0,2):

t = tijdx
i ⊗ dxj , (144)

which are linear combinations of the tensor products of the coordinate basis covector
fields. Such a tensor transforms via two factors of the inverse Jacobian:

t̃kl = (J−1)ik(J−1)jl tij . (145)

In summary, each upper index on a tensor transforms via J and each lower one via
J−1. Covariant tensors of rank two can act on a pair or vector fields and produce a
scalar function, they are bilinear maps from Vect(M)× Vect(M) to F(M).

2.9.2 Metric tensor

An important example of a 2nd rank covariant tensor field is the metric tensor
g = gijdx

i ⊗ dxj , which has the further property of being symmetric gij = gji and

44t(φ, ψ) is bilinear if it is linear in both the entries. For instance, t(fφ1 + gφ2, ψ) = ft(φ1, ψ) +
gt(φ2, ψ) for any functions f, g and 1-forms φ1, φ2, ψ. Bilinearity is a consequence of the definition of
a dual space: vector fields are dual to 1-forms and act linearly on 1-forms (as discussed in Sect. 2.8). So
pairs of vectors fields (written as a tensor product ∂i ⊗ ∂j ) act linearly on pairs of 1-forms (φ, ψ).
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nondegenerate [gij an invertible matrix]. A metric allows us to generalize the concept
of the dot product of vectors in Euclidean space to tangent vectors at a point p on a
manifold M . The kinetic energy term T = 1

2mij q̇
iq̇j of a Lagrangian quadratic in

velocities defines a metric tensor on the configuration space of a mechanical system.
A metric is called Riemannian if gij is a positive-definite matrix at every point on the
manifold. Since the metric defines a real symmetric matrix at each point, its eigenval-
ues are real. Positive definiteness means the eigenvalues are strictly positive. There
cannot be a zero eigenvalue since the metric is assumed nondegenerate (invertible).
• If the metric is not positive definite (or negative definite), then it must eigenvalues
of both signs. Such a metric is called pseudo-Riemannian. The pair of integers (p, q)
specifying the number of positive and negative eigenvalues is called the signature of
the metric. An example of a pseudo-Riemannian metric is the Lorentzian metric tensor
of space-time; e.g., Minkowski space in Cartesian coordinates xµ = (ct, x, y, z) has
the metric given by the constant diagonal matrix gµν = diag(1,−1,−1,−1) where
µ, ν = 0, 1, 2, 3). It has signature (1, 3).
• A virtue of an invertible metric tensor is that it defines an isomorphism from vectors
to covectors: v 7→ v′ where v′i = gijv

j . The inverse metric with components gij maps
covectors to vectors gijv′j = vi. Thus, on a Riemannian manifold, the tangent and
cotangent spaces are canonically isomorphic. We say that the metric and its inverse
can be used to lower and raise indices. In particular, we may use the inverse metric
gij to define the gradient of a function (see Sect. 2.7) by raising the index of the
components of the 1-form df : (grad f)i = (∇f)i = gij∂jf .
• A metric tensor gives a manifold a rigid geometric shape45. The square of the length
of the vector v = vi∂i ∈ TpM is defined as

g(v, v) = gijdx
i ⊗ dxj(vk∂k, vl∂l) = gijv

ivj . (146)

Given a pair of tangent vectors u, v ∈ TpM , their inner product is defined as g(u, v) =

giju
ivj . The cosine of the angle between them is g(u, v)/

√
g(u, u)g(v, v).

• It is conventional to use the symbol ds2 for the expression for the metric tensor
gijdx

i ⊗ dxj . Often, the tensor product symbol ⊗ is suppressed. Sometimes, ds2 is
called the ‘square of the line element’. What this means, for instance, is that g(ẋ, ẋ) =
gij ẋ

iẋj is the square of the length of the velocity vector ẋ = ẋi∂i to a curve xi(t).

45 The surface of a round sphere and an ellipsoid are diffeomorphic, they have the same topology. How-
ever, they differ geometrically: notions of lengths of tangent vectors and angles between them differ. When
the distances between corresponding points on two diffeomorphic manifolds are the same, the notions of
lengths and angles are preserved and the two manifolds are said be isometric (have the same geometry).
This happens when the diffeomorphism preserves the metric tensor. A page of a book and a cylinder are
isometric since the page can be bent into a cylinder without stretching or tearing.
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2.9.3 Two-forms

An antisymmetric second rank covariant tensor is called a 2-form. To make the
antisymmetry manifest, one defines the wedge product46

dxi ∧ dxj = dxi ⊗ dxj − dxj ⊗ dxi (147)

and writes a 2-form with antisymmetric components ωij as (show the 2nd equality!)

ω = ωijdx
i ⊗ dxj =

1

2
ωijdx

i ∧ dxj . (148)

Note that dx1 ∧ dx1 = 0, etc. Geometrically, two-forms are related to area elements
on tangent two-planes in a manifold. The familiar area ‘element’ dx dy on a plane is
more precisely the 2-form dx ∧ dy. The antisymmetry of the wedge product allows
us to encode the orientation of the area element, which in vector calculus is conveyed
by the inward/outward normal n̂ in an ‘infinitesimal area vector’ dx dy n̂ on a surface
parametrized by x and y.
• In Euclidean space R3 with Cartesian coordinates, the components of the wedge
product of 1-forms df and dg are related to those of the cross product ∇f × ∇g
whose magnitude measures the area of a parallelogram spanned by the vectors ∇f
and∇g.
• The space of 2-forms is denoted Ω2(M). Recall that functions can also be regarded
as 0-forms and that we could go from functions to 1-forms by taking the differential:
df = (∂if)dxi. The differential of a function is also called its exterior derivative.
Interestingly, there is a similar way of going from 1-forms to 2-forms by (exterior)
differentiation. Given a 1-form φ = φjdx

j , we define its exterior derivative

ω = dφ = dφj ∧ dxj , (149)

which is a 2-form. To find its components we write

dφ =
∂φj
∂xi

dxi ∧ dxj =
1

2
(∂iφj − ∂jφi)dxi ∧ dxj whence ωij = ∂iφj − ∂jφi.

(150)
We used the antisymmetry of the wedge product in the second step, relabelled indices
and used the definition (148) to identify the antisymmetric tensor ωij .

However, unlike ordinary differentiation that can be done repeatedly to produce
higher order derivatives of a function, the square of the exterior derivative vanishes47.
Indeed, using the definition in (149), the exterior derivative of the 1-form df is

d(df) = d(∂jf)dxj = (∂i∂jf)dxi ∧ dxj = 0. (151)

46 The wedge product can be written as a sum over permutations of two objects: dx1 ∧ dx2 =∑
σ∈S2

sgn (σ)dxσ(1) ⊗ dxσ(2). Here S2 is the permutation or symmetric group consisting of two
elements, the identity (σ(1) = 1, σ(2) = 2) and the exchange transposition (σ(1) = 2, σ(2) = 1).
sgn (σ) is the sign of the permutation: −1 to the power of the number of pairwise transpositions needed to
write σ as a product of exchanges. The identity has sign +1 and the exchange has sign −1.

47We say that the exterior derivative is nilpotent of degree two: d2 = 0
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Here ∂i∂jf is symmetric under i↔ j exchange due to the equality of mixed partials,
while the wedge product dxi ∧ dxj is antisymmetric, so the sum vanishes. Thus,
d2f = 0. This identity is a generalization of the vector identity∇× (∇f) = 0 valid
for real-valued functions on Euclidean space R3.
• A 1-form φ that is the differential of a smooth function (φ = df ) is called an exact
1-form. A 2-form ω that is the exterior derivative of a 1-form ω = dα is said to be an
exact 2-form.
• A 1-form φ whose exterior derivative vanishes is called a closed one-form. Any
exact 1-form is automatically closed. Soon we will define the exterior derivative of a
2-form. As with 1-forms, we will say that a 2-form ω is closed if dω = 0.
• Just as a 1-form acts linearly on vector fields to produce functions φ(v) = φiv

i, a
2-form acts as a skew-symmetric bilinear map from pairs of vector fields to F(M):

ω(u, v) = ωijdx
i ⊗ dxj(uk∂k, vl∂l) = ωijdx

i(uk∂k)dxj(vl∂l) = ωiju
ivj . (152)

Here, the 1st (2nd) factor in a tensor product acts on the 1st (2nd) entry of the ordered
pair (u, v). We used linearity of the action of forms on vector fields (139) and the
pairing dxi(∂k) = δik.
• A 2-form can be used to define an area for infinitesimal parallelograms in each
tangent space to a manifold. For example, if ∂i, ∂j are two coordinate tangent vectors
at x, then the area of the parallelogram they span is defined as ω(∂i, ∂j) = ωij(x).
However, note that ω could assign a zero ‘area’ to a parallelogram spanned by linearly
independent vectors. For the assigned area of such a parallelogram to be nonzero, we
must ask that ω be nondegenerate. More on this when we discuss a symplectic form.
• Examples of 2-forms.
• (i) An interesting example of a 2-form is the electromagnetic field strength tensor F ,
called the Faraday tensor. It is a 2-form on R4 (the 4-dimensional Minkowski space-
time). It is conventional to denote the Cartesian coordinates on R4 by x0, x1, x2, x3

with x0 = ct where t is time and c is the speed of light. F is the exterior derivative of
the 1-form ‘gauge potential’:

A = Aµdx
µ and F = dA =

1

2
Fµνdx

µ ∧ dxν where Fµν = ∂µAν − ∂νAµ
(153)

as in (150). Here µ, ν = 0, 1, 2, 3 and Aµ = (φ,−A) is a combination of the scalar
and vector potentials of electrodynamics. It may be shown that the electric and mag-
netic fields appear as the components of F .
• (ii) An example of a 1-form in mechanics is the so-called canonical or Liouville
1-form on the 2n-dimensional phase space M = R2n of a system with n-degrees of
freedom:

α = pidq
i = p1dq

1 + p2dq
2 + · · ·+ pndq

n. (154)

We may view R2n as the cotangent bundle of the configuration space Rn, which is the
base space of the bundle. Notice that ξ = (q1, · · · , qn, p1, · · · pn) together furnish co-
ordinates on R2n. Here, qi are coordinates on the base space while pj are coordinates

65



on the fibers (components of a cotangent vector or momentum covector in the coor-
dinate basis p = pjdx

j). For a = 1, 2, · · · , 2n, ξa are called Darboux or canonical
coordinates on the cotangent bundle. Notice that α has no components along the dpi.
Its exterior derivative is a 2-form (using ∂pi

∂qj = 0 and ∂pi
∂pj

= δji ):

ω = dα = dpi ∧ dqi = −dqi ∧ dpi = −(dq1 ∧ dp1 + · · ·+ dqn ∧ dpn)

=
1

2
(−dq1 ∧ dp1 − · · · − dqn ∧ dpn + dp1 ∧ dq1 + · · ·+ dpn ∧ dqn). (155)

From this we may read off the antisymmetric components of ω = 1
2

∑2n
a,b=1 ωabdξ

a∧
dξb. The only nonzero ones are:

ωi,n+i = −1 and ωn+i,i = 1 for i = 1, 2, . . . , n. (156)

This ω is called the canonical symplectic 2-form. It is invertible at each point. The
inverse is the canonical Poisson tensor (ωabrbc = δca). For one degree of freedom
(n = 1), α = pdq and

ω =
1

2
(−dq∧dp+dp∧dq) =

1

2
(ω11dq∧dq+ω12dq∧dp+ω21dp∧dq+ω22dp∧dp)

(157)
so that ω12 = −ω21 = −1 and ω11 = ω22 = 0 and ω =

(
0 −1
1 0

)
. Referring back

to our discussion of the Poisson tensor earlier in this section, we observe that given a
Hamiltonian function H on phase space, the Hamiltonian vector field is defined via
ω(·, VH) = dH(·). In components, ωabV bH = ∂aH or inverting, V cH = rca∂aH .
The integral curves of this vector field are called the phase space trajectories of the
Hamiltonian system.
• On R2 with Cartesian coordinates (x1, x2) = (x, y), we have the standard surface
area form Ω = 1

2εijdx
i ∧ dxj . Here εij is the antisymmetric Levi-Civita symbol with

ε12 = −ε21 = 1. Writing out the terms, Ω = 1
2 (dx1∧dx2−dx2∧dx1) = dx1∧dx2.

This is the usual surface integration element. Often, when we write
∫
f(x, y)dxdy we

mean the integral of the 2 form f(x, y)dx ∧ dy. We will discuss integration of forms
later.

2.9.4 Mixed second rank tensors

Aside from contravariant and covariant tensors, we also have mixed second rank
tensors48 of type (1,1): t = tij∂i ⊗ dxj . They transform via one Jacobian and one
inverse Jacobian factor: t̃kl = Jki (J−1)jl t

i
j . A (1,1) tensor restricted to a point p ∈

M can be viewed as a linear transformation on the tangent space Tp(M). Indeed,
contracting it with a tangent vector gives another tangent vector:

t(·, v) = tij∂i(·)dxj(vk∂k) = tijv
j∂i(·) or vi 7→ v′i = tijv

j . (158)

48We have arbitrarily chosen to place the ∂i ahead of the dxj in the tensor product. The opposite order
can also be followed throughout.
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The · is a placeholder for an unspecified 1-form that t could act on via the first
slot. Similarly, tijv

j∂i(·) is the action of a vector field on an unspecified 1-form.
Analogously, t may also be viewed as a linear map from 1-forms to 1-forms, taking
φi 7→ φ′i = tjiφj . The components tij of a (1,1) tensor define a matrix in the coordinate
basis, and the above transformation rule written in matrix notation, t̃ = JtJ−1 is just
a similarity transformation!

2.10 Higher rank tensor fields and forms

More generally, we have tensor fields of type (p, q) for p, q ≥ 0 which, in local
coordinates, are given by the linear combinations

t = t
i1···ip
j1···jq∂i1 ⊗ · · · ⊗ ∂ip ⊗ dx

j1 ⊗ · · · ⊗ dxjq . (159)

Their components transform via p factors of J for upper indices and q factors of J−1

for lower indices. Such a tensor field can act linearly on p one-forms and q vector fields
to produce a function: t(φ, ψ, · · · , u, v, · · · ) = t

i1···ip
j1···jqφi1ψi2 · · ·u

j1vj2 · · · . Thus,
algebraically, (p, q) tensor fields are simply multilinear maps from p copies of Ω1(M)
and q copies of Vect(M) to the space of scalar functions on M . For instance, t(fφ1 +
gφ2, . . .) = ft(φ1, . . .) + gt(φ2, . . .) for any scalar functions f and g.

Of particular importance are the p-forms, which are covariant antisymmetric ten-
sor fields49 of rank p (or of type (0, p)),

ω = ωi1···ipdx
i1 ⊗ · · · ⊗ dxip . (160)

Antisymmetry means the components are antisymmetric under interchange of any pair
of indices. As a consequence, a p-form on an n dimensional manifold must be identi-
cally zero if p > n (at least one basis 1-form must appear twice in the tensor product,
which when contracted with an antisymmetric coefficient, must vanish). Forms can be
written as linear combinations of p-fold wedge products of coordinate 1-forms, which
are obtained by antisymmetrizing the p-fold tensor product:

ω =
1

p!
ωi1···ip dx

i1 ∧ · · · ∧ dxip . (161)

For instance, a three-fold wedge product is a sum over all permutations of three objects
(which comprise the symmetric group50 S3) weighted by the signs of the permutations

49We may take linear combinations of p-forms ω, ψ: fω+ gψ for any smooth functions f, g to produce
other p-forms. The space of p-forms is denoted Ωp(M).

