Mathematical Methods, Spring 2024 CMI

Assignment 3
Due by the beginning of the class (1030 am) on Tue, Jan 30, 2024
Vector fields

1. $\langle\mathbf{8}\rangle$ Suppose $u=u^{i} \partial_{i}, v=v^{j} \partial_{j}$ and $w=w^{k} \partial_{k}$ are three vector fields expressed in local coordinates x^{1}, \cdots, x^{n} on an n-dimensional manifold. Use the formula for the commutator of vector fields to show that they satisfy the Jacobi identity $[u,[v, w]]+[w,[u, v]]+[v,[w, u]]=$ 0 .
2. $\langle\mathbf{3}+\mathbf{3}\rangle$ (a) Show that the Lie derivative $\mathcal{L}_{u} v=[u, v]$ satisfies the Leibniz rule: $\mathcal{L}_{u}(f v)=$ $\left(\mathcal{L}_{u} f\right) v+f \mathcal{L}_{u} v$ for a smooth function f. (b) Is $[f u, v]=f[u, v]$? What can be said about $\mathcal{L}_{f u} v$? (c) Is the commutator linear over the space of functions? Why?
3. $\langle\mathbf{4}+\mathbf{4}\rangle$ Consider the vector field on the Euclidean plane given by $v=y \frac{\partial}{\partial x}-x \frac{\partial}{\partial y}$. (a) Sketch the vector field on the $x-y$ plane by displaying arrows. Which way does it point at the origin? (b) Solve for the integral curve $(x(t), y(t))$ through the point $(x(0)=1, y(0)=0)$ and plot it. Compare with the previous sketch and comment on whether the arrows are tangent to the integral curve.
