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1 The concept of a manifold

By a manifold, we have in mind a space like a circle (denoted S1), the plane, the
surface of a sphere (S2) or the 3d Euclidean space R3 in which a particle can move.
A manifold is a space where every point1 has an open neighborhood2 that looks like3

Euclidean space Rn for some fixed positive integer n, which is called the dimension of
the manifold. By considering sufficiently many such overlapping open neighborhoods

1In §8 we will extend the concept of a manifold to one with a boundary. The points on the boundary
will not have open neighborhoods and need to be treated differently.

2The open neighborhoods we have in mind are simple ones: they must come in one piece and be con-
tractible to a point. In 1d they are open intervals on the real line (a, b) or bent (continuously deformed)
versions thereof. In 2d they are open disks x2 + y2 < 1 or stretched/bent (continuously deformed) ver-
sions of disks. In 3d they are continuous deformations of open balls x2 + y2 + z2 < 1. The open interval,
disk and ball is each continuously deformable into R,R2 and R3. Similarly, we have open balls in higher
dimensions. They are our neighborhoods. By contrast, an annulus 1 < x2 + y2 < 2 is not contractible to
a point, it cannot be continuously shrunk to a point.

3By ‘looks like’, we mean continuously deformable into. A rubber balloon undergoes continuous defor-
mation as it is inflated. More precisely, by ‘looks like’, we mean homeomorphic to. A homeomorphism is
a continuous map with a continuous inverse. An untied balloon is homeomorphic to a disc-shaped rubber
sheet since the latter can be stretched into a balloon without tearing the rubber sheet.
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of points, we obtain an open covering of the space. Thus, roughly, a manifold is a
space that can be covered by charts or ‘coordinate’ patches, as in Fig. 1a and Fig. 2a.
The charts together are said to furnish an atlas for the manifold. The terminology
is borrowed from cartography, where an atlas consists of several overlapping charts
which can, for instance, together describe a continent.

The idea is to use existing notions on smooth functions, vector fields, differentials
and Cartesian tensors on Rn to develop corresponding notions for the manifold, via
a combination of patchwork and consistency conditions between overlapping charts.
It took a long time for a satisfactory definition of a manifold to be arrived at (in the
work of Hermann Weyl (1912) and Hassler Whitney (1930s)), with examples playing
a key role. In this appendix, we will introduce a number of concepts and technical
terms from the theory of manifolds. The reader who is meeting these for the first time
should not despair, as they are invariably accompanied by illustrative examples.

Analogy with cell phone networks and cartography. The idea of covering a space
with overlapping patches of a simple sort is practically realized in cell phone networks,
which we caricature now. For instance, a city is covered by cells (say disks), each
serviced by a cell phone tower. Each point in the city lies in at least one such cell and
communication to/from the cell phone is transmitted via some protocols associated
to the corresponding tower (manner of storage, encryption etc.). If a phone lies in
the intersection of two cells, then two towers can simultaneously communicate with
it. The data received by the two towers can be related to each other via a suitable
transformation between the protocols followed by each tower. This is crucial when
a person is traveling in the back seat of a car and speaking on a cell phone. When
moving from one cell to another, the two towers must agree on what the person is
saying when the phone is in the intersection, before the ‘future’ tower takes over from
the ‘past’ tower. Evidently, the city is our manifold and the cells are our coordinate
patches. The transformations between data received by two towers from the overlap
of two cells play the role of transition functions that we will soon encounter. A similar
analogy, which explains much of the terminology, may be made with cartography,
where the charts or maps prepared by two explorers have to be related (e.g., the scales
of magnification may be different) in regions they both explore. �

3 overlapping 
patches

(a) Circle S1

Manifold Not manifolds

(b) Closed interval [0,1] (c) Flag with pole

0 1

Figure 1: (a) The circle manifold S1 covered here by three overlapping open neighborhoods.
(b) The closed interval [0, 1] is not a manifold as 0 and 1 do not have open neighborhoods: it is
a manifold with boundary. (c) A flag with pole is not a manifold: open neighborhoods do not
all have the same dimension and the neighborhoods of all points do not look alike.
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Coordinate charts and transition functions. Returning to our definition of a man-
ifold, why do we insist on open neighborhoods of the same dimension to cover a
manifold? Examples of spaces we do not want to regard as manifolds will reveal why.
For instance, the closed interval C = [0, 1] ⊂ R1 is not a manifold4. The points 0 and
1 do not have any open neighborhoods5 lying in C while all other points 0 < x < 1
have open neighborhoods (see Fig. 1) of the form (x− ε, x + ε) ⊂ C for some suffi-
ciently small ε [we could take ε to be the smaller of x/2 and (1 − x)/2]. Intuitively,
C looks different in the vicinity of 0 and 1 from how it looks elsewhere. We do not
want to allow such ‘inhomogeneities’ in a manifold. This is why we insist on open
neighborhoods. Similarly, the space that is shaped like the multiplication sign × is
not a manifold: it looks different at the center and the extremes compared to how it
looks elsewhere. A cloth flag attached to a pole is also not a manifold: points on the
lower part of the pole look different from points on the cloth: the former typically
have 1d open neighborhoods while the latter typically have 2d open neighborhoods
(see Fig. 1). This is why we insist that all neighborhoods have the same dimension.
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Northern overlap

Southern overlap
(b)

Figure 2: (a) Coordinate charts and transition functions for a manifold M (which can be
thought of as the surface of a sphere S2). (b) Overlapping coordinate patches for the circle
S1 (dashed curve) as a manifold. A minimum of two (open) coordinate patches is needed to
cover the circle: here they are the Eastern and Western patches indicated by thick and thin solid
curves. The angle θ is measured counterclockwise from the the horizontal axis.

On the other hand, the unit circle S1 defined as the set of points (x, y) on the plane
with x2+y2 = 1 is a one-dimensional manifold. As shown in Fig. 2b, the circle can be
covered by two patches: the Eastern and Western neighborhoods−3π/4 < θ1 < 3π/4
and π/4 < θ2 < 7π/4 defined in terms of a polar angle measured counterclockwise
with respect to the positive x-axis. θ1 and θ2 are called local6 coordinates in their re-
spective patches. Thus, the circle is one-dimensional. Each of these angular patches is
continuously deformable (by stretching) into the real line R since every open interval
can be continuously mapped to the whole real line (e.g., tan : (−π/2, π/2) → R).

4However, [0, 1] may be viewed as the manifold (0, 1) with boundary included, see §8.
5Neighborhoods of 0 such as [0, 1/2) are ‘closed-open’.
6Local means coordinates are defined on a patch rather than globally on the whole manifold.
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These patches intersect in a pair of ‘upper’ and ‘lower’ intervals: running from North-
East to North-West and from South-West to South-East. When a point lies in such
an intersection, either of the coordinates can be expressed in terms of the other via a
‘transition function’ or coordinate transformation. For the circle, we have in the upper
intersection θ1 = θ2 and in the lower intersection θ1 = θ2 − 2π. The manifold is
differentiable if these transition functions between coordinate systems in each such
intersection is a differentiable map from Rn → Rn (or between open subsets of Rn
which are homeomorphic to Rn). In the circle example, the transition functions are
linear maps of one real variable, so the circle is a differentiable manifold of dimension
one. If the transition functions are infinitely differentiable (as is the case here), we say
the manifold is smooth7 or C∞. Note that the circle cannot be covered by a single
open chart: the largest ones such as −π < θ1 < π unfortunately exclude one point
while −π < θ1 ≤ π or 0 ≤ θ1 ≤ 2π fail to be open subsets of R1.

Sometimes we are lucky, and a single coordinate patch is sufficient to cover the
whole manifold or the portion we are interested in. This is the case with the plane or
a disk (x2 + y2 < 1) or 3d Euclidean space R3, which can be covered by a single
patch with, say, Cartesian coordinates. In particular, Rn for each8 n = 1, 2, 3, . . . is
automatically a smooth manifold, as are all the open subsets of Rn that may be con-
tinuously shrunk to a single point. Unfortunately, the circle, which is a 1d manifold, is
not an open subset of R1 and S2 is not an open subset of R2, so we cannot cover them
with a single chart9 and need to work harder to find an atlas for these manifolds. The
circle or the 2-sphere S2 require a minimum of two coordinate patches. For S2, the
patches (each continuously deformable into a disk) consisting of all latitudes strictly
above the Tropic of Capricorn and all latitudes strictly below the Tropic of Cancer
furnish one possible atlas. These patches intersect over the tropics.

Given a manifold M , suppose a point p ∈ M lies in the intersection of two co-
ordinate patches so that p may be assigned the coordinates x = (x1, · · · , xn) or
y = (y1, · · · yn). Then the ‘transition function’ from x to y is given by the equa-
tions for the coordinate transformation yi = yi(x) and conversely xj = xj(y) for
1 ≤ i, j ≤ n. For the manifold to be smooth, both the transformation x 7→ y and its
inverse y 7→ x must be smooth maps between open subsets of Rn (see Fig. 2a).

Refining an atlas. Given a smooth manifold (which must necessarily come with an
atlas of smoothly interrelated coordinate charts), we are free to add a chart to the atlas,
provided we are consistent. For instance, if the new chart with coordinate y overlaps

7If the transition functions are continuous we call it a C0 manifold or a topological manifold. If they
are once differentiable with a continuous derivative, we call it a C1 manifold. More generally we have
the notion of a Ck manifold if the transition functions are continuously differentiable k times for some
k = 0, 1, 2, . . ..

8For some purposes, it is convenient to regard R0 as a zero-dimensional manifold with only one point.
A zero-dimensional manifold is either a point or a discrete set of points. For example, the zero-dimensional
sphere S0 is the pair of points {−1, 1} satisfying x2 = 1 in R1.

9If we could cover S1 with a single chart, the chart (and hence S1) would be an open subset of R1.
Note, however, that merely being an open subset of Rn does not mean we can cover a manifold with a
single chart, since our charts are assumed to be homeomorphic to open balls. For instance, the annulus
1 < x2 + y2 < 2 is an open subset of R2, but we need a minimum of two charts to cover it.

4



an existing chart with coordinate x, the transformation y = y(x) and its inverse must
be smooth. For the Euclidean plane, the Cartesian coordinates (x1 ∈ R, x2 ∈ R)
furnish a one-chart atlas. Suppose we wish to add a chart consisting of plane polar
coordinates (y1 = r, y2 = φ). We can do this provided we choose the polar coordinate
chart to be an open set on which the transformation to/from Cartesian coordinates
is smooth. This is the case, for instance, if we choose the polar coordinate chart
to be defined on R2 with the origin and negative horizontal axis excluded so that
y1 = r ∈ (0,∞) and y2 = φ ∈ (−π, π). The Cartesian product (0,∞) × (−π, π)
is clearly an open subset of R2 continuously deformable into R2. Note that if we
retained the negative real axis, the patch consisting of the punctured plane would not
be continuously deformable into R2. In this region of overlap we have the familiar
coordinate transformation y1 =

√
(x1)2 + (x2)2 and y2 = arctan(x2/x1) and the

inverse transformation x1 = y1 cos y2 and x2 = y1 sin y2 which are both seen to be
smooth. The smoothness fails at the origin.