50 The symmetric group on 3 letters has 3! = 6 elements. The identity σ(i) = i denoted (1)(2)(3)
has sign 1. There are three pairwise transpositions (12)(3), (1)(23) and (2)(31) which have sign -1.
For example (23) means 2 and 3 are mapped to each other. Thus, (1)(23) means σ(1) = 1, σ(2) =
3, σ(3) = 2. There are also two cyclic permutations (123) = (12)(23) and (132) = (12)(13) which
have been written as products of pairwise exchanges composed from right to left. Here (132) means
σ(1) = 3, σ(3) = 2 and σ(2) = 1. In the composition (12)(13), 3 is mapped to 1 which is then mapped
to 2, so that 3 is on the whole mapped to 2. On the other hand, 2 is directly mapped to 1. The cyclic
permutations have sign +1 as they are products of an even number of transpositions. See also Footnote 46.
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(see Footnote 46):

dx1 ∧ dx2 ∧ dx3 =
∑

σ∈S3

sgn (σ) dxσ(1) ⊗ dxσ(2) ⊗ dxσ(3)

= dx1 ⊗ dx2 ⊗ dx3 − dx2 ⊗ dx1 ⊗ dx3 − dx1 ⊗ dx3 ⊗ dx2
− dx3 ⊗ dx2 ⊗ dx1 + dx2 ⊗ dx3 ⊗ dx1 + dx3 ⊗ dx1 ⊗ dx2. (162)

• Let us count the number of independent p-forms on an n-dimensional manifold.
Zero forms are smooth functions. In a coordinate neighborhood, any smooth function
is written as f(x)1. We view the constant function 1 as the only basis element with
the coefficient being an arbitrary function. Any 1-form may be written as φi(x)dxi.
So we have n independent basis 1-forms with coefficients being functions. Similarly,
any 2-form is expressible as ω = ωij(x)dxi ∧ dxj where ωij(x) are antisymmetric
coefficients. Due to antisymmetry, there are n(n − 1)/2 =

(
n
2

)
independent basis 2-

forms. Similarly they are
(
n
p

)
independent basis p-forms for 0 ≤ p ≤ n. In particular,

any n-form may be written as Ω = ρ(x)dx1 ∧ · · · ∧ dxn: any n-form is a multiple (by
some function of the coordinates) of dx1 ∧ · · · ∧ dxn.
• An example of a 3-form on R3 is the Euclidean volume form whose components
in Cartesian coordinates are given in terms of the Levi-Civita symbol:

Ω =
1

3!
εijkdx

i ∧ dxj ∧ dxk. (163)

Combining the six nonzero terms using the antisymmetry of the wedge product, we
verify that Ω is simply the familiar volume element Ω = dx1 ∧ dx2 ∧ dx3. The Levi-
Civita symbol generalizes to Rn: εi1···in is antisymmetric under every exchange of
indices and satisfies ε12···n = 1.
• Volume elements transform via a Jacobian determinant. Let us consider the case of
R3, although the formulae generalize to n dimensions. On the one hand,

Ω =
1

3!
εijkdx

i ∧ dxj ∧ dxk = dx1 ∧ dx2 ∧ dx3. (164)

Changing coordinates to y,

Ω =
1

3!
(J−1)li(J

−1)mj (J−1)nkεlmndy
i ∧ dyj ∧ dyk (165)

This is the usual coordinate transformation formula: the components of a covariant
third rank tensor transform via three factors of the inverse Jacobian. The question we
pose is how the simplified expression dx1 ∧ dx2 ∧ dx3 transforms. To answer this,
we use the formula εijk detA = AliA

m
j A

n
kεlmn, which holds for any 3×3 matrix and

apply it to A = J−1. We then find that

Ω =
1

3!
(det J−1)εijkdy

i ∧ dyj ∧ dyk. (166)

As before, all the six nonzero terms in the sum contribute equally, leaving us with

Ω = dx1 ∧ dx2 ∧ dx3 = (det J−1)dy1 ∧ dy2 ∧ dy3. (167)
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This is the sense in which we say that the volume element transforms via a Jacobian
determinant. Note that this generalizes to n dimensions where we use the formula
εi1···in detA = Aj1i1A

j2
i2
· · ·Ajnin εj1···jn for any n × n matrix A and choose A as the

inverse of the Jacobian matrix.

∗ Levi-Civita tensor density. We define the Levi-Civita symbol εijk to have the same
components in any coordinate system. Suppose xi → x̃i, is a change of coordinates,
then ε̃ijk = εijk. What is more, for any invertible matrix A, we have the identity

εijk = detA−1 AliA
m
j A

n
k εlmn. (168)

Applying this to the inverse Jacobian matrix A = J−1 where (J−1)li = ∂xl

∂x̃i , we get

ε̃ijk = εijk = det

(
∂x̃a

∂xb

)
∂xl

∂x̃i
∂xm

∂x̃j
∂xn

∂x̃k
εlmn. (169)

If the determinant did not appear on the right, εijk would transform as the components
of a (0, 3) tensor. To account for the first power of the Jacobian determinant, we say
that εijk transform as the components of a tensor density of weight 1. �

2.11 Pushforward and pullback of tensors

Given a pair of smooth manifoldsX and Y with dimensions n and n′ and a smooth
map φ : X → Y , we may, in favorable cases, use φ to move tensor fields between
the manifolds. This finds application, for instance, in deducing the induced metric on
a submanifold embedded in Euclidean space. However, moving tensors only works
in certain directions. Forms and more generally covariant tensor fields on Y may be
‘pulled back’ to X , the pullback being denoted φ∗. On the other hand, vector fields
(and more generally contravariant tensor fields) on X may, in some cases, be ‘pushed
forward’ to Y via φ∗. Combining these, if φ is a diffeomorphism (invertible smooth
map with smooth inverse) then the pullback and pushforward via φ and φ−1 may be
used to move arbitrary tensor fields in either direction.
Pullback. The simplest tensor field is a scalar function. Given a smooth function
f : Y → R, its pullback is the function φ∗f : X → R defined as (φ∗f)(x) = f(φ(x))
for any x ∈ X . In other words, we simply compose f with φ to go from X to R in

two steps, φ∗f : X
φ−→ Y

f−→ R. For example, suppose φ : S2 → R3 is the map
φ(θ, ϕ) = (x = sin θ cosϕ, y = sin θ sinϕ, z = cos θ) and let f(x, y, z) = z be the
height function. Then the pullback (φ∗f)(θ, ϕ) = cos θ is the function that assigns the
cosine of the polar angle to any point on the sphere. On the other hand, it is generally
not possible to define the pushforward of a function. For this reason, we will view
scalar functions as covariant (rather than contravariant) tensors of rank zero. This is
one reason we viewed C∞(M) as the space of zero-forms Ω0(M).

More generally, the gadget that helps us do this pushing and pulling is the lin-
earization or differential dφ of the map φ. Suppose xi and yj are local coordinates
on X and Y and y = φ(x) or yj = φj(x). Then the linearization at the point x is
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represented by the n′ × n Jacobian matrix with entries ∂φj

∂xi . Next, given a 1-form
ωjdy

j on Y we define its pullback at a point x ∈ X , denoted (φ∗ω)(x) via

(φ∗ω)i(x) =
∂φj

∂xi
ωj(φ(x)). (170)

Notice that no assumption on the invertibility of φ has been made. This suggests why
it is not possible, in general, to pushforward a differential form. If φ is invertible (say
when X = Y and φ is a diffeomorphism), we may multiply by the inverse Jacobian
and formally recover the coordinate transformation formula of (138). However, there
is a conceptual difference: while a map φ : X → X actively moves points around,
a coordinate transformation only relabels them. The generalization to the pullback of
covariant rank-p tensor fields (including p-forms) is:

(φ∗ω)i1···ip(x) =
∂φj1

∂xi1
· · · ∂φ

jp

∂xip
ωj1···jp(φ(x)). (171)

Evidently, the pullback of a smooth function is the special case when p = 0.
Pushforward. Pushing forward vector fields or contravariant tensors is not so straight-
forward. To begin with, we note that the linearization of φ defines a linear transfor-
mation dφ between tangent spaces. If y = φ(x), then dφ(x) : TxX → TyY . Once
coordinates are chosen, this map is represented by the n′ × n Jacobian matrix. Now
if v = vi∂xi ∈ TxX , then it is natural to define its pushforward to be the image of
the vector v under the linear transformation dφ. Thus, we are tempted to define the
pushforward φ∗v as the vector field whose components at y = φ(x) are given by

(φ∗v)j(y) =
∂φj

∂xi
vi(x) for j = 1, 2, . . . , n′. (172)

Note that if φ is not surjective (say, if n′ > n) then this does not define a vector field
on all of Y . Nevertheless, we can try to define a pushforward vector field on the image
φ(X) ⊂ Y . However, there is a further difficulty with (172): suppose φ is many to one
with y = φ(x1) = φ(x2). Then it may happen that the images of v via the Jacobians
∂φj

∂xi at x1 and x2 are not the same, giving rise to an ambiguity in the definition of
the vector field. This difficulty does not arise when φ is one-to-one and we can write
x = φ−1(y) on the RHS of (172) to arrive at a pushforward vector field φ∗v on φ(X).
See Prob. ?? for a simple example. The definition has a straightforward generalization
to rank p contravariant tensor fields for any p = 1, 2, . . .:

(φ∗t)
j1···jp(y) =

∂φj1

∂xi1
∂φj2

∂xi2
· · · ∂φ

jp

∂xip
ti1···ip(x). (173)

As before, we notice the formal similarity with the coordinate transformation laws
[e.g., (142)] for contravariant tensor fields when X and Y are the same manifold.
What is more, if φ is a diffeomorphism then it is both injective and surjective so that
(173) unambiguously defines a pushforward tensor field on all of Y .
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Pullback of a metric: induced metric via an example. Consider the unit sphere S2

(x2 + y2 + z2 = 1) embedded as a submanifold of R3. If we use polar coordinates
(ξ1 = θ, ξ2 = ϕ) on S2, the embedding is defined by a smooth map φ : S2 → R3

given by φ(θ, ϕ) = (x = sin θ cosϕ, y = sin θ sinϕ, z = cos θ). Now, R3 has
the standard flat Euclidean metric whose components in Cartesian coordinates are
gij = δij . We may pullback this rank-2 covariant symmetric tensor field to get an
‘induced’ metric hab on S2 with components

hab = (φ∗g)ab =
∂φi

∂ξa
∂φj

∂ξb
gij . (174)

This formula defines the induced metric and is of course not special to the above
example. In the case of the embedding φ : S2 ↪→ R3, the induced metric hab(θ, ϕ) is
the familiar ‘round sphere’ metric. Evaluate its components.
• By the Nash embedding theorems, essentially any Riemannian manifold M of di-
mension n with metric tensor g can be isometrically embedded in a Euclidean space
of sufficiently large dimension N . This means the metric on M can be realized as the
pull back of the Euclidean metric on RN for a suitable embedding. In particular, the
standard metrics on spheres, ellipsoids, hyperboloids, etc., of various dimensions are
obtained as pullbacks of Euclidean metrics using familiar embeddings.
• The pushforward of a vector field can be used to define the Lie derivative of a vector
field v along a vector field u on a smooth manifold M . Luv is the derivative of v
along the integral curves of u. Suppose t is the parameter along the integral curve
x(t) of u through the point x(0). We cannot take the difference between v(x(0 +
δt)) and v(x(0)) since the vectors lie in distinct tangent spaces. However, for each
small t the flow φt defined by u defines a smooth 1-1 onto map in a sufficiently small
neighborhood of x(0). Thus, we can use this flow to pushforward the vector v(x(0))
to the point x(δt) and do the subtraction in the tangent space to M at x(δt). In this
way, we can define the Lie derivative as the limit of the difference quotient

Luv(x(0)) = lim
δt→0

v(x(δt))− φδt∗v(x(0))

δt
. (175)

With some more effort, one can show that the formula one obtains this way is the same
as the commutator of vector fields [u, v].

2.12 Exterior algebra, exterior derivative and Bianchi’s identity

Exterior algebra. In Sect. 2.8 and Sect. 2.9, we introduced 1- and 2-forms. One-
forms can be used to describe the momentum of a particle on the configuration space
of a mechanical system, the Liouville form ‘p dq’ on phase space, the infinitesimal
heat added to a gas in a thermodynamic process or the electromagnetic ‘scalar’ and
‘vector’ potentials. Two-forms are used to model infinitesimal area elements, the elec-
tromagnetic field strength tensor Fµν and the symplectic form ωij in mechanics. Fur-
thermore, the wedge product of two 1-forms was seen to produce a 2-form. On the
other hand, the differential or exterior derivative of a function df was shown to give a
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1-form, while the exterior derivative of a 1-form led to a 2-form. In this section, we
extend the wedge product and exterior derivative to forms of any rank (introduced in
Sect. 2.10) and also discuss an analog of the Leibniz rule for the exterior derivative
of a wedge product. The space of differential forms with these algebraic properties is
called the exterior algebra. These developments are then applied to understand some
properties of the symplectic form ω of Hamiltonian mechanics.

Recall from Sect. 2.10, that a differential form of order p = 0, 1, 2, . . . or p-form
ω in a patch with coordinates xi is a linear combination of p-fold wedge products of
coordinate 1-forms:

ω =
1

p!
ωi1···ipdx

i1 ∧ · · · ∧ dxip (176)

where ωi1···ip is totally antisymmetric. Given any smooth p-forms ω, ψ and smooth
functions f, g, fω + gψ is also a smooth p-form. Thus, the space of p-forms denoted
Ωp(M) is said to be a module (see Footnote ??) over the ring of smooth real-valued
functions on M (F(M) of Sect. 2.6).

Owing to the antisymmetry of dxi1 ∧ · · · ∧ dxip there are no nonzero p forms for
p > n on a manifold of dimension n. For instance on R, there is only one coordi-
nate 1-form dx and the only possible coordinate basis 2-form dx ∧ dx vanishes by
antisymmetry (there is no concept of area on a line). On R2, we have two coordinate
basis 1-forms dx and dy, one independent basis 2 form dx ∧ dy = −dy ∧ dx and
no nonzero 3-forms as dx ∧ dy ∧ dx, etc., all vanish. In fact, the number of linearly
independent p-forms at a point is the binomial coefficient

(
n
p

)
since each choice of

p distinct coordinate 1-forms dxi1 , . . . , dxip furnishes one coordinate basis p-form
dxi1 ∧ . . . ∧ dxip . In particular, there is only one (=

(
n
0

)
) independent 0-form and

one (=
(
n
n

)
) independent n-form. What we mean is that any 0-form is some smooth

function times the constant function 1 and any n-form is some smooth function times
the volume form dx1 ∧ · · · ∧ dxn.

We may take the direct sum of the spaces of p-forms to obtain the
∑n
p=0

(
n
p

)
= 2n

dimensional space of all differential forms on M :

Ω(M) = ⊕np=0Ωp(M). (177)

In addition to taking linear combinations of forms, we may take their wedge product.
For the coordinate basis forms

(dxi1 ∧ · · · ∧ dxip) ∧ (dxip+1 ∧ · · · ∧ dxip+q ) = dxi1 ∧ · · · ∧ dxip+q . (178)

For example, (dx ∧ dy) ∧ (dz ∧ dw) = dx ∧ dy ∧ dz ∧ dw. By repeated use of the
antisymmetry property dxi∧dxj = −dxj∧dxi, we may show that the wedge product
of a p-form ω and a q-form ψ is (anti)commutative:

ω ∧ ψ = (−1)pqψ ∧ ω. (179)

Let us explain the origin of the sign. Suppose ω = dx and ψ = dy ∧ dz so that
p = 1 and q = 2. Then dx has to ‘pass through’ dy and dz producing two minus signs
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resulting in dx∧ (dy ∧ dz) = (−1)1·2(dy ∧ dz)∧ dx. Similarly, suppose we consider
(dx ∧ dy) ∧ (du ∧ dv ∧ dw). Here we move dy first through the 3-form picking up
a (−1)3 and then move dx and get another (−1)3. Thus we see the emergence of p
factors of (−1)q leading to the sign (−1)pq .

Equipped with this wedge product, Ω(M) is called the exterior algebra. A special
case is the wedge product of a p-form ω and a 0-form f : ω ∧ f = (−1)0f ∧ ω = fω.

