Mathematical Methods, Spring 2024 CMI

Assignment 7
Due by the beginning of the class (1030 am) on Tue, Feb 27, 2024
Differential forms, induced metric

1. $\langle\mathbf{4}\rangle$ Suppose A is an $N \times N$ matrix-valued 1-form on \mathbb{R}^{2} with coordinates x^{0} and x^{1}. What this means is that when written as a linear combination of coordinate basis 1-forms $d x^{\mu}$, the coefficients A_{μ} are $N \times N$ matrices. Viewed differently, A is a matrix, each of whose entries is a 1 -form. In components, $A_{b}^{a}=\left(A_{\mu}\right)_{b}^{a} d x^{\mu}$ where $\mu=0,1$ and $a, b=1, \ldots, N$ are matrix indices. We use up-down matrix indices since a matrix may be viewed as a $(1,1)$ tensor. Now, we may construct an $N \times N$ matrix-valued 2 -form via the wedge product $A \wedge A$. Show that $A \wedge A$ is given by

$$
\begin{equation*}
A \wedge A=\left[A_{0}, A_{1}\right] d x^{0} \wedge d x^{1}, \quad \text { where } \quad\left[A_{0}, A_{1}\right]=A_{0} A_{1}-A_{1} A_{0} \tag{1}
\end{equation*}
$$

2. $\langle\mathbf{3}\rangle$ Taking pressure p and volume V as independent variables for the internal energy U of a gas, use the $1^{\text {st }}$ law of thermodynamics to obtain an expression for the heat 1-form ω [associated to the infinitesimal heat added reversibly to a fixed mass of a (not necessarily ideal) gas].
3. $\langle\mathbf{5}+\mathbf{5}\rangle$ Consider the map (embedding) from the $\mathbf{2}$-torus to 3d Euclidean space (with Cartesian coordinates) $f: T^{2} \rightarrow \mathbb{R}^{3}$ given by $(\theta, \varphi) \mapsto((R+r \cos \theta) \cos \varphi,(R+r \cos \theta) \sin \varphi, r \sin \theta)$ where $R>r>0$ are fixed. (a) Indicate the meanings of r, R, θ, φ by drawing a figure of the torus. (b) Find the pullback $f^{*} g$ of the Euclidean metric $g_{i j}=\delta_{i j}$, i.e., find the induced metric on the torus.