Maps between manifolds. Having defined differentiable manifolds, we can now con-
sider maps between manifolds. We will use such maps to say when two manifolds are
to be considered the same. Two manifolds are topologically equivalent (or homeo-
morphic) if they are related by an invertible continuous map. The surface of a cube
can be continuously deformed into that of a sphere, so they are homeomorphic. If two
differentiable or smooth manifolds can be related via an invertible differentiable or
smooth map, then they are called diffeomorphic.

To make precise the notion of a continuous, differentiable or smooth map be-
tween manifolds, we make use of the corresponding concept for maps between Eu-
clidean spaces or open subsets thereof. So to begin with, a map f : Rp → Rq

given by yi = f i(x) is differentiable if all the first partials ∂yi

∂xj exist (it is con-
tinuously differentiable if these partial derivatives exist and are continuous). It is
smooth if partial derivatives of all orders exist. It is continuous if yi are continu-
ous functions of xj . Next, a map between manifolds φ : Mp → Nq is contin-
uous/differentiable/smooth if in each coordinate patch, the corresponding maps be-
tween Rp and Rq are continuous/differentiable/smooth. For consistency, if coordinate
patches overlap, then the individual maps should agree on the overlap. Thus, we have
the notion of smooth maps between manifolds. Two manifolds M,N are said to be
diffeomorphic if there is a smooth bijective (1-1 and onto) map f : M → N with
smooth inverse. They are homeomorphic if smoothness is replaced with continuity.
Diffeomorphic or homeomorphic manifolds must have the same dimension and can-
not be distinguished in so far as their smooth/topological structure is concerned. The
circles x2 + y2 = 1, x2 + y2 = 2 and the ellipse x2 + 2y2 = 1 are all diffeomorphic
(see Prob. ??) as are the sphere x2 + y2 + z2 = 1 and the ellipsoid x2 + y2 + 2z2 = 1
or the open interval (0, 1) and the real line R (see Prob. ??). On the other hand, the
surface of a cube is not smooth (due to the sharp edges and corners), so it is not diffeo-
morphic to the sphere. Similarly, the surface of a sphere and that of a torus (inflated
tyre tube or vadai) are not homeomorphic: one can show that there is no continuous
bijection between them since the latter has a ‘handle’ which the former lacks.
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The concept of a manifold that we have defined does not possess any notion of dis-
tances between points or lengths of tangent vectors or angles between tangent vectors.
To define these ‘geometric’ concepts we need additional structure on the manifold,
such as a metric (see §6). At present, our manifolds are either topological manifolds
(if the transition functions are continuous) or differentiable/smooth manifolds (if the
transition functions are differentiable/smooth). Thus, our manifolds currently lack any
intrinsic geometric rigidity of shape or size. In particular, the surface of a triaxial el-
lipsoid (x2/a2 + y2/b2 + z2/c2 = 1 with no two among a2, b2, c2 equal) and that of
a round sphere (x2 + y2 + z2 = 1) are identical as topological or smooth manifolds
since they can be continuously or smoothly deformed into each other.

2 Submanifolds, connected and simply connected manifolds

It is tempting to think of a submanifold as a subset of a manifold M that acquires
a manifold structure when charts of M are suitably restricted. However, this is a little
too restrictive for some purposes. While the unit circle x2 + y2 = 1 is a submanifold
of the Euclidean x-y plane R2 in this sense, we would like to admit the examples of
the cubic curve and 3-petaled rose shown in Fig. 3 (c) and (d) as suitable submanifolds
of R2. On the face of it, these curves are not manifolds due to the self-intersections.
However, there is a simple way to view them as images of bona fide manifolds sitting
inside (‘included in’) the plane. Without attempting to be very precise, we outline a
framework for the idea of a submanifold. Given an n-dimensional manifold M , an
s-dimensional manifold S (s ≤ n) and an ‘inclusion’ map i : S ↪→M we can specify
what we mean by immersed and embedded submanifolds.

For example, S could be R, thought of as an infinitely long (or open stretch of)
rope and M could be the plane R2. The inclusion map is some way of laying the rope
on the plane. The question is one of whether S sits insideM in a sufficiently nice way.
For example, we readily admit the x-axis contained in R2 and the interval (0, 1) ⊂ R
as submanifolds. Questions arise, for instance, when the image of S in M involves
sharp corners (as in the curve that looks like the character V or the cardioid and cycloid
of Fig. 3 (a) and (b)) or self-intersections (as in the curve that looks like α or the 3-
petaled rose of Fig. 3(d)). Very roughly, if the tangent to S behaves nicely (sharp
corners are absent), we will say that S is an immersed submanifold while we will call
it an embedding if it has neither sharp corners nor self-intersections. The manner in
which S sits inside M can be encoded in properties of the inclusion map i : S ↪→ M
which takes any point x ∈ S to the corresponding point i(x) ∈M . If the derivative of
the inclusion map, which is the n×s Jacobian matrix of first partials, has the maximum
possible rank10 s everywhere, then S is said to be an immersed submanifold (this
eliminates sharp corners but allows for self-intersections, as in the symbol α or the
planar cubic curve y2 = x3 + x2 of Fig. 3(c)). Thus, in an immersion, the inclusion
map need not be 1-1, though its derivative must be 1-1. An immersion where the
inclusion map is also 1-1 (this eliminates self-intersections) is called an embedding.

10The row (column) rank of a matrix is the number of linearly independent rows (columns). The rank of
a matrix is the larger of its row and column ranks.
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The n-sphere Sn = {x ∈ Rn+1 such that (x1)2 + (x2)2 + · · · + (xn+1)2 = 1}
is an embedded submanifold of Rn+1 for n = 0, 1, 2, . . .. An important theorem of
Whitney states that essentially any smooth n-dimensional manifold M (defined as
above using an atlas) can be realized as a smoothly embedded submanifold11 of R2n.
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Figure 3: Plane curves (a) cardioid x = cos t(1 − cos t), y = sin t(1 − cos t) (b) cycloid
x = (t− sin t)/2, y = (1− cos t)/2 (c) cubic y2 = x3 +x2 and (d) 3-petaled rose r = cos 3θ
given in parametric, implicit and polar forms. The cardioid and cycloid fail to be immersed
submanifolds of the plane since the rank of their Jacobians drop from 1 to 0 at the sharp corners.
E.g., for the cycloid, the transpose of the Jacobian is Jt = (ẋ, ẏ) = ((1−cos t)/2, (sin t)/2) =
(0, 0) at t = 2nπ where n is an integer. The cubic curve and the rose are immersions but not
embeddings: they have no sharp corners but display self-intersections. If we think of the image
curve as the path traced by an ant walking on the plane, the Jacobian is the velocity vector.
If the ant does not momentarily come to rest, its path may be modeled as an immersion (self-
intersections occur when an ant returns to an earlier location while at a sharp corner, the ant
must momentarily come to rest and abruptly change direction). If the curve is the world line
of a massive particle in space-time parametrized by proper time, then it must be an embedding
since the 4-velocity (??) cannot vanish and the world line cannot have self-intersections.

Connected and simply connected manifolds. A manifold is connected if it comes
in one piece. For example, the disjoint union of two open real intervals (0, 1) ∪ (2, 3)
is not connected. To define the concept of connectedness, we imagine a point-like ant
walking on the manifold M . If it can reach any point from any other point via a con-
tinuous path (γ(t) parametrized by time) that lies in M , then M is connected. More
precisely, M is path connected if any two points p, q ∈ M can be joined by a contin-
uous path γ : [0, 1] → M with γ(0) = p and γ(1) = q. For example, Rn and Sn

for n = 1, 2, 3, . . . are connected. If a manifold is not path connected, then it is called
disconnected. The real line punctured12 at the origin is a disconnected manifold. For
a disconnected manifold, the connected component of p ∈M is the submanifold con-
sisting of points q ∈ M that can be reached from p via continuous paths lying in M .
The line punctured at the origin has two connected components (−∞, 0) and (0,∞).
The connected component of the point 2 is the right half-line. Similarly, S0 = {−1, 1}
is disconnected, it has two connected components. A connected manifold M is called
simply connected if any nontrivial closed curve in M can be continuously deformed
(shrunk) to a point while remaining in M . The two-sphere S2 is simply connected, a
rubber band on a globe can always be shrunk to a point while remaining on the globe.

11In favorable cases, one may be able to embed the n-dimensional manifold M in a Euclidean space of
dimension less than 2n, as is the case with Sn ↪→ Rn+1.

12To puncture the line R is to remove (or excise) one point from it.
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Figure 4: (a) Any two points p, q on a torus can be joined by a continuous path γ: it is path
connected. It is not simply connected: the closed curves A, B winding around the torus cannot
be shrunk to a point, though C can. C is a contractible closed curve or one that is homotopic to
a point. (b) The plane with a hole (disk excised) is homeomorphic to the once punctured plane.
It too is connected but not simply connected: the closed curve D cannot be continuously shrunk
to a point. It is multiply connected: there are many paths from p to q that are not continuously
deformable into each other: direct (γ), around the hole (γ′), winding twice around the hole, etc.
Though γ is not homotopic to γ′ (they cannot be continuously deformed into each other), γ and
γ′′ are homotopic to each other (a rubber band stretched from p to q along γ can be deformed
to γ′′). A homotopy between γ, γ′′ : [a, b]→ M is a continuous map Γ : [a, b]× [0, 1]→ M
with Γ(t; 0) = γ(t) and Γ(t; 1) = γ′′(t).

On the other hand, S1, the torus, the surface of an infinite circular cylinder and the
punctured plane are all connected but not simply connected (see Fig 4).