Exterior derivative. The exterior derivative may be extended to a map from p-forms
to (p+ 1)-forms: d : Ωp(M)→ Ωp+1(M) for any p = 0, 1, 2, . . . satisfying the three
axioms:

1. Linearity: d(aω + bψ) = adω + bdψ for any a, b ∈ R and p-forms ω, ψ.

2. Leibniz (antiderivation) rule: d(ω ∧ φ) = dω ∧ φ + (−1)pω ∧ dφ where ω ∈
Ωp(M) and φ is any form.

3. Nilpotent51 of degree two: d2ω = 0 for any p-form ω.

The need for the minus sign in this Leibniz rule is already evident if we consider
the wedge product of a 1-form φ = φjdx

j and a zero form f . Now φ∧f = f∧φ = fφ.
We will calculate d(φ ∧ f) from first principles and see the emergence of the minus
sign. In fact, using dφ = ∂iφjdx

i ∧ dxj , we get

d(φ ∧ f) = d(fφ) = ∂i(fφj)dx
i ∧ dxj = ((∂if)φj + f∂iφj) dx

i ∧ dxj
= df ∧ φ+ fdφ = −φ ∧ df + dφ ∧ f = dφ ∧ f − φ ∧ df. (180)

• Explicit formula.

dα =
1

p!
∂kαi···jdx

k∧dxi∧· · ·∧dxj =
1

(p+ 1)!
(p+1)∂[kαi···j]dx

k∧dxi∧· · ·∧dxj .

(181)
For example d(αidx

i) = 1
2!2∂[jαi]dx

j ∧ dxi with (dα)ji = 2∂[jαi] = ∂jαi − ∂iαj .
• Example: Exterior derivative of a 2-form and the Bianchi formula. Suppose ω =
1
2ωjkdx

j ∧ dxk is a 2-form with antisymmetric components ωjk. Then what is its
exterior derivative? Using linearity and the Leibniz rule,

dω =
1

2
d(ωjkdx

j ∧ dxk) =
1

2
(∂iωjk)dxi ∧ dxj ∧ dxk. (182)

Since dxi∧dxj∧dxk is antisymmetric under exchange of any pair of indices, only the
similarly antisymmetric part of ∂iωjk can contribute. Antisymmetrizing as in (162),
we write

dω =
1

12
(∂iωjk − ∂jωik − ∂kωji − ∂iωkj + ∂kωij + ∂jωki) dx

i ∧ dxj ∧ dxk

= (1/3!) (∂iωjk + ∂kωij + ∂jωki) dx
i ∧ dxj ∧ dxk, (183)

51d2 = 0 is a generalization of the vector calculus identities ∇ ×∇f = 0 and ∇ · (∇ × v) = 0 for
any smooth function f and vector field v in R3.
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In the first equality, every one of the 6 terms contributes equally (check this), this
explains the division by 6. We used the antisymmetry of ω in the last step. Thus
(dω)ijk = ∂iωjk+∂kωij+∂jωki. This is Bianchi’s formula for the exterior derivative
of a 2-form. It follows that dω = 0 iff the Bianchi identity ∂iωjk+∂kωij +∂jωki = 0
is satisfied in each coordinate neighborhood.

Closed and exact forms on a manifold M . A p-form ω such that dω = 0 is said to
be closed. On the other hand, if ω = dφ for some (p− 1)-form φ, then ω is said to be
exact (generalizing the idea of an exact differential). Since d2 = 0, an exact form is
automatically closed. The converse need not be true: a closed from need not be exact.
The linear space of closed p-forms is called Zp(M) while the linear space of exact
p-forms is called Bp(M). The quotient linear space of closed p-forms modulo exact
p-forms is called the pth de Rham cohomology (group) of the manifold, denoted
Hp(M).
• Example from Maxwell Theory. The homogeneous Maxwell equations∇ ·B = 0
and 1

c
∂B
∂t + ∇ × E = 0 are together the statement that the Faraday 2-form F =

(1/2)Fµνdx
µ ∧ dxν on Minkowski space-time R4 (with xµ = (ct, x, y, z) for µ =

0, 1, 2, 3) is a closed 2-form: dF = 0. Here, F0i = Ei and Fij = −εijkBk for 1 ≤
i, j, k ≤ 3. It follows from Poincaré’s Lemma that R4 has trivial cohomology groups:
any closed form is exact. Thus, F must be exact and expressible as F = dA for some
‘gauge potential’ 1-form A = Aµdx

µ. This is why we may express B = ∇ × A
and E = −∇φ − c−1 ∂A

∂t in terms of the scalar and vector potentials which are the
components of Aµ = (φ,−A).

Symplectic form and Bianchi’s identity. Suppose α = pidq
i is the canonical Li-

ouville 1-form on the phase space R2n of a mechanical system with n degrees of
freedom. Then we have seen that the canonical symplectic form is given by ω =
dα = dpi ∧ dqi. It follows that dω = d2α = 0. In other words, the canonical sym-
plectic form is closed. More generally (see Prob. ??) the Jacobi identity implies that
the inverse ω of any invertible (but not necessarily canonical) Poisson tensor r satis-
fies the Bianchi identity ∂iωjk + ∂kωij + ∂jωki = 0. From the foregoing discussion,
this is simply the condition dω = 0. So the closedness of the symplectic form is a
restatement of the Jacobi identity satisfied by the Poisson bracket. We begin to see
the economy and clarity that the use of differential forms can bring to tensor calcu-
lus. What is more, given a smooth ‘Hamiltonian’ function H on M , we may use ω to
define a vector field vH called the Hamiltonian vector field via the formula

vH(·) = ω−1(·, dH). (184)

Here ω−1 is a contravariant (antisymmetric) second rank tensor that can act on a pair
of 1-forms, one of which is chosen to be dH . The resulting object is a vector field as
it can act linearly on an (unspecified) 1-form.

More generally, even if we do not have canonical (q-p-type) coordinates on phase
space and do not have available the canonical Liouville 1-formα = pidq

i, we may still
wish to define a symplectic form using physical or geometric considerations. From
the foregoing, the essential conditions it must satisfy are invertibility and the Bianchi
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identity. Thus, one defines a symplectic manifold as a sufficiently smooth manifold
that is equipped with a closed nondegenerate (i.e., invertible) two-form ω called the
symplectic form. Though it is required to be closed, ω need not be exact. We will see
an example in the context of the 2-sphere.

2.13 Integration on manifolds and Stokes’ theorem

We now move from the exterior differential calculus to the integral calculus on a
manifold. This will allow us to generalize the concepts of line, surface and volume
integrals to manifolds. To do this, we first need the idea of an oriented manifold.

Orientability of a manifold. We may orient a curve γ in 3d space by placing ar-
rows on it so that the curve is traversed in only one direction. A parametrized curve
γ(s) : (0, 1) → R3 with γ̇ 6= 0 everywhere has a natural orientation, namely the
direction in which γ̇ points (which is the same as that of increasing s). If γ̇ vanishes
somewhere, we would not know which way the arrow points there. Moreover, we
can also have the situation where the parametrized curve γ retraces the image so that
there would be points on the curve where the arrow points in both directions. This
may be avoided by assuming that γ̇ 6= 0. Given a vector field v and such a curve
γ, we may define the line element dγ = γ̇(t)dt and the line integral of v along γ:∫
γ
v · dγ. Note that γ need not be an integral curve of v. One verifies that this line

integral is reparametrization invariant52. Indeed, suppose s = s(t) : [0, 1] → [0, 1] is
a reparametrization (invertible map) and let γ̃(t) = γ(s(t)). Then∫

v · dγ̃ =

∫ 1

0

vj
dγ̃j

dt
dt =

∫ 1

0

vj
dγj

ds

ds

dt
dt =

∫ 1

0

vj
dγj

ds
ds =

∫
v · dγ. (185)

For a 2d surface Σ embedded in R3, we usually speak of an outward or in-
ward pointing unit normal at each point of Σ. When Σ is defined by the condition
C(x, y, z) = 0, the normal in the direction of increasing C is given by the unit vec-
tor along the gradient ∇C. To be well-defined (unambiguous), when the normal is
followed around any closed loop on Σ, it must return to its original direction. When
this happens, we say that the surface is oriented. In vector calculus, this normal to the
surface is used to define a vectorial area element (n̂dS) that goes into the definition of
surface integrals. These concepts can be generalized to manifolds of any dimension
and are used to define integration on manifolds. An n-dimensional manifold is ori-
entable if it admits a nonvanishing53 form of top degree n (called a volume form). The
choice of such a form is called an orientation. On R2 we usually choose the orienta-
tion as given by dx ∧ dy, the choice dy ∧ dx is equally valid, but would correspond
to reversing the orientation. On Rn, the standard volume form is dx1 ∧ · · · ∧ dxn.

52When we use a line integral to model the workW =
∫
F ·dγ done by a force field (viewed as a vector

field on the configuration space) as a particle moves along a path, we are asserting that the work done is
independent of how fast the particle moves at various places along the path.

53A p-form ω is nonvanishing if at each point on the manifold, ω(u, v, . . .) 6= 0 for any p linearly
independent tangent vector fields u, v, · · · .
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Admitting a volume form is equivalent to the Jacobian determinants of all the tran-
sition functions between coordinate charts being positive, so that all the coordinate
charts have a common orientation54 and the atlas may be called an oriented atlas. The
two-sphere is orientable since the standard area form on S2 is a nonvanishing 2-form
(proportional to sin θdθ ∧ dφ in polar coordinates, this can be extended to a nonvan-
ishing form at the poles as well by using 2 patches). For a surface in R3, orientability
allows us to unambiguously distinguish two sides of the surface. The Möbius strip is
not orientable55: one can go from the ‘upper’ side of the surface to the ‘lower’ side
at the same point by taking a walk on the strip; this is not possible on a cylindrical
surface or on a sphere, which are orientable.

Riemannian volume form. On an oriented n-dimensional Riemannian or pseudo-
Riemannian manifold M with nondegenerate metric g, one has a natural volume form
ωg . In local coordinates xi, it is ωg =

√
|det g| dx1 ∧ · · · ∧ dxn. Since gij is

invertible, det g 6= 0 so that this is a nonvanishing form. Let us check that this formula
holds in any coordinate system. As noted in Sect. 2.10, under a coordinate change
xi → yi a volume form dx1 ∧ · · · ∧ dxn transforms to det J−1dy1 ∧ · · · ∧ dyn where
J ij = ∂yi

∂xj is the Jacobian matrix. If the transformation is orientation-preserving, then
det J−1 > 0. Now, the metric components transform to g̃ij = gkl(J

−1)ki (J−1)lj .
Hence, det g̃ = det g det((J−1)t) detJ−1. Consequently,

√
|det g|dx1 ∧ · · · ∧ dxn =

√
|det g̃|

det J−1
det J−1dy1 ∧ · · · ∧ dyn

=
√
|det g̃|dy1 ∧ · · · ∧ dyn. (186)

We see that in any coordinate system, the Riemannian volume form has the same
expression.
• Show that the Riemannian volume form on the round unit sphere is ωg = sin θdθ ∧
dφ in polar coordinates on S2. Show that the Riemannian volume form in the spherical
polar coordinate patch on 3d Euclidean space (R3) is given by ω = r2 sin θdr∧dθ∧dφ.

What is more, if one takes any orthonormal basis φ1, φ2, · · · , φn for 1-forms on
M , then ω = ±φ1 ∧ φ2 ∧ · · · ∧ φn. For example, consider 3d Euclidean space R3. In
Cartesian coordinates, the Euclidean metric has components gij = δij with unit deter-
minant and the Euclidean volume form is ω = dx1∧dx2∧dx3. In spherical polar coor-
dinates, the nonzero metric components are grr = 1, gθθ = r2, gφφ = r2 sin2 θ so that

54It is possible to concoct a nonoriented atlas. Consider the Euclidean plane R2 and define a new mani-
fold via two overlapping patches. The left patch x < 1 and the right patch x > −1. On the left patch we de-
fine local coordinates ξ1 = x, ξ2 = y while on the right patch we define local coordinates η1 = y, η2 = x.
They overlap along the strip −1 < x < 1 where the point (x, y) has two addresses or sets of coordinates:
(ξ1, ξ2) and (η1, η2). The transition functions are η1 = ξ2 and η2 = ξ1 resulting in an off-diagonal

Jacobian matrix ∂ηi

∂ξj
= (0, 1|1, 0) with determinant −1. Through this atlas, we have defined a manifold

that is not orientable, the two charts have opposite orientations.
55A cylinder is constructed by taking a rectangular page from a tall book and pasting the two short edges

together: the left of the bottom edge to the left of the top edge. The Möbius strip is obtained by twisting
the bottom edge once before pasting it onto the top edge, so that the left of the bottom edge is joined to the
right of the top edge.
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det g = r4 sin2 θ and the volume form becomes ω = r2 sin θdr∧dθ∧dφ. On the other
hand, the inverse metric is gij = diag(1, 1/r2, 1/(r2 sin2 θ)) so that the coordinate 1-
forms have squared-lengths g−1(dr, dr) = 1, g−1(dθ, dθ) = 1/r2, g−1(dφ, dφ) =
1/r2 sin2 θ. It follows that {dr, rdθ, r sin θdφ} is an orthonormal basis for 1-forms.
We see that their wedge product is the volume form ω. It is also noteworthy that the
length of dφ diverges at the poles, where sin θ = 0.

Integration of forms. In vector calculus, we define line integrals, surface integrals
and volume integrals. These are examples of the integration of a 1-form along a curve,
a 2-form over a surface and a 3-form over a 3d manifold. More generally, a p-form ψ
may be integrated over an oriented p-dimensional manifoldM to obtain a real number
denoted

∫
M
ψ. To evaluate the integral, the manifold is covered by nonoverlapping

cells and their boundaries (each lying within a coordinate chart) and the integral is a
sum of contributions from each cell56. In each cell, the integral is evaluated as in mul-
tivariable calculus. In more detail, the p-form ψ can be written as ψ = fω where f is a
scalar and ω the volume form. Moreover, within a patch with coordinates x1, · · · , xp,
the volume form may be written as ω = µ(x)dx1 ∧ · · · ∧ dxp for some nonvanishing
function µ. Then the contribution of the cell C is

∫
C
ψ =

∫
x(C)

f(x)µ(x)dx1 · · · dxp

where x(C) is the image of the cell in Rp. Examples: (i) We may integrate the 1-form
ψ = f(x)dx over the submanifold I = (1, 2) ∪ (3, 6) of R:∫

I

ψ ≡
∫ 2

1

f(x)dx+

∫ 4

3

f(x)dx+

∫ 6

4

f(x)dx. (187)

Here we have chosen the ‘increasing’ orientation ω = dx (as opposed to −dx) and
broken I into three cells. (ii) The polar coordinate patch xi = (θ, φ) along with its
boundary covers the unit sphere S2. So the integral of the 2-form ψ = fω on S2 may
be expressed as∫

S2

ψ =

∫
x(S2)

f(θ, φ) sin θ dθ ∧ dφ ≡
∫ 2π

0

dφ

∫ π

0

dθ f(θ, φ) sin θ. (188)

The orientation has been chosen so that for f = 1, the integral of ω = sin θdθ ∧ dφ
over S2 gives the area 4π of the unit sphere.

Manifold with boundary. To discuss Stokes’ theorem, we need to generalize the
notion of a manifold to include manifolds with boundary. By the definition of Sect.
2.2, the closed unit disk D (x2 + y2 ≤ 1) contained in the plane is not a manifold,
since points of D on the rim (with x2 + y2 = 1) do not have open neighborhoods
lying within D. For points on the rim, we will allow neighborhoods of a different
sort: roughly those shaped like a half Moon that include nearby points on the rim.
There is an obvious sense in which the unit circle S1 is the boundary of D, which we
indicate via ∂D = S1. The set theoretic difference D \ ∂D is the open unit disk, it is
called the interior of D. More generally, a manifold with boundary is a (topological)

56If ψ has bounded components, the boundaries between cells do not contribute to
∫
M ψ so it does not

matter if these boundaries are omitted or counted a finite number of times.
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space M with two types of points: (a) interior points which together comprise an n-
dimensional manifold (i.e., which have open neighborhoods homeomorphic to Rn or
the n-ball Bn : x2

1 + · · ·+ x2
n < 1) and (b) boundary points which together comprise

an n − 1 dimensional manifold called the boundary (∂M ) consisting of points of M
which have a neighborhood homeomorphic to a half space (x ∈ Rn with x1 ≥ 0) or
half ball (x ∈ Bn with x1 ≥ 0) with the homeomorphism taking the boundary points
to points with x1 = 0.
• A consequence of the definition of a manifold M with boundary is that ∂∂M = 0,
i.e., the boundary of the boundary is empty.
• An orientation on M induces an orientation on its boundary ∂M . This is familiar to
us from surfaces Σ in 3d Euclidean space, a choice of ‘outward’ normal on Σ induces
an orientation of the curve ∂Σ that runs along the boundary of Σ, determined by the
right hand thumb rule. Somewhat more generally, the orientation dx1 ∧ · · · ∧ dxn on
the interior of the half space induces the orientation dx2 ∧ · · · ∧ dxn on the boundary
defined by the condition x1 = 0.

