Mathematical Methods, Spring 2024 CMI

Assignment 14 Due by 1030 am on Monday, May 6, 2024 Orthogonal matrices, Lie algebras

- 1. $\langle \mathbf{3} + \mathbf{3} + \mathbf{3} \rangle$ Find these 3×3 orthogonal matrices, verify they satisfy $A^t A = I$ and find det A. (a) A counterclockwise rotation by angle θ about the z axis. (b) A reflection in the xy, yz and zx planes. (c) A reflection through the origin.
- 2. $\langle \mathbf{6} \rangle$ Structure constants of $\underline{O(3)}$. Suppose we take e_1, e_2, e_3 with matrix elements $(e_i)_{jk} = -\epsilon_{ijk}$ as a basis for $\underline{O(3)}$. Show that their commutators may be expressed as $[e_i, e_j] = \epsilon_{ijk}e_k$.
- 3. ⟨3 + 3 + 3 + 3⟩ Characterize the matrices that lie in the Lie algebras of the following matrix groups and use this to find the real dimensions of the corresponding Lie groups:
 (a) the real general linear group GL_n(ℝ), (b) the special linear group SL_n(ℝ) which is the subgroup with unit determinant and (c) the orthogonal group O(n), (d) SO(n).