Mathematical Methods, Spring 2024 CMI

Assignment 7 Due by the beginning of the class (1030 am) on Tue, Feb 27, 2024 Differential forms, induced metric

1. $\langle \mathbf{4} \rangle$ Suppose A is an $N \times N$ matrix-valued 1-form on \mathbb{R}^2 with coordinates x^0 and x^1 . What this means is that when written as a linear combination of coordinate basis 1-forms dx^{μ} , the coefficients A_{μ} are $N \times N$ matrices. Viewed differently, A is a matrix, each of whose entries is a 1-form. In components, $A_b^a = (A_{\mu})_b^a dx^{\mu}$ where $\mu = 0, 1$ and $a, b = 1, \ldots, N$ are matrix indices. We use up-down matrix indices since a matrix may be viewed as a (1,1) tensor. Now, we may construct an $N \times N$ matrix-valued 2-form via the wedge product $A \wedge A$. Show that $A \wedge A$ is given by

$$A \wedge A = [A_0, A_1] dx^0 \wedge dx^1$$
, where $[A_0, A_1] = A_0 A_1 - A_1 A_0$. (1)

- 2. $\langle \mathbf{3} \rangle$ Taking pressure p and volume V as independent variables for the internal energy U of a gas, use the 1st law of thermodynamics to obtain an expression for the **heat 1-form** ω [associated to the infinitesimal heat added reversibly to a fixed mass of a (not necessarily ideal) gas].
- (5+5) Consider the map (embedding) from the 2-torus to 3d Euclidean space (with Cartesian coordinates) f: T² → ℝ³ given by (θ, φ) → ((R+r cos θ) cos φ, (R+r cos θ) sin φ, r sin θ) where R > r > 0 are fixed. (a) Indicate the meanings of r, R, θ, φ by drawing a figure of the torus. (b) Find the pullback f*g of the Euclidean metric g_{ij} = δ_{ij}, i.e., find the induced metric on the torus.