Stokes’ theorem. Suppose ω = dφ is an exact p-form on a p-dimensional manifold
M with boundary denoted ∂M . Then Stokes’ theorem∫

M

dφ =

∫
∂M

φ (189)

expresses the integral of ω over M as that of the (p − 1)-form φ over the (p − 1)-
dimensional boundary ∂M . In particular, the integral of an exact form over a manifold
without boundary vanishes. This is a generalization of Gauss’ divergence theorem and
Kelvin’s and Stokes’ theorem from vector calculus57∫

Ω

∇ · v d3r =

∫
∂Ω

v · dS and
∫
S

(∇× v) · dS =

∮
∂S

v · dl. (191)

Here, Ω is a 3d region in R3 while S is a surface in R3.
In fact, (189) is also a generalization of the fundamental theorem of calculus for

the integral of a 1-form over an interval M = [a, b] ⊂ R:
∫
M
f ′(x)dx =

∫
∂M

f =
f(b) − f(a). Here f is a zero form and the boundary ∂M is the 0-dimensional dis-
connected manifold consisting of two points a and b. Integration of f on a zero di-
mensional manifold is a sum of the values of the function at the points weighted by
the values of the volume form that specifies the orientation. What do we mean by an
orientation on a 0-dimensional manifold? We mean the specification of a nonvanish-
ing 0-form, i.e., a function. The choice of values of this function consistent with the

57It is also a generalization of Green’s theorem, which is a planar version of Stokes’ theorem. Suppose
v = vxx̂+ vy ŷ is a vector field on the x-y plane and let S be a region in the plane bounded by the curve
∂S. Then ∇ × v has only a z component while dS = dx dy ẑ and dl = dx x̂ + dy ŷ, so that Stokes’
theorem becomes ∫

S
(∂xvy − ∂yvx)dx dy =

∮
∂S

(vxdx+ vydy). (190)
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fundamental theorem of calculus is +1 at b and −1 at a. In other words, the orienta-
tion dx of the interval gives ∂M an orientation (+1 at b and −1 at a) leading to the
relative sign on the RHS.

As an application of Stokes’ theorem, let us show that the standard area form
on the unit 2-sphere is not exact. It is given by ω = sin θdθ∧dφ. It is closed dω = 0
as ω is a top degree form. To show it is not exact, we begin by noting that

∫
S2 ω = 4π

is the surface area of the unit sphere58. If ω = dα for some 1-form α, then by Stokes’
theorem, this integral must vanish, since S2 has no boundary:

∫
S2 dα =

∫
∂S2 α = 0.

This would lead to a contradiction. Thus, ω cannot be exact. However, locally in a
coordinate patch, it can be written as ω = dα for α = − cos θ dφ (local exactness is
called the Poincaré lemma). The difficulty is that α cannot be smoothly extended to
a 1-form on all of S2. We have already met a symptom of this, the 1-form dφ has a
length that diverges at the poles (g−1(dφ, dφ) = 1/ sin2 θ where g−1 is the inverse of
the standard round metric on the 2-sphere.) Thus ω is a closed but not exact 2-form
on the sphere. It is therefore a nontrivial element of the 2nd de Rham cohomology
group of the sphere: H2(S2).
• Application of Stokes’ theorem to calculating areas of planar regions. Suppose D
is some closed and bounded region in the x-y plane with boundary ∂D being a closed
curve (more generally, the boundary could be the disjoint union of several closed
curves). We will take the volume form on the plane to be dx ∧ dy. Then the area
enclosed by D is

Ar(D) =

∫
D

dx ∧ dy. (192)

To apply Stokes’ theorem, we notice that on the plane, dx ∧ dy is an exact 2 form
dx ∧ dy = d(xdy). Thus,

Ar(D) =

∫
D

dx ∧ dy =

∫
∂D

xdy. (193)

So we may evaluate areas via a line integral which is simpler than a surface integral.
In fact, this is done in mechanics if x = p and y = q are the momentum and posi-

tion of a particle with one degree of freedom. The closed curve is a periodic trajectory
on phase space. The line integral

∮
pdq is 2π times the action of the trajectory which

is also the area enclosed by the periodic trajectory.

2.14 Laplace-Beltrami operator on a Riemannian manifold from variational principle

• The exterior derivative of a scalar function is a 1-form. To convert this to a vec-
tor field (the gradient) we need an inverse metric. In fact, on a Riemannian manifold
(M, g), the gradient of a scalar function φ is defined as the vector field whose com-
ponents in a coordinate basis are (∇φ)i = gij∂jφ. Here, gij are the entries of the
inverse metric.

58Although polar coordinates do not cover all of the 2-sphere, they cover it except for a set of measure
zero (any one longitude) which does not affect this integral.
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• Can we generalize the concepts of the divergence of a vector field and the Laplacian
of a scalar function, familiar from Euclidean space to general Riemannian manifolds?
We will use the above concept of the gradient to achieve this generalization.
• The Laplace operator acting on a scalar function f on 3d Euclidean space R3 in
Cartesian coordinates is familiar

∆f =∇2f =

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
f(x, y, z), (194)

with a straightforward extension to Rn. It appears in many places including the
Laplace, wave, heat, Poisson and Schrödinger equations. In vector calculus, the
Laplacian arises as the divergence of the gradient: ∇2f = ∇ · ∇f . Depending
on the symmetries of the setup, we often need the Laplacian in spherical, cylindrical
or other curvilinear coordinate systems and it is challenging to remember the formula,
although it is possible to obtain the formula by changing coordinates from Cartesian
to, say, polar. It turns out that there is a generalization of the Laplacian to a Rieman-
nian manifold M with metric tensor g. It is called the Laplace-Beltrami operator and
admits a relatively simple expression in terms of the metric in any particular coor-
dinate system. By using this formula we may obtain an explicit expression for the
Laplacian in the desired coordinate system.
• We can obtain the above formula for the Laplacian using a variational principle
for the Poisson equation. We will use the language of electrostatics, although this is
not essential to the argument. Poisson’s equation for the electrostatic potential φ is
∇2φ = − ρ

ε0
where ε0 is a constant called the permittivity of free space and ρ(x) is

the electric charge density. The electric field is given by E = −∇φ. In Cartesian
coordinates xi this follows from requiring that the ‘energy’ functional59

W [φ] =
1

2
ε0

∫
E2d3x−

∫
ρ(x)φ(x)d3x

=
1

2
ε0

∫
δij(∂iφ)(∂jφ) d3x−

∫
ρ(x)φ(x)d3x (195)

be stationary with respect to infinitesimal variations of φ. To see why this is the case,
let us evaluate W [φ+ δφ] to linear order in δφ:

W [φ+ δφ] =
1

2
ε0

∫
δij∂i(φ+ δφ)∂j(φ+ δφ)d3x−

∫
ρ(x)(φ+ δφ)d3x

= W [φ] +
1

2
ε0

∫ [
2δij∂iφ∂jδφ−

2

ε0
ρδφ

]
d3x+ · · ·

⇒ δW =
1

2
ε0

∫
[−2∂j(δ

ij∂jφ)δφ− (2/ε0)ρδφ]d3x+O(δφ)2. (196)

We integrated by parts and assumed there are no contributions from boundaries. Thus,

δW = 0 ⇒ δij∂i∂jφ = −ρ/ε0 or ∇2φ = −ρ/ε0. (197)

59The first term may be interpreted as the energy in the electric field and the second term as the energy
due to the charges.
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To obtain the Laplacian on a (pseudo-)Riemannian manifold, we will generalize
the energy functional (195) to a manifold with metric g and then extremize it. Suppose
we work on a coordinate patch with coordinates xi and metric tensor gij . The volume
element d3x is now generalized to the Riemannian volume form

√
gdx1∧· · ·∧dxn ≡√

gdnx where g = |det gij |. The square of the gradient δij∂iφ∂jφ is generalized to
the square of the length of the 1-form dφ, i.e., gij∂iφ∂jφ. Then W becomes

W [φ] =
1

2
ε0

∫
gkl(∂kφ) (∂lφ)

√
g dnx−

∫
ρ(x)φ(x)

√
g dnx. (198)

Considering a small variation φ 7→ φ+δφ, we ask that the first variation of W vanish.
Integrating by parts,

δW = −ε0
∫
∂k
(
gkl(∂lφ)

√
g
)
δφ dnx−

∫
ρ(x)δφ

√
gdnx. (199)

Now δW = 0 for any δφ implies

ε0∂k
(√
ggkl∂lφ

)
= −√gρ or

1
√
g
∂k
(√
ggkl∂lφ

)
= − ρ

ε0
. (200)

Comparing with ∆φ = − ρ
ε0

we read off a formula for the Laplacian

∆φ =
1
√
g
∂k
(√
ggkl∂lφ

)
. (201)

This is called the Laplace operator or Laplace-Beltrami operator on scalar fields on
a Riemannian manifold with metric tensor g.
• Divergence of a vector field. Recall that gkl∂lφ are the components of the gradient
of φ. Thus, if we view the Laplacian as ∆φ = div grad φ, then we may read off a
formula for the divergence of a vector field

div v =∇ · v =
1
√
g
∂i(
√
gvi). (202)

2.15 Hodge dual and volume form duals

• Consider a Riemannian manifold M of dimension n with coordinates xi in a patch
with metric gij and inverse gij . We have seen that the spaces of p-forms and (n −
p)-forms at a point of M have the same dimension

(
n
p

)
. Similarly, the spaces of

totally antisymmetric rank-p and rank-(n−p) contravariant tensors also have the same
dimension

(
n
p

)
. A rank-p antisymmetric contravariant tensor is called a p-vector. This

suggests that there may be isomorphisms between these four spaces. On a Riemannian
manifold, there are such canonical linear isomorphisms (called dualities), which are
formulated in terms of the volume form dual and Hodge dual.
• The volume form dual maps a p-vector to an (n − p)-form. It can also be used to
map a p-form to an (n−p)-vector. The Hodge dual maps a p-form to an (n−p)-form
or a p-vector to an (n− p)-vector.
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• The metric volume form on M is the n-form

ω =
1

n!
ωij···kdx

i ∧ dxj ∧ · · · ∧ dxk =
1

n!

√
g εij···kdx

i ∧ dxj ∧ · · · ∧ dxk (203)

where g = det gij . The components of the inverse metric volume form are given by:

ωij···k =
1
√
g
εij···k (204)

Here, ε12...3 = (ε12...3)−1 = 1 and the ε symbol is totally antisymmetric. These
formulae are valid in any coordinate system. Note that εij···kεij···k = n!.
• Volume form dual. The volume form dual * of a q-vector T (antisymmetric con-
travariant tensor of rank q) gives an (n− q)-form with components:

(∗T )l...m =
1

q!
ωij...kl...mT

ij...k. (205)

In particular, the volume form dual of a vector is simply the contraction ∗v = ω(v).
Similarly, one can get an (n − p)-vector from a p-form α using the inverse volume
form:

(∗α)
l...m

=
1

p!
ωij..kl...mαij...k (206)

Moreover, for a p-form α we have

∗ ∗α = (−1)p(n−p)α. (207)

Similarly for a q-vector T we have,

∗ ∗T = (−1)q(n−q)T. (208)

In other words, taking the volume form dual twice in succession is the identity opera-
tion up to a possible sign.
•Hodge dual. The Hodge dual ? of a p-form gives an (n−p)-form by first taking the
volume form dual of the p-form to get an (n−p)-vector and then lowering the (n−p)
indices using the metric. Thus, ? = g∗ is a composition of the metric isomorphism
with the volume form dual. Explicitly,

(?α)i1···in−p = gi1jp+1 · · · gin−pjn
1

p!

1
√
g
εj1···jnαj1···jp . (209)

We may also first raise the indices of the p-form α to get a p-vector and then take its
volume form dual to get an (n − p)-form. The two approaches give the same result,
so, ? = ∗g = g∗. Moreover, if (M, g) is Riemannian, we have the property that for a
p-form α,

? ?α = (−1)p(n−p)α. (210)

• Hodge dual on R3. Let us work out the Hodge dual of coordinate 1-forms on 3d
Euclidean space with Cartesian coordinates. Since Hodge duality is a linear map, it is
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determined by its action on basis forms. For the Euclidean metric gij = δij , det g = 1.
Moreover, ωijk =

√
gεijk = εijk and ωijk = 1√

g ε
ijk = εijk with εijk = εijk being

numerically the same. Suppose α = αidx
i, then its volume form dual is the 2-vector

(∗α)jk = ωijkαi and its Hodge dual is the 2-form

(?α)lm = ωijkαigljgmk = δljδmkε
ijkαi. (211)

Taking α = dx1 we find (?dx1)23 = ε123 = 1. Thus, ?dx1 = dx2 ∧ dx3. In a similar
way,

? dx2 = dx3 ∧ dx1 and ? dx3 = dx1 ∧ dx2. (212)

Next we obtain the volume form dual and Hodge dual of the zero form 1. Its volume
form dual is a 3-vector:

(∗1)ijk =
1

0!
ωijk = εijk. (213)

The Hodge dual is the Riemannian volume 3-form:

(?1)ijk = gilgjmgknε
lmn = εijk ⇒ ?1 = dx1 ∧ dx2 ∧ dx3. (214)

For R3, p(n− p) is always even, so ?? is the identity. Thus

? (dx1 ∧ dx2) = dx3, ?(dx2 ∧ dx3) = dx1, ?(dx3 ∧ dx1) = dx2. (215)

• Hodge dual on R2. The Hodge dual of the 0-form 1 is the volume form:

(∗1)ij = εij ⇒ (?1)ij = gikgjlε
kl = εij ⇒ ?1 = dx1 ∧ dx2. (216)

Conversely, ?(dx1 ∧ dx2) = 1 since p(n− p) = 0 for p = 2.
On the other hand, suppose α = αidx

i is a 1-form. Then

(∗α)j = εijαi ⇒ (?α)k = gkj(∗α)j = gkjε
ijαi. (217)

It follows that

(?α)1 = g11ε
21α2 = −α2 and (?α)2 = g22ε

12α1 = α1 (218)

so that

?(α1dx
1+α2dx

2) = −α2dx
1+α1dx

2 ⇒ ?dx1 = dx2, ?dx2 = −dx1. (219)

• Maxwell’s equations may be written as dF = 0 and d ? F = j where j is the
current density 3-form and F is the Faraday 2-form (F = dA). We may convert the
current density 3-form to a vector by taking its volume form dual (or convert it to a
current 1-form by taking its Hodge dual).
• Inner product between two p-forms: We may use the Hodge dual to define an
inner product (symmetric bilinear operation) on the space of p-forms. Suppose α and
β are both p-forms. To get a number, we would like to define an n-form and integrate
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it over the manifold. There is an obvious n-form: α ∧ ?β. Thus, we define the inner
product as

(α, β) =

∫
α ∧ ?β. (220)

• For example, in electromagnetism, F = dA and the action is proportional to the
inner product of F with itself, S =

∫
F ∧ ?F . When written out in terms of the

electric and magnetic fields, the integrand involvesE2−B2, which is proportional to
the Lagrangian density of the Maxwell field.
•An explicit formula will show that this inner product is symmetric under interchange
of α and β. Consider two p-forms α and β:

α =
1

p!
αij···kdx

i ∧ dxj ∧ · · · dxk and β =
1

p!
βlm···ndx

l ∧ dxm ∧ · · · dxn. (221)

Then the inner product can be expressed as

(α, β) =

∫
α ∧ ?β =

∫
1

p!
αij···kβ

ij···k√gdx1 ∧ dx2 ∧ · · · dxn. (222)

This formula shows that (α, β) = (β, α). To get the formula on the right, we first
need to take the Hodge dual of β to get an (n−p) form. So, first raising all the indices
on β we get a p-vector

βpq···r = gplgqm · · · grnβlm···n. (223)

Taking its volume form dual gives an (n− p) form:

(?β)st···u =
1

p!