3 Smooth functions or scalar fields

In essence, a smooth real function f on a smooth manifold M is a way of assign-
ing a smoothly varying real number to each point on the manifold. Smooth functions
f : M → R are also called scalar fields. They are smooth real-valued functions of
the coordinates in any given patch with the consistency condition that the value of the
function at a point p ∈ M must be the same irrespective of which coordinate system
is used to describe p, in the event that p lies in the intersection of coordinate patches.
In other words, if the function is described by the formulae f(x) and g(y) in two co-
ordinate patches, then we must have g(y(x)) = f(x) at each point p of the overlap.
Sometimes, we turn this around and say that given a scalar field f(x) in one coordi-
nate system, under a change from x 7→ y given by the transformation y = y(x) (and
its inverse x = x(y)), the formula for the function becomes F (y) = f(x(y)). Hence-
forth, we will mostly take this second viewpoint and speak in terms of how objects
transform under a change of coordinates in a region of overlap between two coordi-
nate patches. The space of smooth functions on M is denoted C∞(M) or F(M).
If M is the phase space of a classical system, then the set of observables is given
by F(M). It is a commutative algebra: it is closed under real linear combinations
af + bg ∈ F and pointwise products (fg)(x) = f(x)g(x) = g(x)f(x) = (gf)(x)
for all f, g ∈ F(M), with products distributing over sums. The property fg = gf en-
codes the fact that classical observables commute under multiplication, a feature that
is not always true in the quantum theory, where observables are hermitian operators.
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4 Vector fields

Given local coordinates xi in a chart on an n-dimensional manifold M , we have
the notion of coordinate vector fields. These are defined as the first order partial
differential operators ∂

∂x1 , ∂
∂x2 , · · · , ∂

∂xn , which are often abbreviated ∂xi or ∂i for
i = 1, · · · , n. Geometrically, we may think of the coordinate vector fields at a point
p as tangent vectors to M at p. For instance, ∂1 is the tangent vector to the coor-
dinate curve parametrized by x1 passing through p holding x2, · · · , xn fixed. As a
consequence, ∂x is a tangent vector field on R2 that points rightward at every point,
as shown in Fig. 5a. These coordinate vector fields furnish a basis for more general
vector fields on M . A general vector field is given by a linear combination

v =

n∑
i=1

vi(x)
∂

∂xi
≡ vi(x)∂i. (1)

A vector field restricted to a point p ∈ M is called a tangent vector at p. The set of
tangent vectors at p is the tangent space Tp(M), a real vector space of dimension n.
The coordinate tangent vectors ∂1, · · · , ∂n at p furnish a basis for Tp(M). E.g., the
tangent space to the 2-sphere at a point on the equator may be visualized as a vertical
tangent plane spanned by the coordinate tangent vectors ∂

∂φ and ∂
∂θ (see Fig. 5b).
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x

Coordinate vector field ∂/∂xy
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Figure 5: (a) Coordinate vector field ∂x on the x-y plane. (b) Azimuthal coordinate vector
field ∂φ = −y∂x + x∂y on the unit sphere with the z-axis pointing vertically upwards. At the
North and South poles x = y = 0 and z = ±1. At the poles, ∂φ vanishes, they are zeros of
∂φ. In fact, there is no nonvanishing smooth vector field on a sphere: loosely speaking, it is not
possible to comb hair on the sphere. Here, a smooth distribution of hair combed tangent to a
sphere may be regarded as a vector field on the sphere. The vector field has a zero at a bald spot
where there is no hair.

The set of n functions vi(x) are called the components of v in the coordinate basis.
Though each is a function within a coordinate patch, they do not transform as scalar
functions under a change of coordinates. The components of a vector field have a
special transformation law that follows from the chain rule in multivariable calculus.

9



Suppose the same vector field is expressed in another coordinate system yi:

v = ṽj(y)
∂

∂yj
. (2)

Since y = y(x), we may relate the two sets of coordinate vector fields via a Jacobian:

∂

∂xi
=
∂yj

∂xi
∂

∂yj
= Jji

∂

∂yj
so that v = vi

∂

∂xi
= vi

∂yj

∂xi
∂

∂yj
. (3)

Comparing with (2) we find how the components of a vector field transform:

ṽj(y) = vi(x(y))
∂yj

∂xi
or ṽj = Jji v

i. (4)

Thus, the components of a vector field transform via the Jacobian matrix13: the new
jth component is a linear combination of all the old components (quite unlike how
n scalar fields would transform). Such a transformation is called contravariant. The
prefix contra14 arises from the manner in which the coordinate vector fields transform,
i.e., via the inverse of the Jacobian matrix15:

∂

∂yj
=
∂xi

∂yj
∂

∂xi
= (J−1)ij

∂

∂xi
. (5)

Thus, tangent vector fields are also called contravariant vector fields. A vector field
on a smooth manifold is called smooth if the components vi(x) are smooth functions
of the coordinates in each patch. The matrix elements Jji entering the transformation
formula for vi between overlapping coordinate patches are automatically smooth since
the manifold is smooth.

A vector field can act on a differentiable function on M and give its derivative
along the vector field:

v(f) = vi
∂f

∂xi
. (6)

v(f) is another function on M and generalizes the concept of the directional deriva-
tive16 v ·∇f from vector calculus in R3. Evidently, a vector field acts linearly on
the space of functions: v(af + bg) = av(f) + bv(g) for any pair of scalar fields
f, g and real numbers a, b. Since a vector field is a first order differential opera-
tor, v acts as a derivation on the space of functions: verify that the Leibniz rule

13We may view this as the product of a matrix with a column vector by regarding Jji as the entry in the
jth row and ith column of a square matrix J and vi as the element in the ith row of a column vector.

14In §5 we will meet covector fields. Coordinate covector fields (9) transform via J rather than J−1, so
covector fields are called covariant.

15The Jacobians for x 7→ y and y 7→ x are inverse matrices. This is seen by using the chain rule to

differentiate xi(y(x)) = xi with respect to xk to get ∂x
i

∂yj
∂yj

∂xk
= δik .

16 v(f) is also called the Lie derivative of f along v and denoted Lvf . To find Lvf at a point
x0 ∈ M , we consider the integral curve x(t) (7) of v through x0 with x(0) = x0. Then Lvf =
lims→0[{f(x(s))− f(x(0))} /s].
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v(fg) = fv(g) + v(f)g is satisfied. Thus, we may view a vector field simply as
a linear map from F(M) → F(M) that satisfies the Leibniz rule. The set of vector
fields on M is denoted Vect(M), it is an infinite-dimensional real vector space since
the coefficients vi can be arbitrary smooth functions in any given patch. For instance,
a large class of vector fields on the real line can be written as

∑∞
l=0 clx

l∂x where
c0, c1, . . . are suitable real coefficients. Vect(M) may also be viewed as a module17

over the ring of smooth functions on M : fv+ gw ∈ Vect(M) if v, w ∈ Vect(M) and
f, g ∈ F(M). In other words, we may multiply a vector field by a scalar field to get
another vector field.

Integral curves of a vector field. Given a vector field v on a manifold, it defines a
flow on the manifold. By this, we mean that there is a family of curves on M that are
everywhere tangent to v. Precisely, the integral curve through the point x0 ∈M is the
solution xi(t) to the system of first order ODEs

dxi

dt
= vi(x) with xi(0) = x0. (7)

For examples, figures and much more on integral curves of vector fields, see Chapt. ??.

Commutator of vector fields. Given a pair of differentiable vector fields on a man-
ifold M , we may define their commutator, which is another vector field. In local
coordinates, suppose u = ui∂i and v = vi∂i. Then their commutator [u, v] is

[u, v] = (uj∂jv
i − vj∂jui)∂i. (8)

By making a change of coordinates, one may check that this first order differential
operator transforms as a contravariant vector field. Given a function f : M → R,
both u(v(f)) and v(u(f)) are functions on M . The commutator [u, v]f measures the
extent to which the two differ (see Prob. ??). Notably, u(v(f)) and v(u(f)) involve
both first and second order derivatives, so the composition of vector fields is not a
vector field. Pleasantly, we verify that these second order derivatives cancel out in the
commutator. The latter is also called the Lie bracket of vector fields since it is linear18

[au + bv, w] = a[u,w] + b[v, w], antisymmetric [u, v] + [v, u] = 0 and satisfies the
Jacobi identity [u, [v, w]] + [w, [u, v]] + [v, [w, u]] = 0 (Prob. ??) for any three vector
fields u, v and w and real numbers a, b. Consequently, the linear space of vector fields

17 A module over a ring is a generalization of the concept of a vector space over a field like the real or
complex numbers. Here, a field is an algebraic concept distinct from the differential geometric concepts
of scalar, vector and tensor fields. Multiplication, addition and division by nonzero elements are defined
in a field. Elements of the ring, like those of a field can be added and multiplied in a manner satisfying
the distributive law. A key difference is that not all nonzero elements of the ring may have reciprocals
(multiplicative inverses) and division is therefore not defined. The integers Z form a ring but not a field.
For the ring of functions, only those functions that are nowhere zero have reciprocals. As with vectors in
a vector space, elements of a module can be multiplied (say from the left) by scalars that come from the
ring, with multiplication distributing over addition. Our main example is the module of vector fields over
the commutative ring of functions on a manifold. We cannot always divide a vector field by a function
since the latter may have zeros. Sometimes, we may circumvent this by adding the ‘point at infinity’, define
1/0 =∞ and turn the ring of rational functions into a field.

18Note that [fu, v] 6= f [u, v] in general for a nonconstant smooth function f , see Prob. ??.
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Vect(M) equipped with the commutator Lie bracket is called a real Lie algebra (see
§?? for a definition and more examples of Lie algebras). The commutator [u, v] is
also called the Lie derivative of v along u and is written Luv = [u, v]. From (8),
we see that the Lie derivative19 of v along u includes two contributions: the first is
the ‘obvious’ change in v in the direction of u while the second accounts for the fact
that the components of u themselves change with location. Finally, we note that given
a smooth function f , the Lie derivative of a vector field satisfies the Leibniz rule:
Lu(fv) = (Luf)v + fLuv, as we verify in Prob. ??.

5 Covector fields or 1-forms

On the Euclidean plane, the differentials dx and dy are examples of covector fields
or 1-forms. They are to be thought of as dual to the coordinate vector fields ∂

∂x and
∂
∂y via the ‘pairing’ dx(∂x) = 1, dx(∂y) = 0, dy(∂x) = 0 and dy(∂y) = 1 which is
defined to be linear: for instance, dx(f∂x+g∂y) = fdx(∂x)+gdx(∂y) = f(x, y) for
any two smooth functions f and g. A general covector field is a linear combination
φ = a(x, y)dx + b(x, y)dy where a and b are smooth functions. A 1-form is also
called a Pfaffian differential expression after the German mathematician J F Pfaff who
studied equations20 of the form a(x, y, z)dx+ b(x, y, z)dy + c(x, y, z)dz = 0. Phys-
ically, for a particle moving on a plane, while the velocity q̇(t) = q̇1(t)∂x + q̇2(t)∂y
is a tangent vector at each point (x(t), y(t)) on a trajectory, the momentum p(t) =
p1dx+p2dy is a covector at each such point (see §??) on the configuration plane. An-
other example of a 1-form is the Liouville 1-form pdq = pidq

i. This is to be regarded
as a 1-form on the phase space of a mechanical system that is furnished with canonical
(Darboux) coordinates (qi, pj). Covector fields are also encountered on the thermo-
dynamic state space. According to the 1st law of thermodynamics, the infinitesimal
heat added to a gas is given by the action of the heat 1-form φ = dU + pdV (U, p
and V are the internal energy, pressure and volume of the gas) on the tangent vector
representing the infinitesimal process21. If the process is reversible, the second law
postulates that φ = TdS, where T, S are the absolute temperature and entropy.

