Mathematical Methods, Spring 2024 CMI
 Assignment 14

Due by 1030 am on Monday, May 6, 2024
Orthogonal matrices, Lie algebras

1. $\langle\mathbf{3}+\mathbf{3}+\mathbf{3}\rangle$ Find these 3×3 orthogonal matrices, verify they satisfy $A^{t} A=I$ and find $\operatorname{det} A$. (a) A counterclockwise rotation by angle θ about the z axis. (b) A reflection in the $x y, y z$ and $z x$ planes. (c) A reflection through the origin.
2. $\langle\mathbf{6}\rangle$ Structure constants of $O(3)$. Suppose we take e_{1}, e_{2}, e_{3} with matrix elements $\left(e_{i}\right)_{j k}=$ $-\epsilon_{i j k}$ as a basis for $\underline{O(3)}$. Show that their commutators may be expressed as $\left[e_{i}, e_{j}\right]=$ $\epsilon_{i j k} e_{k}$.
3. $\langle\mathbf{3}+\mathbf{3}+\mathbf{3}+\mathbf{3}\rangle$ Characterize the matrices that lie in the Lie algebras of the following matrix groups and use this to find the real dimensions of the corresponding Lie groups: (a) the real general linear group $G L_{n}(\mathbb{R})$, (b) the special linear group $S L_{n}(\mathbb{R})$ which is the subgroup with unit determinant and (c) the orthogonal group $O(n)$, (d) $S O(n)$.