√
gεpq···rst···uβ

pq···r

⇒ ?β =
1

(n− p)!p!
√
gεpq···rst···uβ

pq···rdxs ∧ dxt ∧ · · · dxu. (224)

Now, we take the wedge product between α and ?β:

α ∧ (?β) =
1

(p!)2

1

(n− p)!
α̃ij···kβ

pq···rεpq···rst···u
√
g dxi ∧ dxj ∧ · · · dxk ∧ dxs ∧ dxt ∧ · · · ∧ dxu

=
1

(p!)2

1

(n− p)!
α̃ij···kβ

pq···rεpq···rst···uε
ij···kst···u

√
g dx1 ∧ dx2 ∧ · · · ∧ dxn (225)

Here we use the identity dxi∧dxj∧· · ·∧dxk = εij···kdx1∧dx2∧· · ·∧dxn. Moreover,
using the formula for contraction of ε with itself (228), we get,

α ∧ (?β) =
1

(p!)2

1

(n− p)!
αij···kβ

pq···r ((n− p)! δij···kpq···r)
√
g dx1 ∧ dx2 ∧ · · · ∧ dxn

=
1

(p!)2
αij···kβ

pq···r p! δi[pδ
j
q · · · δkr]

√
g dx1 ∧ dx2 ∧ · · · ∧ dxn
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=
1

p!
αij···kβ

pq···r δipδ
j
q · · · δkr

√
g dx1 ∧ dx2 ∧ · · · ∧ dxn (226)

We dropped the antisymmetrization on the δ’s since it is contracted with the antisym-
metric contravariant tensor β. Thus, we get

α ∧ (?β) =
1

p!
αij···kβ

ij···k√gdx1 ∧ dx2 ∧ · · · dxn. (227)

This n-form can be integrated to give the inner product between two forms of the same
degree.
• Contraction of ε: In n-dimensions, if we contract (n − p) indices (i · · · k) of the ε
tensor with itself we get

εi···kl···mε
i···kq···r = (n− p)!δq···rl···m = (n− p)! p! δq[l · · · δ

r
m] (228)

where [l, ..m] denotes antisymmetrization. For example,

εijkεilm = (δjl δ
k
m − δjmδkl ) and εijkεijl = 2δkl . (229)

3 Groups, Lie groups and their Lie algebras

3.1 Some references on groups and Lie algebras

1. N Mukunda and S Chaturvedi, Continuous Groups for Physicists.

2. Bernard Schutz, Geometrical Methods of Mathematical Physics.

3. Govind Krishnaswami, Classical Mechanics: From Particles to Continua and
Regularity to Chaos, Appendix B.

4. H F Jones, Groups, Representations and Physics.

3.2 Concept and definition of a group

A group is a mathematical construct that, among other things, helps us express
and work with symmetries. Groups occur in various parts of physics such as crystal-
lography, atomic physics, relativity and particle physics. They help to recognize and
organize patterns, but can also enter dynamical principles that constrain or determine
the nature of forces. For instance, the angular distribution of possible locations of
an electron in a hydrogen atom can be understood using the spherical symmetry of
the electric potential felt by the electron. On the other hand, the strong nuclear force
among quarks and gluons is determined by a ‘gauge principle’ based on a so-called
color symmetry group. In mechanics, groups typically arise as families of symme-
try transformations among states or configurations or solutions of the equations of a
system. For example, rotations act on the possible locations of a planet in the Ke-
pler problem while the x → −x reflection acts as a symmetry of an even harmonic
oscillator potential V (x) = 1

2kx
2 felt by a particle attached to a spring. However,
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it is advantageous to separate the algebraic concept of a group from its action on a
space. Thus, we will begin by defining an ‘abstract’ group and later discuss how it
may be realized via an action on an auxiliary space like the state space of a mechani-
cal system. Precisely, a group G is a set of elements g, h, k, . . . among which a law of
composition G × G → G is defined: if g, h ∈ G, then their product or composition
gh ∈ G. The product must satisfy the following properties. (i) It must be associative,
i.e., g(hk) = (gh)k for any g, h, k ∈ G. (ii) G must include an identity element e
(sometimes denoted 1 or I) with ge = eg = g for any g ∈ G. (iii) Every element g
must have a two-sided inverse g−1, i.e., gg−1 = g−1g = e. Useful consequences are
(gh)−1 = h−1g−1 and the cancellation law: if gh = gk then h = k.

3.3 Cardinality, discrete and continuous groups

The number of elements |G| in a group G is called its order or cardinality. A
group of finite order is called a finite group. The ‘trivial’ group has just one element,
the identity: G = {1} with 1 · 1 = 1. The set C2 = {1,−1} under multiplication
is a group of order two. While 1 is the identity, (−1)(−1) = (−1)2 = 1. We say
that −1 generates C2 since −1 and (−1)2 account for all the distinct elements. C2

is called the cyclic group of order two. Notice that ±1 are the two square-roots of
unity. More generally, for n = 1, 2, 3, . . ., we have the (multiplicative) cyclic group
of order n consisting of the nth roots of unity {1, e2πi/n, e4πi/n, . . . , e2(n−1)πi/n}.
It is generated by e2πi/n and we write Cn = 〈e2πi/n〉. For n = 1, 2, 3, . . ., the set
Zn = {0, 1, · · · , n− 1} with composition given by addition modulo n (e.g., 2 + 3 ≡
1 (mod 4)) is also a cyclic group of order n. The identity element is 0 and 1 is its
generator. Note that 1 + 1 + · · · + 1 (n summands) = n1 ≡ 0 (mod n). We
will soon see that Zn and Cn are different presentations of the same group: up to
‘isomorphism’ there is just one cyclic group of a given order. Infinite groups could be
discrete (like the additive group of integers Z or the infinite cyclic group) or continuous
(like the multiplicative group of complex numbers of unit magnitude). The latter group
is denoted U(1) and its elements may be represented as z(θ) = eiθ for a real angle
θ which is defined modulo 2π (see Fig. 7). Composition is given by z(θ1)z(θ2) =
ei(θ1+θ2) = z(θ1 + θ2).

3.4 Subgroup.

A subset H of a group G is called a subgroup if it satisfies the group axioms
with respect to the operations inherited from G [see Prob. ??]. The identity subgroup
H = {e} and H = G are subgroups of any group G. Examples: (i) C2 = {±1}
and more generally Cn are subgroups of U(1). (ii) Given any element g of a group
G, it generates a (cyclic) subgroup, namely the set of its powers 〈g〉 = {g0 =
e, g, g−1, g2, g−2, · · · }. If there is a smallest positive integer n such that gn = e,
then 〈g〉 is essentially the same as (i.e., isomorphic to) a cyclic group of order n and
otherwise it is an infinite cyclic group. (iii) Every finite group may be realized as a
subgroup of a group of permutations (see Prob. ??).
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3.5 Group homomorphisms.

Given a pair of groups, a map φ : G → G′ is called a homomorphism if it pre-
serves products: φ(g1g2) = φ(g1)φ(g2) ∀ g1, g2 ∈ G. If φ preserves products then
(see Prob. ??) φ maps the identity in G to that in G′ and maps inverses to inverses:
φ(g−1) = φ(g)−1. The homomorphic image φ(G) ⊆ G′ is a subgroup of G′. A
homomorphism φ : G → G′ is an isomorphism if it is bijective (1-1 and onto,
and hence invertible). Two groups G and G′ are isomorphic (denoted G ∼= G′) if
there is an isomorphism between them. Isomorphic groups are algebraically iden-
tical but could arise or be presented differently. E.g., Cn and Zn are isomorphic,
with the isomorphism mapping the generators to each other: φ(e2πi/n) = 1, so that
φ(e2πij/n) = j for j = 0, 1, · · · , n − 1. The group of unimodular complex num-
bers U(1) is isomorphic to that of 2 × 2 orthogonal matrices (real A with AtA = I)
with unit determinant (SO(2)). Composition is given by matrix multiplication. Its
elements are A(θ) = (cos θ, sin θ| − sin θ, cos θ) for a real angle θ defined modulo
2π. The isomorphism maps z = eiθ to A(θ). Verify that under matrix multiplication,
A(θ1)A(θ2) = A(θ1 + θ2).

3.6 Isomorphisms and automorphisms

An isomorphism φ from a group G to itself is called an automorphism. Every
group has the identity or trivial automorphism defined by φ(g) = g for all g ∈ G.
C2 = {1,−1} has no nontrivial automorphism since we cannot define φ(1) = −1.
Verify that C3 has just one nontrivial automorphism given by φ(1) = 1, φ(ω) = ω2

and φ(ω2) = ω where ω = e2πi/3. Since an automorphism must preserve the alge-
braic structure, it must take a generator to another generator: we check that both ω and
ω2 are generators of C3. C4 = {1, i,−1,−i} also has one nontrivial automorphism:
it exchanges the two generators: φ(1) = 1, φ(i) = −i, φ(−1) = −1 and φ(−i) = i.
• Complex conjugation z(θ) 7→ z∗(θ) (taking eiθ to e−iθ) is an automorphism of
U(1): check this. However, rotation of elements of U(1) is generally not an au-
tomorphism since it does not take the identity to the identity. The antipodal map
z(θ) 7→ −z(θ) is also not an automorphism of U(1) for the same reason.

3.7 Conjugation and conjugacy classes

Given a group G, we say that k ∈ G is conjugate to h ∈ G if k = ghg−1 for
some60 g ∈ G. Conjugation φg(h) = ghg−1 by a fixed element g defines an auto-
morphism of G. It is called an inner automorphism. It is a homomorphism since
φg(h1h2) = gh1h2g

−1 = gh1g
−1gh2g

−1 = φg(h1)φg(h2). It is 1 − 1 since
φg(h1) = φg(h2) implies gh1g

−1 = gh2g
−1 whence h1 = h2. It is surjective

since given any k ∈ G we can always find an h ∈ G such that φg(h) = k, in fact
h = g−1kg. What is more, the inverse of φg is just φg−1 .

The conjugacy class of h is the set Ch = {ghg−1|g ∈ G}. The identity element
is always in a conjugacy class by itself Ce = {e}. Conjugacy is an equivalence

60If g works, so do ghn for n ∈ Z and more generally gg′ for any g′ that commutes with h.
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relation61. This implies G is a disjoint union of conjugacy classes. The conjugacy
classes of a pair of elements h and k are either the same or disjoint: they cannot
partially overlap.

3.8 Abelian and nonabelian groups

The nature of conjugation and conjugacy classes are related to the notion of a
commutative group. We begin by defining the group commutator of a pair of elements
as [g, h] = ghg−1h−1. The commutator measures the extent to which gh and hg
differ. If gh and hg are the same, then [g, h] = e and they are said to commute. A
group is called abelian or commutative if [g, h] = e or gh = hg or ghg−1 = h for all
g, h ∈ G. Otherwise, it is nonabelian. Evidently, a group is abelian iff all conjugacy
classes are singleton sets or equivalently, if every inner automorphism is the identity.
Roughly, conjugacy classes get longer the more nonabelian a group is. Only the first
4 groups below are abelian.

3.9 Examples

There are many elementary examples of groups that arise in interesting ways, some
of which we have met: (i) the multiplicative group C2 = {1,−1} consisting of the
identity and reflection symmetry x→ −x of an even potential V (x) in one dimension,
(ii) the cyclic group C5 of order 5, of rotational symmetries62 of a regular pentagon
(if one includes reflection symmetries, one obtains the dihedral group of order 10),
(iii) the groups R3 and R of translations of 3d Euclidean space and time, (iv) the
group SO(2) of rotational symmetries of a circle or an axisymmetric (cylindrically
symmetric) potential, (v) the group SO(3) of proper rotations of 3d Euclidean space,
(vi) the group O(3) of rotations and reflections of R3, (vii) the Galilei group and (viii)
the groups S2 and S3 of permutations of two and three objects encountered in Footnote
46 of Appendix 2.9 and Footnote 50 of Appendix 2.10.

3.10 Lie groups

While examples (i), (ii) and (viii) are discrete groups (with finitely many ele-
ments), the rest are examples of continuous groups, where the group elements form
continuous families and can be used to model continuous symmetries. Historically,
discrete groups arose, in part, in modeling discrete symmetries of algebraic equations,
while continuous groups arose via continuous symmetries of differential equations.
Prominent among continuous groups are Lie groups, named after the Norwegian math-
ematician Sophus Lie. A Lie group is a group which is also a differentiable manifold,

61Conjugacy is reflexive: h = ehe−1 (h is conjugate to h), symmetric: h = g′kg′−1 where g′ = g−1

(h is conjugate to k if k is conjugate to h) and transitive: k conjugate to h and h conjugate to l implies
k conjugate to l. A binary relation with these properties is called an equivalence relation. It ensures that
conjugacy classes either coincide or do not overlap. For instance, transitivity implies that Ch1 and Ch2

cannot have a ‘partial’ overlap.
62Cyclic and dihedral groups are point groups in 2d. They are symmetries of regular polygons and

molecules with a fixed point and are discrete subgroups of the orthogonal group. Space groups are symme-
tries of an infinite crystal and include discrete translations.
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with the group operations of composition (g, h) 7→ gh and inversion g 7→ g−1 being
smooth maps from G × G → G and G → G (inversion must be a diffeomorphism).
The elements of the group are points on the manifold. The manifold is called the
group manifold.
• The dimension of a Lie group G is the dimension of the corresponding group mani-
fold. Note that the Cartesian productG×G inherits a 2(dimG)-dimensional manifold
structure fromG upon using ordered pairs of charts and transition functions. The con-
cept of smooth maps is as introduced in Appendix 2.2.
• The group U(1) of complex numbers of unit modulus (|z| = 1, z = eiθ) is a one-
dimensional Lie group. The corresponding group manifold is the circle S1: elements
of the group are points on the unit circle. Group composition eiθ3 = eiθ1eiθ2 is a
smooth map from S1 × S1 to S1 taking (eiθ1 , eiθ2) to ei(θ1+θ2). Inversion is also a
smooth map taking z → 1/z. It is a 1-1 onto smooth map from the circle to the circle
with smooth inverse, so it is a diffeomorphism.
• The additive group of real numbers is a Lie group with group manifold R1.
• The additive group of vectors in n-dimensional Euclidean space is a Lie group. The
inverse of a vector v is −v. The composition of two vectors is their sum v +w. The
corresponding group manifold is Rn.

3.11 Matrix Lie groups

Natural examples of Lie groups are the matrix groups GLn(R) and GLn(C) of
invertible n × n real and complex matrices with composition and inversion given by
matrix multiplication and inversion (Nb. GL stands for general linear). For instance,
GLn(R) is an n2-dimensional submanifold (in fact, an open subset) of the space Rn2

of all n × n real matrices. Matrix multiplication and inversion may be shown to be
smooth maps. Since matrix multiplication is generally noncommutative, these groups
for n > 1 are nonabelian. Other examples of ‘classical’ Lie groups63 such as the
special linear, orthogonal, symplectic and unitary groups arise as closed subgroups of
GLn(R) and GLn(C). The special linear groups SLn(R) and SLn(C) consist of in-
vertible matrices with unit determinant. The orthogonal and special orthogonal groups
O(n) and SO(n) consist of orthogonal matrices (AtA = I) in GLn(R) and SLn(R)
respectively. Similarly, the unitary and special unitary groups U(n) and SU(n) con-
sist of unitary matrices (U†U = I) in GLn(C) and SLn(C). The symplectic group
Sp(2n,R) consists of 2n × 2n matrices M that preserve the canonical symplectic
structure: M tωM = ω where ω = (0,−I|I, 0) and I is the n × n identity matrix.
They are the linear canonical transformations of the phase space R2n. Later, we will
discuss some basic properties of Lie groups in the context of the orthogonal group.