More generally, a covector field or covariant vector field or 1-form is simply a
(smoothly varying) assignment of a covector at each point of a manifold. In more
detail, given local coordinates xi in a patch, we have the coordinate basis 1-forms

19It is tempting to mimic the geometric approach to the Lie derivative of a function given in Footnote 16
to defineLuv as the s→ 0 limit of a difference quotient {v(x(s))−v(x(0))}/s, where x(t) is the integral
curve (7) of u through x0 with x(0) = x0. However, there is a difficulty since v(x(s)) and v(x(0)) live
in different tangent spaces and cannot be subtracted. One needs a way to ‘push’ one of the vectors to the
tangent space where the other lives before subtracting. This can be done using the push forward defined in
§7.

20The Pfaffian differential equation φ = a dx + b dy + c dz = 0 is said to be integrable if it admits an
integrating denominator T (x, y, z) (or integrating factor 1/T ) such that φ/T = dS is an exact differential.
Then dS = 0 and the solutions of the Pfaffian differential equation are given by S(x, y, z) = σ for any
constant σ.

21The thermodynamic state space is a 3d manifold with coordinates U, V, S. An infinitesimal process is
represented by a tangent vector v = a∂U + b∂V + c∂S . The work done in this infinitesimal process is
pdV (v) = pb and the heat added is a + pb. Equilibrium states form a 2d hypersurface determined by an
equation of state (EOS). Tangent vectors to this EOS surface represent infinitesimal reversible processes.
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given by the differentials of the coordinates dx1, · · · , dxn. At a point p ∈M , the basis
1-forms dxi(p) are said to span the cotangent space to M at p. The cotangent space
is denoted T ∗p (M) and is the vector space dual to the tangent space Tp(M). Indeed,
{dxi} is the dual basis to {∂i} defined via the pairing dxi(∂j) = δij . In general, a
covector field on M is a linear combination of the basis 1-forms φ = φi(x)dxi. The
n real-valued quantities φi(x) in a coordinate patch are called the components of the
covector field. As with the components of a vector field, they are not scalar functions
on M but satisfy a special transformation law. Indeed, suppose yj is another local
coordinate system defined on a chart that has an overlap with that of the xi. On the
overlap, the coordinate 1-forms are related by the chain rule

dyj =
∂yj

∂xi
dxi = Jji dx

i. (9)

We see that coordinate 1-forms transform via the Jacobian matrix (as opposed to its
inverse, as was the case for coordinate vector fields in (5)). For this reason, covector
fields are called covariant vector fields. Now suppose the same covector field φ is
expressed in the y basis: φ = φ̃j(y)dyj = φ̃jJ

j
i dx

i. Comparing, we see that the
components of a covector field transform via the inverse of the Jacobian22:

φi = φ̃j
∂yj

∂xi
or φ̃j = (J−1)ijφi. (10)

Compare this with the corresponding formula (4) for components of a vector field. If
the components of φ in all charts are smooth functions of the local coordinates on a
smooth manifold, then φ is called a smooth covector field. Since covectors are dual to
vectors at each point of M , covector fields are linear functions on the space of vector
fields. The value of φ = φidx

i on the vector field v = vj∂j is the smooth function or
scalar field

φ(v) = φidx
i(vj∂j) = φiv

jdxi(∂j) = φiv
jδij = φi(x)vi(x). (11)

We used linearity of the action of a covector on a vector to pull the components vj(x)
out. φ(v) is called the contraction of φ with v. More generally, for vector fields v, w,

φ(fv + gw) = f φ(v) + g φ(w) for any f, g ∈ F(M). (12)

The space of covector fields on M is denoted Ω1(M) and is dual to Vect(M) over
F(M). In particular, if φ and ψ are 1-forms and f, g scalar fields, then fφ + gψ is
also a 1-form. Note that fφ = φf , the order does not matter.

On the other hand, we can also evaluate a vector field v on a 1-form φ to get a
scalar field. In fact, since they are dual bases, we also have ∂i(dxj) = δji so that
v(φ) = vj∂j(φidx

i) = viφi = φ(v). This allows us to reinterpret vector fields

22If we view (J−1)ij as the entry in the ith row and jth column of a matrix and φi as the entry in the
ith column of a row vector, then this is the product (from the left) of a row vector with the square matrix
J−1 producing the row vector with jth column entry φ̃j .
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as linear functions on the space of 1-forms. This viewpoint will soon be useful in
generalizing vector fields to contravariant tensor fields.

An important class of 1-forms are differentials of functions on M : φ = df =
∂f
∂xi dx

i. So the partial derivatives of a function should be thought of as components
of a covector rather than a vector. Sometimes, it is convenient to regard functions as
covector fields of degree zero and call F(M) Ω0(M). Thus, the differential d is a
linear map (over R) from Ω0(M) to Ω1(M) satisfying the Leibniz rule.

The tangent space Tp(M) and the cotangent space T ∗p (M) are both n-dimensional
real vector spaces and are therefore isomorphic. However, there is no preferred or
canonical isomorphism between them. If a basis, such as a coordinate basis is chosen
for vector fields then one gets an isomorphism that maps ∂i to dxi and vice versa.
However, this depends on the choice of coordinates23. Thus, given a smooth manifold,
there is no distinguished or natural way to relate vectors to covectors, there are many
ways to do this, but none of them is special. The situation changes if the manifold is
equipped with a metric tensor. In this case, there is a standard way (called lowering
an index) of mapping vectors to covectors, which does not depend on the coordinates
chosen, as we will see in §6.

6 Tensors of rank two and 2-forms

Vector fields v = vi∂i are called contravariant tensor fields of rank one (or of
type (1,0) as their components (vi) have one upper index), while 1-forms are called
covariant tensor fields of rank one (or of type (0,1)). More generally, one may define
tensors of higher rank.

At a point p ∈ M lying in a patch with local coordinates xi, we may consider the
tensor product of the tangent space with itself Tp(M) ⊗ Tp(M). This is the space of
dimension n2 with basis consisting of ∂i ⊗ ∂j for 1 ≤ i, j ≤ n. A type (2,0) tensor
field or second rank contravariant tensor field is then a linear combination

t = tij(x)∂i ⊗ ∂j . (13)

Without further ado, we note that upon changing coordinates x 7→ y, the components
tij transform via the Jacobian matrix, just as for contravariant vector fields, except
that there are now two Jacobian factors

t = t̃kl
∂

∂yk
⊗ ∂

∂yl
where t̃kl = Jki J

l
jt
ij and Jki =

∂yk

∂xi
. (14)

Just as vector fields act linearly on 1-forms to produce functions, second rank con-

23For example, on R with coordinate x, we have an isomorphism mapping dx ↔ ∂x. If we change to
a new coordinate y = 2x, then dy = 2dx and ∂y = 1

2
∂x. The new isomorphism between cotangent and

tangent spaces dy ↔ ∂y is different since it takes dx to 1
4
∂x. Thus, there are many isomorphisms between

the spaces of covectors and vectors, none of which can be considered coordinate-independent or standard.
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travariant tensors act bilinearly24 on a pair of 1-forms to produce functions:

t(φ, ψ) = tij∂i ⊗ ∂j(φkdxk, ψldxl) = tijφkψl∂i(dx
k)∂j(dx

l) = tijφiψj . (15)

Poisson tensor. A physically important example of a (2,0) tensor is the Poisson tensor
on the phase space of a mechanical system: r = rij∂i ⊗ ∂j , which has the further
property of antisymmetry: rij = −rji. The Poisson bracket of a pair of smooth
functions (observables) is the function {f, g} = r(df, dg) = rij∂if∂jg. For a particle
moving on a line, M = R2 with canonical coordinates ξ = (q, p) and rij = (0, 1| −
1, 0). Given a Hamiltonian functionH on phase space, the Poisson tensor allows us to
define the Hamiltonian vector field VH . It is the vector field which acts on any 1-form
φ via VH(φ) = r(φ, dH). The Hamiltonian vector field defines time evolution of any
observable through ḟ = VH(df). Trajectories on phase space are the integral curves of
VH . They are governed by the ODEs ξ̇i = V iH = rij∂jH . For the canonical Poisson
tensor on R2, they reduce to Hamilton’s canonical equations ξ̇1 = q̇ = r12∂2H = ∂H

∂p

and ξ̇2 = ṗ = r21∂1H = −∂H∂q .
Similarly, we have covariant tensor fields of rank two or tensors of type (0,2):

t = tijdx
i ⊗ dxj , (16)

which are linear combinations of the tensor products of the coordinate basis covector
fields. Such a tensor transforms via two factors of the inverse Jacobian:

t̃kl = (J−1)ik(J−1)jl tij . (17)

In summary, each upper index on a tensor transforms via J and each lower one via
J−1. Covariant tensors of rank two can act on a pair or vector fields and produce a
scalar function, they are bilinear maps from Vect(M)× Vect(M) to F(M).

Metric tensor. An important example of a 2nd rank covariant tensor field is the metric
tensor g = gijdx

i ⊗ dxj , which has the further property of being symmetric gij =
gji and nondegenerate [gij an invertible matrix]. A metric allows us to generalize
the concept of the dot product of vectors in Euclidean space to tangent vectors at
a point p on a manifold M . We encounter it as the mass metric in a Lagrangian
quadratic in velocities (??). A metric is called Riemannian if gij is a positive-definite
matrix at every point on the manifold. If the positive-definiteness condition is dropped,
it is called pseudo-Riemannian (this case includes the Lorentzian metric tensor of
space-time; e.g., Minkowski space in Cartesian coordinates xµ = (ct, x, y, z) has the
metric given by the constant diagonal matrix gµν = diag(1,−1,−1,−1) where µ, ν =
0, 1, 2, 3). A virtue of an invertible metric tensor is that it defines an isomorphism from
vectors to covectors: v 7→ v′ where v′i = gijv

j . The inverse metric with components
gij maps covectors to vectors gijv′j = vi. Thus, on a Riemannian manifold, the

24t(φ, ψ) is bilinear if it is linear in both the entries. For instance, t(fφ1 + gφ2, ψ) = ft(φ1, ψ) +
gt(φ2, ψ) for any functions f, g and 1-forms φ1, φ2, ψ. Bilinearity is a consequence of the definition of a
dual space: vector fields are dual to 1-forms and act linearly on 1-forms (as discussed in §5). So pairs of
vectors fields (written as a tensor product ∂i ⊗ ∂j ) act linearly on pairs of 1-forms (φ, ψ).
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tangent and cotangent spaces are canonically isomorphic. We say that the metric and
its inverse can be used to lower and raise indices. In particular, we may use the inverse
metric gij to define the gradient of a function (see §4) by raising the index of the
components of the 1-form df : (grad f)i = (∇f)i = gij∂jf .

