Mathematical Methods, Spring 2024 CMI

Assignment 11 Due by the beginning of the class (1030 am) on Tue, Apr 2, 2024 subgroup, conjugation, homomorphism, abelian/nonabelian

- 1. $\langle \mathbf{4} \rangle$ Show that H is a **subgroup** of G if and only if given $h, k \in H, hk^{-1} \in H$.
- 2. $\langle 4 \rangle$ If *H* is a subgroup of *G*, then verify that $H_g = gHg^{-1}$ is also a subgroup. It is called the **conjugate subgroup** of *H* by the element *g*.
- 3. $\langle 4 \rangle$ Suppose $\phi : G \to G'$ is a homomorphism of groups. Show that the **homomorphic** image $\phi(G) \subset G'$ is a subgroup of G'.
- 4. $\langle \mathbf{4} \rangle$ Find an **isomorphism** between the additive group of real numbers $(\mathbb{R}, +)$ and the multiplicative group of strictly positive real numbers (\mathbb{R}^+, \times) .
- 5. $\langle 4 \rangle$ Show that the group of 2×2 orthogonal matrices O(2) is **nonabelian**.