3.12 Transformation group acting on a set

Groups often arise as families of (often symmetry) transformations of a space
M such as a configuration or phase space or the space of solutions of equations of
motion. For instance, the rotation group SO(3) acts on the configuration space R3 of

63‘Classical’ here is used to mean that these were among the first Lie groups to be studied.
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a particle in a spherically symmetric potential by rotating the radius vector about the
force center: r 7→ Rr for R ∈ SO(3). Evidently, such a ‘transformation group’ is to
be regarded as an action of an abstract group G on a set M . Precisely, an action of G
on M is a map from G×M →M taking m ∈M to g ·m ∈M such that e ·m = m
and g · (h ·m) = (gh) ·m for all g, h ∈ G and m ∈M .
• Orbit. The set of points that a given point m ∈ M can be mapped to, Om =
{g ·m|g ∈ G} is called the orbit of m under the action of G. The orbit of a vector
v ∈ R3 under the action of the rotation group SO(3) is the sphere centered at the
origin with radius |v|. The orbit of the origin in the origin alone.
• Transitive action. The action is said to be transitive if every point of M can be
mapped to every other point of M by the action of some group element. In other
words, the action is transitive if M is the orbit of any of its points. The action of
rotations on R3 is not transitive: for instance, the origin cannot be mapped to any
other point by a rotation. On the other hand, translations act transitively on R3: any
point can be translated to any other point.
• Stabilizer: The stabilizer of a point m ∈ M is the subset of elements of G that
take m to itself. Given any m ∈ M , show that the stabilizer of m is a subgroup of
G. For the action of SO(3) on R3, the stabilizer of the origin is the whole of SO(3).
The stabilizer of a nonzero vector v ∈ R3 consists of rotations about v, this forms the
subgroup SO(2) of rotations in the plane perpendicular to v.
• The stabilizer of m is also called the isotropy subgroup or little group of m. The
Lorentz group SO(3, 1) acts on Minkowski space via rotations, boosts and their com-
positions. It is the group of linear transformations that preserve the Minkowskian
inner product between 4-vectors. The action is not transitive. The little groups of
time-like, space-like and light-like momentum 4-vectors are of interest in relativistic
physics. They are isomorphic to SO(3), SO(2,1), and the Euclidean group E(2).

3.13 Coset spaces

The idea of a group acting on itself is extremely useful and can be used to ‘subdi-
vide’ a group. Given a subgroup H of G, we may consider all its left translates, i.e.,
the subsets gH = {gh|h ∈ H} where g ranges over elements of G. The subsets gH
are called left cosets of G by H . Note that distinct elements of G may produce the
same coset. For instance, all elements h1, h2, . . . of H give rise to the same coset64

h1H = h2H = eH = H . Moreover, all cosets have the same cardinality as H . In
fact, the elements of the list gH are all distinct. Additionally, two cosets are either the
same or disjoint: g1H = g2H or g1H ∩ g2H = {}. The former happens if g1 = g2h
for some h ∈ H and the latter happens if there is no such h ∈ H . Thus, a group
is a disjoint union of (left) cosets65. The set of left cosets forms the left coset space

64In formulae such as h1H = h2H we mean that the two sets are the same, although the order of
elements in the two lists may differ.

65(Left) cosets may be interpreted as equivalence classes. For any two elements of G, define the relation
g ∼ g′ if there is an h ∈ H such that gh = g′. This relation is reflexive (g ∼ g since ge = g), symmetric
(g ∼ g′ ⇒ g′ ∼ g since gh = g′ implies g′h−1 = g) and transitive (g ∼ g′ and g′ ∼ g′′ implies g ∼ g′′
since gh = g′ and g′h′ = g′′ implies ghh′ = g′′) and therefore an equivalence relation. Evidently, the
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denoted G/H and pronounced ‘G mod H’. Similarly, the right translates Hg of the
subgroup by elements of G leads to the right coset space, denoted H\G. It is often
convenient to pick an element from each coset and use it as a representative for the
coset. For example, the even integers 2Z form a subgroup of the additive group of in-
tegers Z. There are only two cosets: the sets of even and odd integers: 2Z and 2Z + 1
(left and right cosets coincide since addition is commutative). In this case, we could
pick 0 and 1 as the two coset representatives.

3.14 Normal subgroup and quotient or factor group

In general, neither the space of left nor right cosets is a group. However, they
acquire the structure of a group if H is a so-called normal subgroup of G. Precisely,
N is a normal subgroup (denotedNCG) if each left coset gN is also a right cosetNg
for the same g ∈ G. Such an N is also called an invariant subgroup as it is one that
is invariant under conjugation: gNg−1 = N for any g ∈ G. It is then easy to see that
the set of left (or right) cosets of G by N is a group with identity given by the coset
eN = N . Indeed, the group multiplication and inversion (for left cosets) are given by

(gN) (g′N) = (gg′)N and (gN)−1 = g−1N (230)

Here, we used the formulae: gNg′N = gg′NN = gg′N and (gN)−1 = N−1g−1 =
Ng−1 = g−1N since N = N−1 on account of it being closed under inverses. G/N
is called the quotient group or factor group. Some elementary properties are worth
noting. (i) Every subgroup of an abelian group is a normal subgroup. (ii) If G is
finite, then the cardinality of the coset space G/H is |G|/|H| (Lagrange’s theorem).
(iii) If N is an invariant Lie subgroup of the Lie group G, then the dimension of the
coset space G/N is the difference between the dimensions of G and N . (iv) The
kernel K (inverse image φ−1(e′) of the identity e′ ∈ G′) of a group homomorphism
φ : G → G′ is always a normal subgroup of G (see Prob. ??) and the image φ(G) is
isomorphic to G/K. (v) The center Z(G) of a group G, consisting of elements that
commute with all other elements, is an abelian normal subgroup. It is normal since
every group element commutes with elements in the center: Z(G)g = gZ(G).

3.15 Simple and semisimple groups

A simple group G is one that does not have any normal subgroups other than G
and {e}. Simple groups are like prime numbers, they do not admit any nontrivial
factor groups and can serve as building blocks for other groups. The cyclic group
Cp for prime p is simple as every nontrivial element is a generator. By contrast,
C4 = {±1,±i} is not simple: C2 = {±1} is a normal subgroup. More generally, G
is semisimple if G has no nontrivial abelian invariant subgroups. If G is simple, then
it is automatically semisimple. A connected nonabelian Lie group is called simple
if it does not have any proper connected normal Lie subgroups (it can have discrete
normal subgroups). SO(3), SU(2) and SL2(R) are simple Lie groups while SO(4)

equivalence class of g is the left coset gH .
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is semisimple but not simple. The unitary groups U(n) and general linear groups
GLn(R) for n ≥ 2 are neither simple nor semisimple since multiples of the identity
(eiθI for real θ and λI for nonzero real λ) form nontrivial abelian connected invariant
Lie subgroups. In fact, U(2) also admits SU(2) as a normal subgroup.

We now introduce two ways in which we may combine a pair of groups to synthe-
size a larger one: the direct and semidirect products.

3.16 Direct product

Suppose H and N are a pair of groups with identity elements eH and eN . Then
the Cartesian product H × N consisting of all ordered pairs (h, n) with h ∈ H and
n ∈ N can be given the structure of a group called the direct product of H and
N . The composition law is defined as (h, n) · (h′, n′) = (hh′, nn′) and (h, n)−1 =
(h−1, n−1). The subgroups consisting of elements of the form (eH , n) and (h, eN ) are
isomorphic toN andH respectively. H×N andN×H are isomorphic groups. When
the groups are abelian, one tends to use additive rather than multiplicative notation.
For example, the group R2 of translations of the Euclidean plane is the direct product
(or sum) of two copies of the group R of translations of the real line: R2 = R× R.

3.17 Semidirect product.

The semidirect product is a generalization of the direct product. Here, we suppose
that we are given an action of H on N . More precisely, for each h ∈ H , we have
an automorphism ϕh : N → N such that ϕh′ϕh = ϕh′h and ϕ−1

h = ϕh−1 . We
may use this to define the composition law (h, n) · (h′, n′) = (hh′, nϕh(n′)). We
verify in Prob. ?? that H × N with this composition law is a group. It is called
the semidirect product of H acting on N via ϕ and is denoted H oϕ N . Evidently,
the semidirect product reduces to the direct product if H acts trivially on N , i.e.,
ϕh(n′) = n′ for all h ∈ H and n′ ∈ N . What is more, the set of elements (eH , n)
forms a normal subgroup of H oϕ N isomorphic to N . The Euclidean group is
a semidirect product of 3d rotations acting on space translations. The Galilei and
Poincaré groups are semidirect products of the group of rotations and boosts acting on
space-time translations.

3.18 Permutation group.

The permutation group Sn or symmetric group on n letters is the set of all per-
mutations of n distinct objects, usually denoted 1, 2, · · · , n, with group multiplication
given by composition of permutations. A permutation σ may be written in two-row
notation as σ =

(
1 2 3 ···

σ(1) σ(2) σ(3) ···
)
. The group has order n! since σ(1) can be chosen

in n ways followed by σ(2) in n − 1 ways and so on. A permutation may also be
written as a product of disjoint cycles: its cycle decomposition. For k = 0, 1, . . ., a
(k + 1)-cycle is of the form (i σ(i) σ2(i) · · ·σk(i)) with σk+1(i) = i. For example,
S2 consists of 2 elements: the identity σ = e [with e(1) = 1, e(2) = 2] and exchange
transposition σ = τ [τ(1) = 2, τ(2) = 1] with τ2 = e. Thus,

e = ( 1 2
1 2 ) = (1)(2) and τ = ( 1 2

2 1 ) = (12). (231)
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g ↓, h→ e (12) (23) (31) (123) (132)
e e (12) (23) (31) (123) (132)

(12) (12) e (123) (132) (23) (31)
(23) (23) (132) e (123) (31) (12)
(31) (31) (123) (132) e (12) (23)

(123) (123) (31) (12) (23) (132) e
(132) (132) (23) (31) (12) e (123)

Table 1: Multiplication table of gh for g, h ∈ S3

The group S3 has 6 elements. The identity σ(i) = i is denoted (1)(2)(3). There
are three pairwise transpositions66 (12)(3), (1)(23) and (2)(31). Here, (1)(23) means
σ(1) = 1, σ(2) = 3, σ(3) = 2. There are also two cyclic permutations (123) =
(12)(23) = (13)(12) and (132) = (12)(13) which have been written as products of
pairwise exchanges composed from right to left. Here (132) means σ(1) = 3, σ(3) =
2 and σ(2) = 1. In the composition σ = (12)(13), 3 is mapped to 1 which is then
mapped to 2, so that σ(3) = 2. On the other hand, σ(2) = 1 and σ(1) = 3.

S3 can be realized as the group of rigid motion symmetries of an equilateral tri-
angle ∆ with vertices labelled v1, v2, v3, say counterclockwise, with horizontal base
v1v2 and apex v3. The symmetries of ∆ are counterclockwise rotations Rθ about
the center by angles θ = 0, 2π/3, 4π/3 and reflections about the perpendiculars
through the vertices v1, v2 and v3. The transformation group consisting of these
6 symmetries is called the dihedral group of order 6 and is isomorphic to S3 via
the following map. To R0 we associate the identity element e. R2π/3 is mapped
to (123) since it takes v1 → v2, v2 → v3, v3 → v1. Similarly, R4π/3 corre-
sponds to (132) as it takes v1 → v3, v3 → v2, v2 → v1. In the same spirit,
reflection through the perpendicular through v1 is mapped to (23) and so on. No-
tice that the square of any reflection is the identity and that R2

2π/3 = R4π/3 while
R2

4π/3 = R8π/3 = R2π/3. Correspondingly, the square of any transposition is the
identity while (123)2 = (132) and (132)2 = (123). The ‘multiplication table’ of S3

is displayed in Table. 1. Evidently, it is a nonabelian group. In general, reflections do
not commute [(12)(23) = (123) while (23)(12) = (132)] nor do rotations commute
with reflections: (123)(12) = (31) while (12)(123) = (23).

By Lagrange’s theorem, since the order of a subgroup must divide that of the
group, S3 can only have subgroups of order 1, 2, 3 and 6. There are 4 nontrivial
subgroups, each is cyclic and is generated by a transposition or cyclic permutation:

{e, (12)}, {e, (23)}, {e, (31)} and {e, (123), (132)}. (232)

The first 3 are reflection symmetries while the fourth consists of rotations of ∆. Pair-
wise transpositions are the building blocks: any permutation can be expressed as a
product of transpositions, although the expression is not unique. However, a permu-
tation σ requires an even or odd number of transpositions to be expressed this way.
Thus, we define the sign (or signature or parity) of a permutation sgn (σ) as ±1 in

66When clear from context, we suppress 1-cycles. So in S3, (23) is short for (1)(23).
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the even and odd cases. The identity has sign +1 and any exchange has sign −1. For
S3, cyclic permutations have sign +1 as (123) = (31)(12) and (132) = (12)(31).

The sign of a permutation gives a homomorphism: Sn → C2. The kernel is the
alternating group An of even permutations, a normal subgroup67 of Sn. For n = 3,
A3 = {e, (123), (132)} consists of rotational symmetries of ∆. It has 2 left cosets

(12)A3 = (23)A3 = (31)A3 = {(12), (23), (31)}
and eA3 = (123)A3 = (132)A3 = {e, (123), (132)} = A3. (233)

As expected, the left cosets are also right cosets, i.e., (12)A3 = A3(12), etc.
All members of a conjugacy class have cycle decompositions of the same struc-

ture. Cycle structure refers to the number of 1-cycles, 2-cycles, etc. Hence, we should
expect S3 to have three conjugacy classes: the identity, the transpositions and the
cyclic permutations: {e}, {(12), (23), (31)} and {(123), (132)}. The members of a
conjugacy class must have the same parity. For instance, the conjugates of (12) are

(23)(12)(23)−1 = (31), (31)(12)(31)−1 = (23),
(123)(12)(123)−1 = (23) and (132)(12)(132)−1 = (13). (234)

S3 can be realized as a semidirect product H o N of H acting on N , where H
and N are cyclic groups of order 2 and 3. For instance, we take H = {e, (12)}
and N = A3 regarded as subgroups of S3 and consider the action of H on A3 via
conjugation: ϕh(n′) = hn′h−1. Thus, the semidirect product is

(h, n) · (h′, n′) = (hh′, nhn′h−1). (235)

The Cartesian product has six elements

(e, e), (e, (123)), (e, (132)), ((12), e), a = ((12), (123)) & b = ((12), (132)).
(236)

The first 4 elements are identified with e, (123), (132), (12) ∈ S3. If a ↔ (31) and
b↔ (23) then one finds that (235) agrees with the S3 composition law. For instance,

((12), (123)) · ((12), (123)) = ((12)2, (123)(12)(123)(12)) = (e, (31)2) = (e, e),
(237)

which agrees with (31)2 = e in S3.

3.19 Lie group as a homogeneous manifold

A manifold M (or even just a topological space or set) is homogeneous for a
group G if it carries a transitive action of G. To be meaningful, one needs to specify
the nature of the manifold M (topological, smooth or geometrically rigid like a Rie-
mannian manifold) and the action of the group must respect that structure. Roughly,
all points of a homogeneous manifold look locally the same. For example, the unit
circle x2 + y2 = 1 on the plane is homogeneous under the action of the group SO(2)

67Conjugation by any element (gσg−1) cannot change the parity of σ, so An invariant.
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of rotations about the z axis. The time axis R is homogeneous under the action of the
group of time-translations t 7→ t + s. Euclidean space R3 is homogeneous under the
action of the group of space-translations r 7→ r + s. The term homogeneous should
ring a bell: recall the homogeneity of time and space which implied that the results of
experiments with identical external conditions do not depend on when or where they
are performed. By contrast, the rigid toroidal surface of an inflated tube of a car tyre is
not homogeneous for the action of the group of rotations about the axle. This action is
not transitive since it cannot change the distance of a point on the tyre from the axle.
In fact, near a point on the inner rim, the tubular surface looks like a saddle or moun-
tain pass while near a point on the outer rim, it looks like a hill, so neighborhoods of
points do not all look the same. Though not a group68, the round unit sphere S2 is
homogeneous for the rotation group SO(3) in 3d as it carries a transitive action of the
latter: any point can be rotated to any other point on S2. S2 is also homogeneous for
the action ofO(3). An ellipsoid of revolution E = {x2 +y2 +2z2 = 1} regarded as a
rigid surface in R3 is not homogeneous under 3d rotations since they do not preserve
E. Rotations about the z-axis act on the ellipsoid, though not transitively.

