Mathematical Methods, Spring 2024 CMI

Assignment 3 Due by the beginning of the class (1030 am) on Tue, Jan 30, 2024 Vector fields

- 1. $\langle \mathbf{8} \rangle$ Suppose $u = u^i \partial_i$, $v = v^j \partial_j$ and $w = w^k \partial_k$ are three vector fields expressed in local coordinates x^1, \dots, x^n on an *n*-dimensional manifold. Use the formula for the commutator of vector fields to show that they satisfy the Jacobi identity [u, [v, w]] + [w, [u, v]] + [v, [w, u]] = 0.
- 2. $\langle \mathbf{3} + \mathbf{3} \rangle$ (a) Show that the Lie derivative $\mathcal{L}_u v = [u, v]$ satisfies the Leibniz rule: $\mathcal{L}_u(fv) = (\mathcal{L}_u f)v + f\mathcal{L}_u v$ for a smooth function f. (b) Is [fu, v] = f[u, v]? What can be said about $\mathcal{L}_{fu}v$? (c) Is the commutator linear over the space of functions? Why?
- 3. $\langle \mathbf{4}+\mathbf{4} \rangle$ Consider the vector field on the Euclidean plane given by $v = y \frac{\partial}{\partial x} x \frac{\partial}{\partial y}$. (a) Sketch the vector field on the x-y plane by displaying arrows. Which way does it point at the origin? (b) Solve for the integral curve (x(t), y(t)) through the point (x(0) = 1, y(0) = 0) and plot it. Compare with the previous sketch and comment on whether the arrows are tangent to the integral curve.