Mathematical Methods, Spring 2024 CMI
 Assignment 4

Due by the beginning of the class (1030 am) on Tue, Feb 6, 2024
1 -forms and 2 -forms

1. $\langle\mathbf{2}+\mathbf{2}+\mathbf{2}\rangle$ Suppose f and g are two smooth real-valued functions on 3d Euclidean space \mathbb{R}^{3} with Cartesian coordinates x, y, z. (a) Find the components of $d f \wedge d g$ in the coordinate basis for 2 -forms. (b) Compare with the components of the cross product $\nabla f \times \nabla g$ familiar from vector calculus. (c) What is the geometric meaning of $\nabla f \times \nabla g$?
2. $\langle\mathbf{3}+\mathbf{3}\rangle$ Consider the 1 -form $\alpha=(x d x+y d y) / r^{2}$ on the punctured $x-y$ plane $\mathbb{R}^{2} \backslash(0,0)$ where $r^{2}=x^{2}+y^{2}$. (a) Show that the exterior derivative $d \alpha=0$. We say that α is a closed form 1-form. (b) Find a smooth function $f(x, y)$ on the punctured plane such that $\alpha=d f$. If there is such an f, we say that α is an exact differential form.
3. $\langle\mathbf{2}\rangle$ Suppose $A=A_{\mu} d x^{\mu}$ is the gauge potential 1-form on 4 d space-time with coordinates $x^{\mu}=(c t, x, y, z)$. Define the field strength 2-form $F=d A$. Find the components $F_{\mu \nu}$ of the field strength two form $F=\frac{1}{2} F_{\mu \nu} d x^{\mu} \wedge d x^{\nu}$.