Any group is homogeneous under its own action: G acts on itself transitively
via both left and right multiplication. We define the left action of G on itself via
Lgh = gh for any g, h ∈ G. The action is transitive since, given any h, k ∈ G, we
have Lkh−1h = k. The right action Rgh = hg is similarly transitive. The right and
left actions coincide if G is abelian. For a Lie group, Lg and Rg are diffeomorphisms
of G. Thus, a Lie group G is a homogeneous manifold under the action of G.

3.20 Lie algebra of a Lie group

Among the points of G, the identity is distinguished by its simplicity. It makes
sense to begin a detailed study of G by focusing on the linear neighborhood of the
identity69. This leads to the idea of the Lie algebra G, which, as a vector space, is
the tangent space at the identity TeG. Each tangent vector at the identity is a Lie
algebra element. We may use left translations Lg (by all elements of G) to pushfor-
ward (172) any fixed tangent vector u ∈ TeG to obtain a ‘left-invariant’ vector field
Lg∗u on G. Thus, for each u ∈ G we get an associated left-invariant vector field on
G. Consequently, the Lie algebra may also be regarded as the space of left-invariant
(or right-invariant) vector fields on G. The algebraic structure of the group endows
TeG (or the space of left-invariant vector fields) with the additional structure of a Lie
algebra, i.e., with a bilinear antisymmetric product or ‘Lie bracket’ satisfying the Ja-
cobi identity. In fact, the Lie bracket is simply the commutator of left-invariant vector
fields. We know that the commutator of vector fields is antisymmetric and satisfies
the Jacobi identity; one needs to show that the commutator of two left-invariant vector

68Any Lie group has at least one nonvanishing vector field: the left-invariant vector field obtained by
pushing forward a nonzero tangent vector at the identity. However, as noted in Fig. 6b, S2 does not admit
a nonvanishing vector field.

69By homogeneity, the linear neighborhood TgG of any other point g ∈ G may be studied by left-
or right-translating the tangent space at the identity via Lg or Rg . This idea is also used in studying the
rotational dynamics of a rigid body.
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fields is again left-invariant. For the Lie algebra of a matrix Lie group, the Lie bracket
may be realized concretely in terms of the commutator of matrices, as we shall soon
see in the context of the rotation group (243). In fact, we may write a group element
in the infinitesimal neighborhood of the identity as g = esu ≈ I + su+ s2u2/2 for a
real s with |s| � 1. The matrix u (or su) is then an element of the Lie algebra. The
group commutator [g, h] of two such elements g = esu and h = etv may be shown to
be [g, h] ≈ I + st[u, v]. Thus, the matrix commutator of Lie algebra elements is the
first nontrivial approximation to the group commutator.

3.21 Circle group U(1)

The ‘smallest’ Lie group is the group U(1) of unimodular complex numbers {z ∈
C|z∗z = 1}. As shown in Fig. 7, the group elements lie on the unit circle in the
complex plane, so the group is also called the circle group S1. This establishes that it
is a differentiable manifold. It is called U(1) since it is also the set of 1 × 1 unitary
matrices70.

Any unimodular z may be expressed as z = eiθ where θ is defined modulo 2π.
The identity element is z = 1, corresponding to θ ≡ 0 modulo 2π. The multiplication
law is abelian eiθ1eiθ2 = ei(θ1+θ2) = eiθ2eiθ1 . The inverse of z = eiθ is the reciprocal
1/z = e−iθ. Since (θ1, θ2) 7→ θ1 + θ2 and θ 7→ −θ modulo 2π are smooth maps,
U(1) is a one-dimensional Lie group. It is compact (closed and bounded as a subset of
the complex plane) and path connected though not simply connected. Its Lie algebra
U(1) is the tangent space at z = 1, which is isomorphic to R. U(1) can be taken
to be the 1d vector space of imaginary numbers iy for y ∈ R. A basis for the Lie
algebra may be chosen as i. The name generators is given to basis elements of the
Lie algebra. The U(1) Lie algebra has only one generator, which we have taken as
i. We notice that exponentiating a Lie algebra element such as πi gives us a group
element eπi = cosπ + i sinπ = −1. This map from Lie algebra to Lie group is
called the exponential map. More generally, given a nonzero Lie algebra element (say
i), exponentiating all its real multiples iy, we get a 1-parameter subgroup eiy . In this
case, the exponential map surjects onto the group but is many-to-one: eiy = ei(2nπ+y)

for any n ∈ Z.
• Since U(1) is abelian, its Lie algebra is also abelian. There is only one generator i
and it commutes with itself [i, i] = 0.
• Since U(1) is abelian, all its subgroups are also abelian. Its finite subgroups are the
cyclic groups Cn for n = 1, 2, · · · . Here, Cn = {e2πij/n|j = 0, 1, 2, · · ·n − 1}, so
the elements of Cn lie at the vertices of a regular n-gon centered at the origin of the
complex plane, with the identity as one of its vertices. U(1) also has infinite discrete
subgroups. An example is provided by the infinite cyclic subgroup generated by a
rotation such as g = ei

√
2. Since there is no integer power such that gn = 1, the

powers {g0, g±1, g±2, · · · } form an infinite cyclic subgroup of U(1).
70The unitary group U(n) consists of n × n complex matrices with U†U = I where U† = (Ut)∗.

Equivalently, it consists of linear maps on an n-dimensional complex vector space that preserve a Hermitian
positive-definite inner product. It is a real Lie group of dimension n2: transition functions are smooth real
(not complex) functions.
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Figure 7: The groupU(1) of unimodular complex numbers and its Lie algebraU(1) ∼=
R.

3.22 The orthogonal group O(3)

The orthogonal group G = O(3) consists of the set of 3 × 3 real orthogonal ma-
trices, i.e., matrices A that satisfy AtA = I . The generalization71 to n×n orthogonal
matrices for n = 1, 2, 3, 4, . . . is called O(n). The group composition law is asso-
ciative matrix multiplication: note that (AB)tAB = BtAtAB = I if A and B are
orthogonal. The identity element is the identity matrix while the inverse of A is sim-
ply its transpose At. It is a nonabelian group since AB 6= BA in general for a pair
of orthogonal matrices. The orthogonal group is a matrix group, it is a subgroup of
the general linear group of all invertible real 3 × 3 matrices. The orthogonal group
is important as it is the group of rotations and reflections of 3d Euclidean space. It
frequently arises as a group of symmetries (e.g., of a spherically symmetric potential)
or as a configuration space (e.g., of the rigid body). We will soon view O(3) as a
manifold. First, what is its dimension? The condition AtA = I implies that a 3 × 3
orthogonal matrix is one whose columns furnish an orthonormal basis {a, b, c} for
R3 (see below). The first basis vector a is any unit vector. The latter are parametrized
by points on the unit sphere S2 ⊂ R3. Thus, 2 real parameters are needed to specify
a. Having picked a, the second basis vector b can be any unit vector in the plane
orthogonal to a and is specified by a point on the unit circle S1 on this plane. Thus,
one additional parameter is needed to specify b. Pictorially, we may view the possible
choices of a and b as giving us a unit circle bundle over the unit 2 sphere. Having
chosen a and b, the third basis vector c must be perpendicular to both: c = ±a × b.
Thus, there is no additional continuous real parameter needed to specify c. The two
choices of c lead to orthogonal matrices with determinant±1. We conclude that O(3)
is a 3-parameter family of matrices. In fact, we may view it as a 3d submanifold of
R9. Suppose we write A in terms of its columns,

A = ( a b c ) so that At =

(
at

bt

ct

)
. (238)

71Alternatively, suppose V is an n dimensional real vector space with positive-definite inner product
〈·, ·〉. Then O(n) is the group of linear maps A : V → V that preserve the inner product 〈Au,Av〉 =
〈u, v〉 for all u, v ∈ V with product given by composition of maps. The definition is independent of the
choice of V and inner product, it only depends on n.
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The constraint AtA = I , becomes 6 conditions on the 9 matrix elements of A:

ata− 1 = btb− 1 = ctc− 1 = atb = btc = cta = 0. (239)

Thus, O(3) is the common zero locus of these six independent quadratic functions
of nine real variables. Hence, we may view O(3) as a 3d algebraic submanifold of
R9. It is bounded since a, b and c must each be a unit vector. It is closed72 since
it is the intersection of the inverse images of the closed one-element set {0} under
the continuous maps ata − 1, · · · , cta from R9 → R. Thus, O(3) is a compact 3d
manifold. However, it is not path connected. Taking the determinant of AtA = I ,
we find (detA)2 = 1, so detA = ±1. We check that there are orthogonal matrices
with either sign of determinant. Since the determinant cannot jump discontinuously
from 1 to -1 along a continuous path, we conclude that O(3) is disconnected. It has
two connected components. The identity I lies in the connected component where
detA = 1 and comprises proper rotations of R3. In fact, the connected component of
the identity is a closed subgroup ofO(3) and is a Lie group in its own right, the special
orthogonal group SO(3) which is also the kernel of the determinant homomorphism
from O(3) to C2 = {±1}. The subgroup SO(3) and its Lie algebra play a key role
in the study of angular momentum and the rigid body problem. The other component
where detA = −1 is not a subgroup as it is not closed under composition and does
not include the identity matrix. It consists of so-called improper rotations and is a
coset of SO(3) by a reflection: product of a reflection and a proper rotation.

3.23 The Lie algebra of O(3)

The Lie algebra as a vector space is defined as the tangent space to the group at
the identity. To identify the orthogonal Lie algebra O(3), we suppose A ≈ I + u and
treat u to linear order. The orthogonality condition

(I + ut)(I + u) ≈ I becomes u+ ut = 0. (240)

Thus, the Lie algebra of the orthogonal group consists of 3×3 real antisymmetric ma-
trices73. A real linear combination of antisymmetric matrices αu + βv remains anti-
symmetric, so this is indeed a vector space. The entries above the diagonal are the only
linearly independent entries of an antisymmetric matrix, so O(3) is a 3-dimensional
real vector space isomorphic to R3. We say that O(3) is a 3-dimensional Lie alge-
bra. It is no surprise that G and G have the same dimension. A convenient basis
{e1, e2, e3} for O(3) is furnished by the matrices with ab-entries (ei)ab = −εiab:

e1 = −
(

0 0 0
0 0 1
0 −1 0

)
, e2 = −

(
0 0 −1
0 0 0
1 0 0

)
and e3 = −

(
0 1 0
−1 0 0
0 0 0

)
. (241)

This means any antisymmetric 3×3 matrix umay be expressed as u = u1e1 +u2e2 +
u3e3 where u1, u2, u3 are real coefficients.

72For our purposes, a closed set C contained in Euclidean space is one that contains all its limit points
with respect to the Euclidean distance function. The inverse image f−1(C) of a closed set under a contin-
uous map f is closed. The intersection of a finite number of closed sets is closed. A closed and bounded
subset of Euclidean space is called compact.

73Since SO(3) is the identity component of O(3), they have the same Lie algebra.
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3.24 Exponential map.

As with U(1), given a nonzero Lie algebra element u, it determines a 1-parameter
subgroup of the Lie group via the matrix exponential u 7→ A = esu where s ∈ R.
Indeed, we verify that if u is antisymmetric, then A is orthogonal:

At = esu
t

= e−su = A−1. (242)

More generally, by exponentiating74 a linear combination uiei of basis elements, we
obtain a three-parameter family of group elements: esu

iei . All elements of the identity
component of O(3) [proper rotations, i.e., elements of SO(3)] may be obtained this
way. However, improper rotations cannot be reached by exponentiating elements u of
the Lie algebra, since det esu = 1. We could of course compose elements of SO(3) by
reflections to obtain the improper rotations. Thus, we see that the Lie algebra contains
enough data to recover a finite neighborhood of the group identity. In favorable cases
(e.g., compact connected groups such as U(1) or SO(3)), the exponential map takes
the Lie algebra surjectively onto the group.

3.25 Lie bracket and structure constants

As noted earlier, the group structure of a Lie group G endows the tangent vector
space G at the group identity with a bilinear antisymmetric product G × G → G
called the Lie bracket, satisfying the Jacobi identity. For the Lie algebra of a matrix
group, the Lie bracket is simply the commutator75 of matrices and the Jacobi identity
is automatically satisfied since it is a property of the matrix commutator. For O(3),
we verify that the Lie brackets among the basis elements are

[e1, e2] = e3, [e2, e3] = e1 and [e3, e1] = e2 or [ei, ej ] = εijkek. (243)

This Lie algebra should remind us of the cross products x̂×ŷ = ẑ, ŷ×ẑ = x̂, ẑ×x̂ = ŷ
of the orthonormal basis vectors x̂, ŷ, ẑ of R3. In fact, O(3) is isomorphic76 to
the cross product Lie algebra of vectors in 3d Euclidean space R3. The isomor-
phism takes vectors ra to antisymmetric matrices via uab = εabcrc and conversely

74While the matrix exponential gives a map from the Lie algebra to the group for matrix groups, there
is a more general way of defining the exponential map. Given an element of the Lie algebra u ∈ TeG, it
defines a left-invariant vector fieldXu onG via the pushforward of u through the left-translation map to all
points of G, Lg∗ : TeG → TgG. Now, consider the integral curve of Xu (with parameter s) that begins
at the identity in the direction of u. This is the solution of the system of 1st order ODEs ẋ = Xu subject
to the IC x(0) = I . The exponential map, by definition, maps u to the point x(1) ∈ G (i.e., put s = 1).
The appearance of eu in matrix groups is natural since the solution of this initial value problem in that case
is exp(su).

75Note that while the commutator of matrices in G is an element of G, the product of matrices in the
Lie algebra of a matrix group is not regarded as an element of the Lie algebra. With reference to O(3), the
product of antisymmetric matrices is not antisymmetric in general.

76 The group SU(2) of 2 × 2 unitary matrices with unit determinant also has a Lie algebra isomorphic
toO(3). Indeed, the Lie brackets among (1/2i)× the Pauli matrices [which furnish a basis for SU(2)] are
the same as those among e1, e2 and e3.
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rc = (1/2)εabcuab. In general, the Lie brackets among basis elements of a Lie alge-
bra can be expressed as a linear combination of basis elements: [ei, ej ] = cijkek. The
coefficients cijk are called the structure constants of the Lie algebra (in the chosen
basis). They must be antisymmetric in i and j. The Jacobi identity is a quadrati-
cally nonlinear condition on the structure constants. For SO(3) or O(3), the structure
constants in the above basis are given by the components of the Levi-Civita symbol
cijk = εijk.

3.26 The group SU(2) and its Lie algebra

SU(2) as the 3-sphere. The Lie group SU(2) consists of 2×2 unitary matrices of unit
determinant, gg† = g†g = I and det g = I . The condition of unitarity means the rows
are orthonormal vectors in C2. Writing g = (a, b|c, d) and imposing unitarity and the
unit determinant condition, we find that any element of SU(2) may be expressed as

g =

(
a b
−b∗ a∗

)
with a, b ∈ C and |a|2 + |b|2 = 1. (244)

If we write a and b in terms of their real and imaginary parts, a = a1 + ia2 and
b = b1 + ib2 then |a|2 + |b|2 = 1 becomes the condition a2

1 + a2
2 + b21 + b22 = 1.

This is the equation for a 3-sphere embedded in R4. Thus, SU(2) as a manifold is
the 3-sphere S3. Since composition and inversion are compatible with the manifold
structure, SU(2) is a three-dimensional Lie group.
• Let us show how we arrive at the above parametrization (244). Note that

gg† = I ⇒
(
a b
c d

)(
a∗ c∗

b∗ d∗

)
=

(
1 0
0 1

)
and det g = ad−bc = 1. (245)

These imply the four equations

|a|2 + |b|2 = 1, |c|2 + |d|2 = 1, ac∗ + bd∗ = 0 and ad− bc = 1. (246)

The conditions following from g†g = I are not independent of these (they have the
same solutions). These four equations are actually 5 real conditions. The first and
second are real conditions. The 3rd is two conditions: both the real and imaginary
parts of ac∗ + bd∗ must vanish. The det g = 1 equation is just one real condition.
This is because unitarity already implies that |det g| = 1 so that det g must be a point
on the unit circle. The condition det g = 1 then picks one point on this circle. These
5 conditions on the 8 real variables in a, b, c, d ∈ C leave behind a 3 dimensional
manifold. Let us now try to solve the equations.
• Assuming a 6= 0, we use det g = 1 to eliminate d = (1 + bc)/a. Putting this in the
third condition, we get

ac∗ + b

(
1 + b∗c∗

a∗

)
= 0 or |a|2c∗ + b+ |b|2c∗ = 0. (247)

Using |a|2 + |b|2 = 1 this allows us to eliminate c = −b∗. Putting this in d =
(1 + bc)/a we get

d = (1− |b|2)/a = |a|2/a = a∗. (248)
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Thus we have eliminated c and d in favor of a and b. The remaining condition |c|2 +
|d|2 = 1 tells us that |a|2 + |b|2 = 1. This leads to the advertised parametrization
(244) when a 6= 0.
• The special case a = 0 is dealt with separately. If a = 0 then |b|2 = 1 so b 6= 0.
Consequently, ac∗ + bd∗ = 0 implies that d = 0. Finally, ad − bc = 1 implies that
c = −1/b = −b∗. Combining, we get the advertised parametrization (244) of g.