A metric tensor gives a manifold a rigid geometric shape. The square of the length
of the vector v = vi∂i ∈ TpM is defined as

g(v, v) = gijdx
i ⊗ dxj(vk∂k, vl∂l) = gijv

ivj . (18)

Given a pair of tangent vectors u, v ∈ TpM , their inner product is defined as g(u, v) =

giju
ivj . The cosine of the angle between them is g(u, v)/

√
g(u, u)g(v, v).

Two-forms. An antisymmetric second rank covariant tensor is called a 2-form. To
make the antisymmetry manifest, one defines the wedge product25

dxi ∧ dxj = dxi ⊗ dxj − dxj ⊗ dxi (19)

and writes a 2-form with antisymmetric components ωij as (show the 2nd equality!)

ω = ωijdx
i ⊗ dxj =

1

2
ωijdx

i ∧ dxj . (20)

Note that dx1∧dx1 = 0, etc. Geometrically, two-forms are related to area elements in
a manifold. The familiar area ‘element’ dx dy on a plane is more precisely the 2-form
dx ∧ dy. The antisymmetry of the wedge product allows us to encode the orientation
of the area element, which in vector calculus is conveyed by the inward/outward nor-
mal in an ‘infinitesimal area vector’ dx dy n̂ on a surface parametrized by x and y.
Moreover, in Euclidean space R3 with Cartesian coordinates, the components of the
wedge product of 1-forms df and dg are related to those of the cross product ∇f×∇g
whose magnitude measures the area of a parallelogram.

The space of 2-forms is denoted Ω2(M). Recall that functions can also be re-
garded as 0-forms and that we could go from functions to 1-forms by taking the dif-
ferential: df = (∂if)dxi. The differential of a function is also called its exterior
derivative. Interestingly, there is a similar way of going from 1-forms to 2-forms by
(exterior) differentiation. Given a 1-form φ = φjdx

j , we define its exterior derivative

ω = dφ = dφj ∧ dxj , (21)

which is a 2-form. To find its components we write

dφ =
∂φj
∂xi

dxi∧dxj =
1

2
(∂iφj−∂jφi)dxi∧dxj whence ωij = ∂iφj−∂jφi. (22)

25 The wedge product can be written as a sum over permutations of two objects: dx1 ∧ dx2 =∑
σ∈S2

sgn(σ)dxσ(1) ⊗ dxσ(2). Here S2 is the permutation or symmetric group consisting of two
elements, the identity (σ(1) = 1, σ(2) = 2) and the exchange transposition (σ(1) = 2, σ(2) = 1).
sgn(σ) is the sign of the permutation: −1 to the power of the number of pairwise transpositions needed to
write σ as a product of exchanges. The identity has sign +1 and the exchange has sign −1.
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We used the antisymmetry of the wedge product in the second step, relabelled indices
and used the definition (20) to identify the antisymmetric tensor ωij .

However, unlike ordinary differentiation that can be done repeatedly to produce
higher order derivatives of a function, the square of the exterior derivative vanishes26.
Indeed, using the definition in (21), the exterior derivative of the 1-form df is

d(df) = d(∂jf)dxj = (∂i∂jf)dxi ∧ dxj = 0. (23)

Here ∂i∂jf is symmetric under i↔ j exchange due to the equality of mixed partials,
while the wedge product dxi ∧ dxj is antisymmetric, so the sum vanishes. Thus,
d2f = 0. This identity is a generalization of the vector identity ∇× (∇f) = 0 valid
for real-valued functions on R3.

Just as a 1-form acts linearly on vector fields to produce functions φ(v) = φiv
i, a

2-form acts as a skew-symmetric bilinear map from pairs of vector fields to F(M):

ω(u, v) = ωijdx
i ⊗ dxj(uk∂k, vl∂l) = ωijdx

i(uk∂k)dxj(vl∂l) = ωiju
ivj . (24)

Here, the 1st (2nd) factor in a tensor product acts on the 1st (2nd) entry of the ordered
pair (u, v). We used linearity of the action of forms on vector fields (11) and the
pairing dxi(∂k) = δik.

A 2-form can be used to define an area for infinitesimal parallelograms in each
tangent space to a manifold. For example, if ∂i, ∂j are two coordinate tangent vectors
at x, then the area of the parallelogram they span is defined as ω(∂i, ∂j) = ωij(x).

Physical examples of 2-forms. (i) An interesting example of a 2-form is the electro-
magnetic field strength tensor F , which is a 2-form on the 4-dimensional Minkowski
space-time. It is the exterior derivative of the 1-form ‘gauge potential’:

A = Aµdx
µ and F = dA =

1

2
Fµνdx

µ ∧ dxν where Fµν = ∂µAν − ∂νAµ
(25)

as in (22). Here µ, ν = 0, 1, 2, 3 andAµ = (φ,−A) is a combination of the scalar and
vector potentials of electrodynamics. The electric and magnetic fields appear as the
components of F . (ii) An example of a 1-form in mechanics is the so-called canonical
or Liouville 1-form on the 2n-dimensional phase space M = R2n of a system with
n-degrees of freedom:

α = pidq
i = p1dq

1 + p2dq
2 + · · ·+ pndq

n. (26)

ξ = (q1, · · · , qn, p1, · · · pn) together furnish coordinates on M . Notice that α has no
components along the dpi. Its exterior derivative is a 2-form

ω = dα = dpi ∧ dqi = −dqi ∧ dpi = −(dq1 ∧ dp1 + · · ·+ dqn ∧ dpn)

=
1

2
(−dq1 ∧ dp1 − · · · − dqn ∧ dpn + dp1 ∧ dq1 + · · ·+ dpn ∧ dqn). (27)

26We say that the exterior derivative is nilpotent of degree two: d2 = 0
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From this we may read off the (antisymmetric) components of ω = 1
2

∑2n
a,b=1 ωabdξ

a∧
dξb. The only nonzero ones are:

ωi,n+i = −1 and ωn+i,i = 1 for i = 1, 2, . . . , n. (28)

ω is called the canonical symplectic 2-form (the inverse of the canonical Poisson ten-
sor). E.g., for one degree of freedom, α = pdq and

ω =
1

2
(−dq∧dp+dp∧dq) =

1

2
(ω11dq∧dq+ω12dq∧dp+ω21dp∧dq+ω22dp∧dp)

(29)
so that ω12 = −ω21 = −1 and ω11 = ω22 = 0 and ω =

(
0 −1
1 0

)
. Referring back

to our discussion of the Poisson tensor earlier in this section, we observe that given a
Hamiltonian function H on phase space, the Hamiltonian vector field is defined via
ω(·, VH) = dH(·). In components, ωabV bH = ∂aH or inverting, V cH = rca∂aH .

Mixed second rank tensors. Aside from contravariant and covariant tensors, we also
have mixed second rank tensors27 of type (1,1): t = tij∂i ⊗ dxj . They transform via
one Jacobian and one inverse Jacobian factor: t̃kl = Jki (J−1)jl t

i
j . A (1,1) tensor re-

stricted to a point p ∈M can be viewed as a linear transformation on the tangent space
Tp(M). Indeed, contracting it with a tangent vector gives another tangent vector:

t(·, v) = tij∂i(·)dxj(vk∂k) = tijv
j∂i(·) or vi 7→ v′i = tijv

j . (30)

The · is a placeholder for an unspecified 1-form that t could act on via the first slot.
Similarly, tijv

j∂i(·) is the action of a vector field on an unspecified 1-form. The com-
ponents tij of a (1,1) tensor define a matrix in the coordinate basis, and the above
transformation rule written in matrix notation, t̃ = JtJ−1 is just a similarity transfor-
mation!

7 Higher rank tensor fields & forms

More generally, we have tensor fields of type (p, q) for p, q ≥ 0 which, in local
coordinates, are given by the linear combinations

t = t
i1···ip
j1···jq∂i1 ⊗ · · · ⊗ ∂ip ⊗ dx

j1 ⊗ · · · ⊗ dxjq . (31)

Their components transform via p factors of J for the upper indices and q factors of
J−1 for the lower indices. Such a tensor field can act linearly on p one-forms and q
vector fields to produce a function: t(φ, ψ, · · · , u, v, · · · ) = t

i1···ip
j1···jqφi1ψi2 · · ·u

j1vj2 · · · .
Thus, algebraically, (p, q) tensor fields are simply multilinear maps from p copies of
Ω1(M) and q copies of Vect(M) to the space of smooth functions on M .

27We have arbitrarily chosen to place the ∂i ahead of the dxj in the tensor product. The opposite order
can also be followed throughout.
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Of particular importance are the p-forms, which are covariant antisymmetric ten-
sor fields28 of rank p (or of type (0, p)),

ω = ωi1···ipdx
i1 ⊗ · · · ⊗ dxip . (32)

By antisymmetric, we mean that the components are antisymmetric under interchange
of any pair of indices. As a consequence, a p-form on an n dimensional manifold
must be identically zero if p > n (at least one basis 1-form must appear twice in
the tensor product, which when contracted with an antisymmetric coefficient, must
vanish). They can be written as linear combinations of p-fold wedge products of
coordinate 1-forms, which are obtained by antisymmetrizing the p-fold tensor product:

ω =
1

p!
ωi1···ip dx

i1 ∧ · · · ∧ dxip . (33)

For instance, a three-fold wedge product is a sum over all permutations of three objects
(which comprise the symmetric group29 S3) weighted by the signs of the permutations
(see Footnote 25):

dx1 ∧ dx2 ∧ dx3 =
∑
σ∈S3

sgn(σ)dxσ(1) ⊗ dxσ(2) ⊗ dxσ(3)

= dx1 ⊗ dx2 ⊗ dx3 − dx2 ⊗ dx1 ⊗ dx3 − dx1 ⊗ dx3 ⊗ dx2
−dx3 ⊗ dx2 ⊗ dx1 + dx2 ⊗ dx3 ⊗ dx1 + dx3 ⊗ dx1 ⊗ dx2. (34)

An example of a 3-form on R3 is the Euclidean volume form whose components in
Cartesian coordinates are given in terms of the Levi-Civita symbol:

Ω =
1

3!
εijkdx

i ∧ dxj ∧ dxk. (35)

Combining the six nonzero terms using the antisymmetry of the wedge product, we
verify that Ω is simply the familiar volume element Ω = dx1 ∧ dx2 ∧ dx3. The
Levi-Civita symbol generalizes to Rn: εi1···in is antisymmetric under every exchange
of indices and satisfies ε12···n = 1. For example, on R2 with Cartesian coordinates
xi = (x, y) we have the volume form Ω = 1

2Ωijdx
i∧dxj = dx∧dy where Ωij = εij .

