Mathematical Methods, Spring 2024 CMI
 Assignment 1

Due by the beginning of the class on Jan 9, 2024
Charts and transition functions

1. $\langle\mathbf{3}+\mathbf{3}+\mathbf{3}+\mathbf{3}+\mathbf{3}\rangle$ Consider the unit sphere S^{2} embedded in $\mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=1$. Let $N=(0,0,1)$ be the North pole of the sphere and consider the equatorial plane E defined by $z=0$. Given any point $(x, y, z) \neq N$ on S^{2}, we define its stereographic projection to be the unique point $(X, Y) \in E$ through which the line joining N and P passes (see Fig. 11). (a) Describe how you might define the image of N under the stereographic projection using suitable limits. (b) Express the coordinates (X, Y) of the stereographic projection of P in terms of x, y, z. The stereographic projection from the North pole provides a coordinate chart on $S^{2} \backslash N$ (sphere with N excluded). (c) Similarly, the stereographic projection from the South pole $S=(0,0,-1)$ to the equatorial plane defines a coordinate chart on $S^{2} \backslash S$. Find the coordinates $\left(X^{\prime}, Y^{\prime}\right)$ of the point $P=(x, y, z) \in S^{2}$ of the stereographic projection from S. (d) Find the transition function that expresses $\left(X^{\prime}, Y^{\prime}\right)$ in terms of (X, Y) on the overlap $S^{2} \backslash\{S, N\}$ between the two coordinate charts. (e) Is the transition function smooth? Why?

Figure 1: Stereographic coordinates (X, Y) of a point P on the sphere S^{2} are given by the point of intersection with the equatorial plane of the line from the North pole through P.

