Mathematical Methods, Spring 2024 CMI

Assignment 9
Due by the beginning of the class (1030 am) on Tue, Mar 12, 2024
Geodesic equation on upper half plane

1. $\langle\mathbf{5}+\mathbf{3}+\mathbf{3}+\mathbf{3}+\mathbf{4}+\mathbf{4}\rangle$ The upper half plane $U=\left\{(x, y) \in \mathbb{R}^{2} \mid y>0\right\}$ has the Poincaré metric $g=(d x \otimes d x+d y \otimes d y) / y^{2}$. (a) Find all the Christoffel symbols: $\Gamma_{x x}^{x}$ etc. (b) Show that the resulting geodesic equations are the pair of ODEs (dots denote derivatives with respect to an affine parameter t)

$$
\begin{equation*}
\ddot{x}-\frac{2}{y} \dot{x} \dot{y}=0 \quad \text { and } \quad \ddot{y}+\frac{1}{y} \dot{x} \dot{x}-\frac{1}{y} \dot{y} \dot{y}=0 . \tag{1}
\end{equation*}
$$

(c) Establish that

$$
\begin{equation*}
p=\frac{\dot{x}}{y^{2}} \quad \text { and } \quad H=\frac{1}{2 y^{2}}\left(\dot{x}^{2}+\dot{y}^{2}\right) \tag{2}
\end{equation*}
$$

are conserved along geodesics. (d) Eliminate x and derive a self-contained ODE for y. (e) Solve for the geodesics when $p=0$. Describe their shape in Euclidean language. How long (in t) does it take the geodesics to approach the x axis? (f) When p is not necessarily zero, show that the geodesic equations may be brought to a Newtonian form $\ddot{u}=-V^{\prime}(u)$ where $y=e^{u}$. What is a suitable potential $V(u)$?