Thus Ω = dx ∧ dy.
Now suppose we change to polar coordinates x̃i = (r, θ) via x = r cos θ, y =

r sin θ. Then the inverse Jacobian is (J−1)ki = ∂xk

∂x̃i = (x/r,−y|y/r, x). The

28We may take linear combinations of p-forms ω, ψ: fω+ gψ for any smooth functions f, g to produce
other p-forms. The space of p-forms is denoted Ωp(M).

29 The symmetric group on 3 letters (§??) has 3! = 6 elements. The identity σ(i) = i denoted (1)(2)(3)
has sign 1. There are three pairwise transpositions (12)(3), (1)(23) and (2)(31) which have sign -1.
For example (23) means 2 and 3 are mapped to each other. Thus, (1)(23) means σ(1) = 1, σ(2) =
3, σ(3) = 2. There are also two cyclic permutations (123) = (12)(23) and (132) = (12)(13) which
have been written as products of pairwise exchanges composed from right to left. Here (132) means
σ(1) = 3, σ(3) = 2 and σ(2) = 1. In the composition (12)(13), 3 is mapped to 1 which is then mapped
to 2, so that 3 is on the whole mapped to 2. On the other hand, 2 is directly mapped to 1. The cyclic
permutations have sign +1 as they are products of an even number of transpositions. See also Footnote 25.
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components of Ω in the new coordinates are Ω̃ij = (J−1)ki (J−1)ljΩkl. One finds
Ω̃ij = (0, r|− r, 0) so that the volume form in polar coordinates is Ω = 1

2 (rdr∧dθ−
rdθ ∧ dr) = rdr ∧ dθ. We notice that the prefactor r is det J−1. This is generally
true: volume elements transform via a Jacobian determinant.

Pullback and pushforward. Given a pair of smooth manifoldsX and Y and a smooth
map φ : X → Y , we may (in favorable cases) use φ to move tensor fields between the
manifolds (Nb. the manifolds need not have the same dimensions, we take dimX = n
and dimY = n′). However, this only works in certain directions. Forms and more
generally covariant tensor fields on Y may be ‘pulled back’ to X , the pullback being
denoted φ∗. On the other hand, vector fields (and more generally contravariant tensor
fields) on X may (in some cases) be ‘pushed forward’ to Y via φ∗. Combining these,
if φ is a diffeomorphism (invertible smooth map with smooth inverse) then the pull-
back and pushforward via φ and φ−1 may be used to move arbitrary tensor fields in
either direction.

The simplest tensor field is a scalar function. Given a smooth function f : Y → R,
its pullback is the function φ∗f : X → R defined as (φ∗f)(x) = f(φ(x)) for any
x ∈ X . In other words, we simply compose f with φ to go from X to R in two

steps, φ∗f : X
φ−→ Y

f−→ R. For example, suppose φ : S2 → R3 is the map
φ(θ, ϕ) = (x = sin θ cosϕ, y = sin θ sinϕ, z = cos θ) and let f(x, y, z) = z be
the height function. Then the pullback is (φ∗f)(θ, ϕ) = cos θ is the function that
assigns the cosine of the polar angle to any point on the sphere. On the other hand, it
is generally not possible to define the pushforward of a function. For this reason, we
will view scalar functions as covariant (rather than contravariant) tensors of rank zero.

More generally, the gadget that helps us do this pushing and pulling is the lin-
earization or differential dφ of the map φ. Suppose xi and yj are local coordinates on
X and Y respectively and y = φ(x) or yj = φj(x). Then the linearization at the point
x is represented by the n′ × n Jacobian matrix with entries ∂φj

∂xi . Next, given a 1-form
ωjdy

j on Y we define its pullback at a point x ∈ X , denoted (φ∗ω)(x) via

(φ∗ω)i(x) =
∂φj

∂xi
ωj(φ(x)). (36)

Notice that no assumption on the invertibility of φ has been made. This makes it
apparent why it is not possible, in general, to pushforward a differential form. If φ
is invertible (say when X = Y and φ is a diffeomorphism), we may multiply by the
inverse Jacobian and formally recover the coordinate transformation formula of (10).
However, there is a conceptual difference: while a map φ : X → X actively moves
points around, a coordinate transformation only relabels them. The generalization to
the pullback of covariant rank-p tensor fields (including p-forms) is:

(φ∗ω)i1···ip(x) =
∂φj1

∂xi1
· · · ∂φ

jp

∂xip
ωj1···jp(φ(x)). (37)

Evidently, the pullback of a smooth function is the special case when p = 0.

20



Pushing forward vector fields (or contravariant tensors) is not so straightforward.
To begin with, we note that the linearization of φ defines a linear transformation dφ
between tangent spaces. If y = φ(x), then dφ(x) : TxX → TyY . Once coordinates
are chosen, this map is represented by the n′×n Jacobian matrix. Now if v = vi∂xi ∈
TxX then it is natural to define its pushforward to be the image of the vector v under
the linear transformation dφ. Thus, we are tempted to define the pushforward φ∗v as
the vector field whose components at y = φ(x) are given by

(φ∗v)j(y) =
∂φj

∂xi
vi(x) for j = 1, 2, . . . , n′. (38)

However, if φ is not surjective (say, if n′ > n) then this does not define a vector field
on all of Y but at best on the image of X . There is a further difficulty with (38):
how do we express the x that appears on the RHS in terms of y? If φ is one-to-one,
then there is a unique y in the image φ(X) corresponding to any x ∈ X , so that we
may write x = φ−1(y). Thus, if φ is injective, we may define the pushforward φ∗v
as a vector field on φ(Y ) with components given in (38). See Prob. ?? for a simple
example. The definition has a straightforward generalization to rank p contravariant
tensor fields for any p = 1, 2, . . .:

(φ∗t)
j1···jp(y) =

∂φj1

∂xi1
∂φj2

∂xi2
· · · ∂φ

jp

∂xip
ti1···ip(x). (39)

As before, we notice the formal similarity with the coordinate transformation laws
[e.g., (14)] for contravariant tensor fields when X and Y are the same manifold. What
is more, if φ is a diffeomorphism then it is both injective and surjective so that (39)
unambiguously defines a pushforward tensor field on all of Y .

Pullback of a metric: induced metric via an example. Consider the unit sphere S2

(x2 + y2 + z2 = 1) embedded as a submanifold of R3. If we use polar coordinates
(ξ1 = θ, ξ2 = ϕ) on S2, the embedding is defined by a smooth map φ : S2 → R3

given by φ(θ, ϕ) = (x = sin θ cosϕ, y = sin θ sinϕ, z = cos θ). Now, R3 has
the standard flat Euclidean metric whose components in Cartesian coordinates are
gij = δij . We may pullback this rank-2 covariant symmetric tensor field to get an
‘induced’ metric hab on S2 with components

hab = (φ∗g)ab =
∂φi

∂ξa
∂φj

∂ξb
gij . (40)

This formula defines the induced metric and is of course not special to the above
example. In the case of the embedding φ : S2 ↪→ R3, the induced metric hab(θ, ϕ) is
the familiar ‘round sphere’ metric. Work out its components.

8 Exterior algebra, exterior derivative and Bianchi’s identity

Exterior algebra. In §5 and §6 we introduced 1- and 2-forms. The former can be
used to describe the momentum of a particle on the configuration space of a mechan-
ical system, the Liouville form ‘p dq’ on phase space, the infinitesimal heat added to
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a gas in a thermodynamic process or the electromagnetic ‘scalar’ and ‘vector’ poten-
tials. Two-forms are used to model infinitesimal area elements, the electromagnetic
field strength tensor Fµν and the symplectic form ωij in mechanics. Furthermore, the
wedge product of two 1-forms was seen to produce a 2-form. On the other hand, the
differential or exterior derivative of a function df was shown to give a 1-form, while
the exterior derivative of a 1-form led to a 2-form. In this section, we extend the
wedge product and exterior derivative to forms of any rank (introduced in §7) and also
discuss an analog of the Leibniz rule for the exterior derivative of a wedge product.
The space of differential forms with these algebraic properties is called the exterior
algebra. These developments are then applied to understand some properties of the
symplectic form ω of Hamiltonian mechanics introduced in (??) and (27) and further
discussed in §??.

Recall from §7, that a differential form of order p = 0, 1, 2, . . . or p-form ω in a
patch with coordinates xi is a linear combination of p-fold wedge products of coordi-
nate 1-forms:

ω =
1

p!
ωi1···ipdx

i1 ∧ · · · ∧ dxip . (41)

Given any smooth p-forms ω, ψ and smooth functions f, g, fω + gψ is also a smooth
p-form. Thus, the space of p-forms denoted Ωp(M) is said to be a module (see Foot-
note 17) over the ring of smooth real-valued functions on M (F(M) of §3).

Owing to the antisymmetry of dxi1 ∧ · · · ∧ dxip there are no nonzero p forms for
p > n on a manifold of dimension n. For instance on R, there is only one coordi-
nate 1-form dx and the only possible coordinate basis 2-form dx ∧ dx vanishes by
antisymmetry (there is no concept of area on a line). On R2, we have two coordinate
basis 1-forms dx and dy, one independent basis 2 form dx ∧ dy = −dy ∧ dx and
no nonzero 3-forms as dx ∧ dy ∧ dx etc., all vanish. In fact, the number of linearly
independent p-forms at a point is the binomial coefficient

(
n
p

)
since each choice of

p distinct coordinate 1-forms dxi1 , . . . , dxip furnishes one coordinate basis p-form
dxi1 ∧ . . . ∧ dxip . In particular, there is only one (=

(
n
0

)
) independent 0-form and

one (=
(
n
n

)
) independent n-form. What we mean is that any 0-form is some smooth

function times the constant function 1 and any n-form is some smooth function times
the volume form dx1 ∧ · · · ∧ dxn.

