Mathematical Methods, Spring 2024 CMI

Assignment 6 Due by the beginning of the class (1030 am) on Tue, Feb 20, 2024 Volume form, pushforward, pullback

- 1. $\langle \mathbf{3} + \mathbf{4} + \mathbf{2} \rangle$ Volume form on \mathbb{R}^3 . Suppose x^1, x^2, x^3 are Cartesian coordinates on \mathbb{R}^3 and ϵ_{ijk} is the Levi-Civita symbol. (a) Verify that $\Omega = \frac{1}{3!} \epsilon_{ijk} dx^i \wedge dx^j \wedge dx^k = dx^1 \wedge dx^2 \wedge dx^3$. (b) Transform this 3-form to spherical polar coordinates $x^1 = r \sin \theta \cos \phi$, $x^2 = r \sin \theta \sin \phi$, $x^3 = r \cos \theta$ and find the components of Ω in the new variables. (c) For a suitable function f, express the volume form as $\Omega = f(r, \theta, \phi) dr \wedge d\theta \wedge d\phi$ and compare f with the determinant of the Jacobian.
- 2. $\langle \mathbf{2} + \mathbf{4} + \mathbf{1} \rangle$ **Pushforward and pullback.** Consider the smooth map $\phi : \mathbb{R} \to \mathbb{R}^2$ taking $x \mapsto (x, 0)$ in Cartesian coordinates. (a) Find the pushforward $\phi_* v$ of the vector field $v = x\partial_x$ on \mathbb{R} . (b) Find the pullbacks $\phi^* \alpha$ and $\phi^* \beta$ of the 1-forms $\alpha = dx$ and $\beta = dy$ on \mathbb{R}^2 as well as of the 2-form $\alpha \land \beta$. (c) What about the pullback of any 2-form on \mathbb{R}^2 ?