The Lie algebra of SU(2). The Lie algebra of SU(2) consists of traceless 2× 2 anti-
hermitian matrices. To see this, consider an SU(2) group element near the identity:
g ≈ I + u. Then g† ≈ I + u†. Putting this in g†g = I gives (I + u)(I + u†) ≈ I
or I + u + u† ≈ I , whence u† = −u, so that u is antihermitian. Moreover, det g ≈
det(I + u) ≈ 1 + tru = 1 implies tru = 0. So the Lie algebra of SU(2) consists
of 2 × 2 traceless antihermitian matrices. A convenient basis consists of the three
matrices τj = σj/2i where σ1 = (0, 1|1, 0), σ2 = (0,−i|i, 0) and σ3 = (1, 0|0,−1)
are the 3 Pauli matrices. Division by i ensures that the τj are antihermitian while the
division by 2 is to make the structure constants simple. Show that the Lie brackets
(commutators) among the generators τ1,2,3 are

[τi, τj ] = εijkτk. (249)

So the structure constants of the SU(2) Lie algebra in this basis are given by the com-
ponents of the Levi-Civita symbol. Any traceless antihermitian matrix can be ex-
pressed as u = x1τ1 + x2τ2 + x3τ3 = x · τ for three real coefficients x1, x2, x3. We
notice that these structure constants are the same as those of the SO(3) Lie algebra in
the basis (ei)ab = −εiab. Thus, the SU(2) and SO(3) Lie algebras are isomorphic.
• Isomorphism between SU(2) and R3 cross product Lie algebras. In addition, R3

is also a 3d Lie algebra with Lie bracket given by the cross product of vectors. The
cross products of the basis vectors r̂i = {x̂, ŷ, ẑ} are

x̂× ŷ = ẑ, ŷ × ẑ = x̂, ẑ × x̂ = ŷ. (250)

The structure constants of the cross product Lie algebra in this basis,

r̂i × r̂j = εijkr̂k (251)

are again given by the Levi-Civita symbol. Thus the SU(2) Lie algebra is isomor-
phic to the cross product Lie algebra on R3 with the isomorphism taking τi to r̂i and
extended by linearity to other traceless antihermitian matrices. We can write an ex-
plicit formula for this isomorphism. Given a vector x ∈ R3, we have the associated
traceless antihermitian matrix

u(x) = τ · x =
1

2i

(
x3 x1 − ix2

x1 + ix2 −x3

)
. (252)

We note that detu(x) = 1
4 (x2

1 + x2
2 + x2

3) = 1
4 |x|

2 is one-fourth the squared length
of the vector x.
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• Conversely, the vector x(u) associated to the SU(2) Lie algebra element u has the
components (x(u))j = −2 tr (uτj). Check this formula.
• This isomorphism between SU(2) and R3 takes the commutator of traceless anti-
hermitian matrices to the cross product of vectors. Show that this is the case. Thus,
we have an isomorphism of Lie algebras.

3.27 Adjoint action or representation of group and Lie algebra

Any group acts on itself by conjugation, which is an inner automorphism. Given
any fixed g ∈ G, we have the automorphism Ag : G→ G given by Ag(h) = ghg−1.
If h is in the linear neighborhood of the identity I , then then we can turn this into a
linear action of G on its Lie algebra. Let us suppose that G is a matrix Lie group and
put h = I + v with v treated to linear order. Then

Ag(h) ≈ g(I + v)g−1 = I + gvg−1. (253)

Thus, we get the so-called group adjoint action of G on its Lie algebra G:

Adg(v) = gvg−1 for any g ∈ G and v ∈ G. (254)

Check that this is indeed a group action. Moreover, the Lie algebra is a vector space
(TeG, having dimension equal to that of G) and the action is linear. An action of
a group on a vector space is called a group representation. This is why the group
adjoint action on G is also called the adjoint representation of the group. The adjoint
representation of a Lie group has the same dimension as the group itself.
•We may further suppose that g lies close to the identity ofG. Then the group adjoint
action reduces to an action of the Lie algebra on itself. Find a formula for this Lie
algebra adjoint representation.

3.28 Two-to-one homomorphism from SU(2) to SO(3)

• SU(2) is the group of 2× 2 complex unitary matrices of unit determinant. It is a 3d
Lie group. Its Lie algebra consists of traceless antihermitian 2× 2 matrices.
• O(3) consists of orthogonal transformations of Euclidean 3-space, i.e., x → Rx
where RtR = I . SO(3) consists of proper rotations of Euclidean 3-space, i.e., x →
Rx where RtR = I with detR = 1. Its Lie algebra consists of 3 × 3 traceless
antisymmetric matrices.
• Given an element g of SU(2) we will define an associated orthogonal transformation
φg of R3. This will lead us to a homomorphism from SU(2) to O(3). We will indicate
why φ is a 2:1 homomorphism.
•We will argue that SU(2) is path connected, while O(3) has two connected compo-
nents: the identity component SO(3) and the other component consisting of improper
rotations. Continuity of the map φ will imply that the image of SU(2) lies in the iden-
tity component. Thus we will get a 2:1 homomorphism from SU(2) to SO(3). This ho-
momorphism can be shown to be surjective with kernel consisting of {±I2×2} ∼= C2.
Thus SU(2)/C2

∼= SO(3).
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• Map from SU(2) to O(3). To define the 3d orthogonal transformation φg , we will
exploit the adjoint action of SU(2) on its Lie algebra. Using the isomorphism between
SU(2) and R3, we will get an action of SU(2) on R3, which we will show to be
orthogonal.
•Now SU(2) acts on its Lie algebra via the adjoint representation: Adg(u) = gug−1 =
gug†. This transformation clearly preserves antihermiticity ((gug†)† = gu†g† =
−gug† if u† = −u) and tracelessness ( tr gug† = tru = 0). Using the map from
SU(2) to R3 we convert this into an action of SU(2) on R3. In other words, for any
g ∈ SU(2), we get a map

φg : R3 → R3 taking x 7→ x′ = φg(x) with (φg(x))i = −2 tr (g u(x) g† τi).
(255)

Since det gu(x)g† = detu(x), it follows that φg preserves lengths:

|x′|2 = |φg(x)|2 = 4 det gu(x)g† = 4 detu(x) = |x|2. (256)

But length preserving linear transformations are the same as orthogonal transforma-
tions. So if g ∈ SU(2) then φg ∈ O(3).
• Formula for orthogonal transformation φg . Using the parametrization of SU(2)
group elements

g =

(
a b
−b∗ a∗

)
, g† =

(
a∗ −b
b∗ a

)
with |a|2 + |b|2 = 1. (257)

we may obtain an explicit formula for the effect of the orthogonal transformation φg
on a vector x = (x, y, z). Denoting φg(x) = x′ = (x′, y′, z′), we find

gu(x) =
1

2i

(
az + b(x+ iy) a(x− iy)− bz
−b∗z + a∗(x+ iy) −b∗(x− iy)− a∗z

)
. (258)

Right multiplying by g† and comparing with the definition

gu(x)g† = u(x′) =
1

2i

(
z′ x′ − iy′

x′ + iy′ −z′
)
, (259)

we find that

x′ = <
[
a2(x− iy)− b2(x+ iy)− 2abz

]
y′ = =

[
a∗2(x+ iy)− b∗2(x− iy)− 2a∗b∗z

]
and

z′ = (|a|2 − |b|2)z + 2<(a∗b(x+ iy)). (260)

This is clearly a linear transformation. Write this out as x′ = R(g)x and identify the
entries of the 3 × 3 orthogonal matrix R(g) = φg in terms of the entries of g. Verify
that RtR = I .
•Group homomorphism property: This map φ : g 7→ φg is a group homomorphism
from SU(2) to O(3). To show φ is a homomorphism, we must show that φgg′ is the
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same orthogonal transformation of R3 as φgφg′ . In other words, we must show that
for all x ∈ R3 and all g, g′ ∈ SU(2), we have

φgg′(x) = φg(φg′(x)). (261)

We check by explicit calculation that this is true. Details are suppressed.
• Map φ : SU(2) → O(3) is 2:1. Note that (−g)† = −g†. It follows that φg =
φ−g , so antipodal points of SU(2) are mapped to the same orthogonal transformation.
Hence, this map from SU(2) to O(3) is at least two-to-one. To show that it is precisely
2:1 we check that the kernel of the homomorphism consists of the 2 element subgroup
{±I} which is isomorphic to the cyclic group of order 2. In fact,

kerφ = {g ∈ SU(2) | φg = I3 ∈ O(3)} (262)

For g to lie in kerφ, we need gug† = u for all u ∈ SU(2). Why? Since SU(2)

is isomorphic to R3 this is a necessary and sufficient condition for φg to act as the
identity on R3. So we need to find all g such that gu = ug for all u. We find that

gu =

(
az + b(x+ iy) a(x− iy)− bz
−b∗z + a∗(x+ iy) −b∗(x− iy)− a∗z

)
and

ug =

(
za− b∗(x− iy) zb+ a∗(x− iy)
a(x+ iy) + zb∗ b(x+ iy)− za∗

)
. (263)

Then gu = ug for all x, y, z implies that b = 0 and a ∈ R. Along with |a|2 + |b|2 = 1,
we get a = ±1 and so g = ±I and kerφ = {±I}. kerφ is of course a normal
subgroup of SU(2). If φg = R then φ−g = φ−Iφg = R. So φ is a 2:1 homomorphism
from SU(2) onto its image, which must be isomorphic to SU(2)/C2.
• Image of SU(2) lies in SO(3). Next we argue that the image of SU(2) under the
homomorphism φ lies in SO(3). In other words, φg cannot be an improper rotation.
To see this, we first note that SU(2) is path connected.
• SU(2) is path connected. To show this, given any g ∈ SU(2) it suffices to display a
path gt (for 0 ≤ t ≤ 1) in SU(2) such that g0 = g and g1 = I . Now any such g can be
diagonalized by a unitary matrix V . The eigenvalues of a unitary matrix are complex
numbers of unit magnitude77. Since the determinant is one, the eigenvalues must be λ
and 1/λ with |λ| = 1. In other words,

g = V DV † = V

(
λ 0
0 1/λ

)
V † (264)

Now define the 1-parameter family of unitary matrices

gt = V

(
λt 0
0 1/λt

)
V † (265)

77The eigenvalue problem Uψ = λψ and its adjoint ψ†U† = λ∗ψ† together give ψ†U†Uψ =
λ∗λψ†ψ. Since U†U = I and ψ†ψ 6= 0, we get λ∗λ = 1. Alternatively, the rows of a unitary ma-
trix are orthonormal vectors. Imposing this condition in the basis where the matrix is diagonal, we find that
the eigenvalues must have unit magnitude.
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where λt is any curve on the unit circle of the complex plane with λ0 = λ and λ1 = 1.
Then g0 = g and g1 = I . So we have joined g to I by a continuous curve in SU(2).
To join two points g and g′ in SU(2) just join each to I and concatenate the paths.
Thus we showed that SU(2) is path connected.
• Now φ : SU(2) → O(3) maps the identity to the identity in O(3) which lies in
the component of proper rotations SO(3). As SU(2) is path connected, the image of
SU(2) under the continuous map φ must also be path connected and therefore must
lie in SO(3).
• φ maps SU(2) onto SO(3). We will now argue that the image of SU(2) under φ is
the whole of SO(3). To do so we use a result of Euler that says that any rotation in 3
dimensions can be expressed as a product of three rotations about the z, y and z axes:

R = RzϕR
y
θR

z
ψ (266)

The angles ψ, θ, ϕ are called Euler angles. Bearing this in mind, if we can show that
rotations about the z and y axes lie in the image of SU(2) under φ, then we would have
shown that any SO(3) element lies in the homomorphic image of SU(2). We will do
this below.
• Rotations about z lie in the image of SU(2). Consider the SU(2) group elements

of the form gθ =

(
e−iθ 0

0 eiθ

)
where θ is an angle. This is a 1-parameter subgroup

of SU(2). Then under the adjoint action,

φg : u(x) 7→ gθu(x)g†θ =

(
z e−2iθ(x− iy)

e2iθ(x+ iy) −z

)
=

(
z′ x′ − iy′

x′ + iy′ −z′
)
.

(267)
So z′ = z. Thus gθ is mapped by φ to the rotation(

x′

y′

)
=

(
cos 2θ − sin 2θ
sin 2θ cos 2θ

)(
x
y

)
. (268)

So φgθ = Rz2θ is a counterclockwise rotation about the z-axis by an angle 2θ. Thus
every rotation about the z-axis lies in the image of SU(2) under this homomorphism.
Moreover, as θ goes from 0 to π, gθ goes from g0 = I to gπ = −I tracing an open
curve in SU(2), but the image Rz0 = Rz2π = I traces a closed curve in O(3). On the
other hand, the closed curve gθ for 0 ≤ θ ≤ 2π on SU(2) is mapped to a closed curve
R2θ that traverses itself twice. This is a manifestation of φ−g = φg and the 2:1 nature
of the homomorphism.
• Rotations about y lie in the image of SU(2). Let the 1-parameter subgroup of
elements g̃α of SU(2) be defined as

g̃α =

(
cosα − sinα
sinα cosα

)
, with g̃†α = g̃−α. (269)

Then using the abbreviations c = cosα and s = sinα,

g̃αu(x)g̃−α =
1

2i

(
(c2 − s2)z − 2csx 2csz + (c2 − s2)x− iy

2csz + (c2 − s2)x+ iy −(c2 − s2)z + 2csx

)
. (270)
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Comparing this with

u(x′) =
1

2i

(
z′ x′ − iy′

x′ + iy′ −z′
)
, (271)

we deduce that y′ = y and that φg̃α is a counterclockwise rotation about the y-axis by
an angle 2α:(

z′

x′

)
=

(
cos 2α − sin 2α
sin 2α cos 2α

)(
z
x

)
= Ry2α

(
z
x

)
⇒ φg̃α = Ry2α. (272)

So we have shown that any rotation about the y axis of R3 lies in the image of SU(2)
under the homomorphism φ.
• SO(3) ∼= SU(2)/{±I}. Combining with Euler’s theorem, we deduce that
the homomorphism φ maps SU(2) in a 2:1 manner onto SO(3). We say that SU(2)
is the double cover of SO(3). Since the kernel of φ is {±I}, we have shown that
SO(3) is a quotient of SU(2) by an invariant cyclic subgroup of order two: SO(3) ∼=
SU(2)/{±I}.
• SO(3) is not simply connected. We may use the 2:1 homomorphism φ to learn a
little about the topology of SO(3). We will argue that SO(3) is not simply connected.
Rz2θ for 0 ≤ θ ≤ π is a closed curve on SO(3) joining I3 to I3. We ask whether we
can shrink it to the identity I3 by a smooth deformation. Now Rz2θ is the image of the

curve gθ =

(
e−iθ 0

0 eiθ

)
in SU(2). gθ for 0 ≤ θ ≤ π defines an open curve joining

I2 to −I2. Now any deformation of Rz2θ holding R0 = R2π = I will correspond to
a deformation of gθ holding g0 = I, gπ = −I fixed. So Rz2θ cannot be continuously
shrunk to the constant curve at the point I3 since that would correspond to the constant
curve at I2 on SU(2). Thus, SO(3) cannot be simply connected. On the other hand,
one can show that SU(2) (the 3-sphere) is simply connected. This is done in topology
textbooks using the Seifert-Van Kampen theorem.
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