We may take the direct sum of the spaces of p-forms to obtain the
∑n
p=0

(
n
p

)
= 2n

dimensional space of all differential forms on M :

Ω(M) = ⊕np=0Ωp(M). (42)

In addition to taking linear combinations of forms, we may take their wedge product.
For the coordinate basis forms

(dxi1 ∧ · · · ∧ dxip) ∧ (dxip+1 ∧ · · · ∧ dxip+q ) = dxi1 ∧ · · · ∧ dxip+q . (43)

For example, (dx ∧ dy) ∧ (dz ∧ dw) = dx ∧ dy ∧ dz ∧ dw. By repeated use of the
antisymmetry property dxi∧dxj = −dxj∧dxi, we may show that the wedge product
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of a p-form ω and a q-form ψ is (anti)commutative:

ω ∧ ψ = (−1)pqψ ∧ ω. (44)

Let us explain the origin of the sign. Suppose ω = dx and ψ = dy ∧ dz so that
p = 1 and q = 2. Then dx has to ‘pass through’ dy and dz producing two minus signs
resulting in dx∧ (dy ∧ dz) = (−1)1·2(dy ∧ dz)∧ dx. Similarly, suppose we consider
(dx ∧ dy) ∧ (du ∧ dv ∧ dw). Here we move dy first through the 3-form picking up
a (−1)3 and then move dx and get another (−1)3. Thus we see the emergence of p
factors of (−1)q leading to the sign (−1)pq .

Equipped with this wedge product, Ω(M) is called the exterior algebra. A special
case is the wedge product of a p-form ω and a 0-form f : ω ∧ f = (−1)0f ∧ ω = fω.

Exterior derivative. The exterior derivative may be extended to a map from p-forms
to (p+ 1)-forms: d : Ωp(M)→ Ωp+1(M) for any p = 0, 1, 2, . . . satisfying the three
axioms:

1. Linearity: d(aω + bψ) = adω + bdψ for any a, b ∈ R and p-forms ω, ψ.

2. Leibniz (antiderivation) rule: d(ω ∧ φ) = dω ∧ φ + (−1)pω ∧ dφ where ω ∈
Ωp(M) and φ is any form.

3. Nilpotent30 of degree two: d2ω = 0 for any p-form ω.

The need for the minus sign in this Leibniz rule is already evident if we consider
the wedge product of a 1-form φ = φjdx

j and a zero form f . Now φ∧f = f∧φ = fφ.
We will calculate d(φ ∧ f) from first principles and see the emergence of the minus
sign. In fact, using dφ = ∂iφjdx

i ∧ dxj , we get

d(φ ∧ f) = d(fφ) = ∂i(fφj)dx
i ∧ dxj = ((∂if)φj + f∂iφj) dx

i ∧ dxj
= df ∧ φ+ fdφ = −φ ∧ df + dφ ∧ f = dφ ∧ f − φ ∧ df. (45)

Closed and exact forms on a manifold M . A p-form ω such that dω = 0 is said to
be closed. On the other hand, if ω = dφ for some (p − 1)-form φ, then ω is said to
be exact (generalizing the idea of an exact differential). Since d2 = 0, an exact form
is automatically closed. The quotient linear space of closed p-forms modulo exact
p-forms is called the pth cohomology (group) of the manifold M . The homogeneous
Maxwell equations ∇ · B = 0 and 1

c
∂B
∂t + ∇ × E = 0 are together the statement

that the Faraday 2-form F = (1/2)Fµνdx
µ ∧dxν on Minkowski space-time R4 (with

xµ = (ct, x, y, z) for µ = 0, 1, 2, 3) is a closed 2-form. Here, F0i = Ei and Fij =
−εijkBk for 1 ≤ i, j, k ≤ 3. Since R4 has trivial cohomology groups, F must be
exact and expressible as F = dA for some ‘gauge potential’ 1-form A = Aµdx

µ.
This is why we may express B = ∇ ×A and E = −∇φ − c−1 ∂A

∂t in terms of the
scalar and vector potentials which are the components of Aµ = (φ,−A) (see §?? and
Prob. ??). �

30d2 = 0 is a generalization of the vector calculus identities ∇ ×∇f = 0 and ∇ · (∇ × v) = 0 for
any smooth function f and vector field v in R3.
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Symplectic form and Bianchi’s identity. Suppose α = pidq
i is the canonical Li-

ouville 1-form on the phase space R2n of a mechanical system with n degrees of
freedom. Then we have seen that the canonical symplectic form is given by ω =
dα = dpi ∧ dqi. It follows that dω = d2α = 0. In other words, the canonical sym-
plectic form is closed. More generally, the Jacobi identity implies that the inverse ω
of any invertible (but not necessarily canonical) Poisson tensor r satisfies the Bianchi
identity ∂iωjk + cyclic = 0. We now verify that the Bianchi condition is simply the
statement that dω = 0. Indeed, using linearity and the Leibniz rule,

dω =
1

2
d(ωjkdx

j ∧ dxk) =
1

2
(∂iωjk)dxi ∧ dxj ∧ dxk. (46)

Since dxi ∧ dxj ∧ dxk is antisymmetric under exchange of any pair of indices, only
the similarly antisymmetric part of ∂iωjk can contribute. Antisymmetrizing as in (34),
we write

dω =
1

12
(∂iωjk − ∂jωik − ∂kωji − ∂iωkj + ∂kωij + ∂jωki) dx

i ∧ dxj ∧ dxk

= (1/3!) (∂iωjk + ∂kωij + ∂jωki) dx
i ∧ dxj ∧ dxk, (47)

where we used the antisymmetry of ω in the last step. Thus (dω)ijk = ∂iωjk +
∂kωij + ∂jωki, so that dω = 0 iff the Bianchi condition is satisfied. We begin to see
the economy and clarity that the use of differential forms can bring to tensor calculus.
What is more, given a smooth ‘Hamiltonian’ function H on M , we may use ω to
define a vector field vH called the Hamiltonian vector field via the formula

vH(·) = ω−1(·, dH). (48)

Here ω−1 is a contravariant (antisymmetric) second rank tensor that can act on a pair
of 1-forms, one of which is chosen to be dH . The resulting object is a vector field as
it can act linearly on an (unspecified) 1-form.

More generally, even if we do not have canonical (q-p-type) coordinates on phase
space and do not have available the canonical Liouville 1-formα = pidq

i, we may still
wish to define a symplectic form using physical or geometric considerations. From
the foregoing, the essential conditions it must satisfy are invertibility and the Bianchi
identity. Thus, one defines a symplectic manifold as a sufficiently smooth manifold
that is equipped with a closed nondegenerate (i.e., invertible) two-form ω called the
symplectic form. Though it is required to be closed, ω need not be exact31.

9 Integration on manifolds and Stokes’ theorem

We now move from the exterior differential calculus to the integral calculus on a
manifold. This will allow us to generalize the concepts of line, surface and volume
integrals to manifolds. To do this, we first need the idea of an oriented manifold.

31The symplectic form (??) on the 2-sphere S2, given by ω = −l sin θ dθ ∧ dφ (for l 6= 0) is closed
(being a top degree form) but not exact. To show this, we note that

∫
S2 ω = −4πl is proportional to the

surface area of the unit sphere. If ω = dα, then by Stokes’ theorem (53), this integral must vanish, since
S2 has no boundary:

∫
S2 dα =

∫
∂S2 α = 0. Thus, ω cannot be exact. However, locally in a coordinate

patch, it can be written as ω = dα for α = l cos θ dφ (local exactness is called the Poincaré lemma). The
problem is that α cannot be smoothly extended to a 1-form on all of S2.
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Orientability of a manifold. We may orient a curve γ in 3d space by placing arrows
on it so that the curve is traversed in only one direction. A parametrized curve γ(s) :
[0, 1]→ R3 with γ̇ 6= 0 everywhere has a natural orientation, namely the direction in
which γ points (which is the same as that of increasing s). If γ̇ vanishes somewhere,
we would not know which way the arrow points there. Worse still, if γ retraces the
curve (goes back and forth), then there would be places where the direction of the
arrow is ambiguous. This is why we assume γ̇ 6= 0. Given a vector field v and such
a curve γ, we may define the line element dγ = γ̇(t)dt and the line integral of v
along γ:

∫
γ
v · dγ. Note that γ need not be an integral curve of v. One verifies

that this line integral is reparametrization invariant. This means the line integral can
depend on the route the curve follows but not on how it is parametrized32. Indeed,
suppose s = s(t) : [0, 1] → [0, 1] is a reparametrization (invertible map) and let
γ̃(t) = γ(s(t)). Then∫

v · dγ̃ =

∫ 1

0

vj
dγ̃j

dt
dt =

∫ 1

0

vj
dγj

ds

ds

dt
dt =

∫ 1

0

vj
dγj

ds
ds =

∫
v · dγ. (49)

For a 2d surface Σ embedded in R3, we usually speak of an outward or in-
ward pointing unit normal at each point of Σ. When Σ is defined by the condition
C(x, y, z) = 0, the normal in the direction of increasing C is given by the unit vec-
tor along the gradient ∇C. To be well-defined (unambiguous), when the normal is
followed around any closed loop on Σ, it must return to its original direction. When
this happens, we say that the surface is oriented. In vector calculus, this normal to the
surface is used to define a vectorial area element (n̂dS) that goes into the definition of
surface integrals. These concepts can be generalized to manifolds of any dimension
and are used to define integration on manifolds. An n-dimensional manifold is ori-
entable if it admits a nonvanishing33 form of top degree n (called a volume form). The
choice of such a form is called an orientation. On R2 we usually choose the orienta-
tion as given by dx∧ dy, the choice dy ∧ dx is equally valid, but would correspond to
reversing the orientation. On Rn, the standard volume form is dx1 ∧ · · · ∧ dxn. Ad-
mitting a volume form is equivalent to the Jacobian determinants of all the transition
functions between coordinate charts being positive, so that all the coordinate charts
have a common orientation34 and the atlas may be called an oriented atlas. The two-
sphere is orientable since the symplectic form (??) on S2 is a nonvanishing 2-form

32When we use a line integral (??) to model the work W =
∫
F · dγ done by a force field as a particle

moves along a path, we are asserting that the work done is independent of how fast the particle moves at
various places along the path.

33A p-form ω is nonvanishing if at each point on the manifold, ω(u, v, . . .) 6= 0 for any p linearly
independent tangent vector fields u, v, · · · .

34It is possible to concoct a nonoriented atlas. Consider the Euclidean plane R2 and define a new mani-
fold via two overlapping patches. The left patch x < 1 and the right patch x > −1. On the left patch we de-
fine local coordinates ξ1 = x, ξ2 = y while on the right patch we define local coordinates η1 = y, η2 = x.
They overlap along the strip −1 < x < 1 where the point (x, y) has two addresses or sets of coordinates:
(ξ1, ξ2) and (η1, η2). The transition functions are η1 = ξ2 and η2 = ξ1 resulting in an off-diagonal

Jacobian matrix ∂ηi

∂ξj
= (0, 1|1, 0) with determinant −1. Through this atlas, we have defined a manifold

that is not orientable, the two charts have opposite orientations.
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(proportional to the standard area form). For a surface in R3, orientability allows us
to unambiguously distinguish two sides of the surface. The Möbius strip is not ori-
entable35: one can go from the ‘upper’ side of the surface to the ‘lower’ side at the
same point by taking a walk on the strip; this is not possible on a cylindrical surface
or on a sphere, which are orientable.

Riemannian volume form. On an oriented n-dimensional Riemannian or pseudo-
Riemannian manifold M with nondegenerate metric g, one has a natural volume form
ωg . In local coordinates xi, it is ωg =

√
|det g| dx1 ∧ · · · ∧ dxn. Since gij is

invertible, det g 6= 0 so that this is a nonvanishing form. Let us check that this for-
mula holds in any coordinate system. As noted in §7, under a coordinate change
xi → yi a volume form f(x)dx1 ∧ · · · ∧ dxn (where f is a scalar function) trans-
forms to det J−1f(x(y))dy1 ∧ · · · ∧ dyn where (J−1)ij = ∂yi

∂xj is the inverse Ja-
cobian matrix. If the transformation is orientation-preserving, then det J−1 > 0.
However,

√
|det g| is not a scalar function since the metric components transform to

g̃ij = gkl(J
−1)ki (J−1)lj . Hence, det g̃ = det g det((J−1)t) detJ−1. Consequently,

√
|det g|dx1∧· · ·∧dxn =

√
|det g̃|

det J−1
det J−1dy1∧· · ·∧dyn =

√
|det g̃|dy1∧· · ·∧dyn.

(50)
We see that in any coordinate system, the Riemannian volume form has the same ex-
pression. What is more, if one takes any orthonormal basis φ1, φ2, · · · , φn for 1-forms
onM , then ω = ±φ1∧φ2∧· · ·∧φn. For example, consider 3d Euclidean space R3. In
Cartesian coordinates, the Euclidean metric has components gij = δij with unit deter-
minant and the Euclidean volume form is ω = dx1∧dx2∧dx3. In spherical polar coor-
dinates, the nonzero metric components are grr = 1, gθθ = r2, gφφ = r2 sin2 θ so that
det g = r4 sin2 θ and the volume form becomes ω = r2 sin θdr∧dθ∧dφ. On the other
hand, the inverse metric is gij = diag(1, 1/r2, 1/(r2 sin2 θ)) so that the coordinate 1-
forms have squared-lengths g−1(dr, dr) = 1, g−1(dθ, dθ) = 1/r2, g−1(dφ, dφ) =
1/r2 sin2 θ. It follows that {dr, rdθ, r sin θdφ} is an orthonormal basis for 1-forms.
We see that their wedge product is the volume form ω.

Integration of forms. In vector calculus, we define line integrals, surface integrals
and volume integrals. These are examples of the integration of a 1-form along a curve,
a 2-form over a surface and a 3-form over a 3d manifold. More generally, a p-form ψ
may be integrated over an oriented p-dimensional manifoldM to obtain a real number
denoted

∫
M
ψ. To evaluate the integral, the manifold is covered by nonoverlapping

cells and their boundaries (each lying within a coordinate chart) and the integral is a
sum of contributions from each cell36. In each cell, the integral is evaluated as in mul-
tivariable calculus. In more detail, the p-form ψ can be written as ψ = fω where f is a

35A cylinder is constructed by taking a rectangular page from a tall book and pasting the two short edges
together: the left of the bottom edge to the left of the top edge. The Möbius strip is obtained by twisting
the bottom edge once before pasting it onto the top edge, so that the left of the bottom edge is joined to the
right of the top edge.

36If ψ has bounded components, the boundaries between cells do not contribute to
∫
M ψ so it does not

matter if these boundaries are omitted or counted a finite number of times.
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scalar and ω the volume form. Moreover, within a patch with coordinates x1, · · · , xp,
the volume form may be written as ω = µ(x)dx1 ∧ · · · ∧ dxp for some nonvanishing
function µ. Then the contribution of the cell C is

∫
C
ψ =

∫
x(C)

f(x)µ(x)dx1 · · · dxp

where x(C) is the image of the cell in Rp. Examples: (i) We may integrate the 1-form
ψ = f(x)dx over the submanifold I = (1, 2) ∪ (3, 6) of R:∫

I

ψ ≡
∫ 2

1

f(x)dx+

∫ 4

3

f(x)dx+

∫ 6

4

f(x)dx. (51)

Here we have chosen the ‘increasing’ orientation ω = dx (as opposed to −dx) and
broken I into three cells. (ii) The polar coordinate patch xi = (θ, φ) along with its
boundary covers the unit sphere S2. So the integral of the 2-form ψ = fω on S2 may
be expressed as∫

S2

ψ =

∫
x(S2)

f(θ, φ) sin θ dθ ∧ dφ ≡
∫ 2π

0

dφ

∫ π

0

dθ f(θ, φ) sin θ. (52)

The orientation has been chosen so that for f = 1, the integral of ω = sin θdθ ∧ dφ
over S2 gives the area 4π of the unit sphere.

Manifold with boundary. To discuss Stokes’ theorem, we need to generalize the
notion of a manifold to include manifolds with boundary. By the definition of §1, the
closed unit disk D (x2 +y2 ≤ 1) contained in the plane is not a manifold, since points
of D on the rim (with x2 + y2 = 1) do not have open neighborhoods lying within
D. For points on the rim, we will allow neighborhoods of a different sort: roughly
those shaped like a half Moon that include nearby points on the rim. There is an
obvious sense in which the unit circle S1 is the boundary of D, which we indicate via
∂D = S1. The set theoretic difference D \ ∂D is the open unit disk, it is called the
interior of D. More generally, a manifold with boundary is a (topological) space M
with two types of points: (a) interior points which together comprise an n-dimensional
manifold (i.e., which have open neighborhoods homeomorphic to Rn or the n-ball
Bn : x2

1 + · · ·+ x2
n < 1) and (b) boundary points which together comprise an n− 1

dimensional manifold called the boundary (∂M ) consisting of points of M which
have a neighborhood homeomorphic to a half space (x ∈ Rn with x1 ≥ 0) or half ball
(x ∈ Bn with x1 ≥ 0) with the homeomorphism taking the boundary points to points
with x1 = 0.

Stokes’ theorem. Suppose ω = dφ is an exact p-form on a p-dimensional manifold
M with boundary denoted ∂M . Then Stokes’ theorem∫

M

dφ =

∫
∂M

φ (53)

expresses the integral of ω over M as that of the (p − 1)-form φ over the (p − 1)-
dimensional boundary ∂M . In particular, the integral of an exact form over a manifold
without boundary vanishes. This is a generalization of Gauss’ divergence theorem and
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Stokes’ theorem from vector calculus (see Prob. ??):∫
Ω

∇ · v d3r =

∫
∂Ω

v · dS and
∫
S

(∇× v) · dS =

∮
∂S

v · dl. (54)

Here, Ω is a 3d region in R3 while S is a surface in R3. In fact, (53) is also a gener-
alization of the fundamental theorem of calculus for the integral of a 1-form over an
interval M = [a, b] ⊂ R:

∫
M
f ′(x)dx =

∫
∂M

f = f(b)−f(a). Here f is a zero form
and the boundary ∂M is the 0-dimensional disconnected manifold consisting of two
points a, b. The orientation of the interval gives ∂M an orientation (+1 at b and −1 at
a) leading to the relative sign on the RHS.

10 Geodesic equation

Geodesic equation from extremizing length of curve. Geodesics generalize the con-
cept of straight lines on the Euclidean plane and are governed by equations that gener-
alize those of a straight line (ẍi = 0). More precisely, a geodesic is a curve of extremal
length joining two points on a Riemannian manifold M . Suppose xi are coordinates
on a patch where the metric tensor (positive-definite symmetric matrix depending on
location) has components mij(x). Let γ be a sufficiently smooth curve lying in this
patch, given by xi(τ) for some parameter 0 ≤ τ ≤ 1. Its length is defined as37

`(γ) =

∫ 1

0

√
mij ẋiẋj dτ. (55)

The arc length parameter s(τ) is defined as the length of the curve up to parameter
value τ :

s(τ) =

∫ τ

0

√
mij ẋiẋj dτ

′. (56)

Evidently, `(γ) = s(1). Since the parametrization that appears in the simplest form
of the geodesic equation is the arc length38, we will change parametrizations from τ
to s. This is facilitated by introducing a symbol for the speed

c(x(τ), ẋ(τ)) =
√
mij ẋiẋj , (57)

which loosely plays the role of a Lagrangian in the length functional (55). By the
fundamental theorem of calculus,

ds

dτ
= c or

d

dτ
= c

d

ds
. (58)

37The length of the curve is independent of the choice of parametrization τ . An invertible reparametriza-
tion τ → σ(τ) (with σ′(τ) > 0) does not alter the form of the integrand:

√
mij ẋi(τ)ẋj(τ) dτ =√

mij ẋi(σ)ẋj(σ) dσ since the Jacobian factor dσ/dτ cancels out.
38 An affine transformation is a linear transformation plus a shift. Parameters s′ that are related to arc

length via s′ = as+ b are said to be affine parameters. The geodesic equation takes the same form for any
affine parameter. The geodesic equation would look more complicated if we used parametrizations that are
not affinely related to the arc length.

28



Now, the Euler-Lagrange condition for `(γ) to be stationary to first order in variations
x→ x+ δx holding the endpoints at τ = 0, 1 fixed is

d

dτ

∂c

∂ẋk
=

∂c

∂xk
. (59)

The RHS is
∂c

∂xk
=

1

2c
mij,kẋ

iẋj =
c

2
mij,k

dxi

ds

dxj

ds
. (60)

Similarly,
∂c

∂ẋk
=

1

c
mkj ẋ

j = mkj
dxj

ds
. (61)

So the LHS of (59) is39

d

dτ

∂c

∂ẋk
= c

d

ds

(
mkj

dxj

ds

)
= c

[
mkj,i

dxi

ds

dxj

ds
+mkj

d2xj

ds2

]
. (62)

Equating the two, we get the condition for `(γ) to be extremal:

mkj
d2xj

ds2
=

1

2
(mij,k − 2mkj,i)

dxi

ds

dxj

ds
. (63)

Symmetrizing the second term on the right under i ↔ j and contracting with the
inverse metric, we get the geodesic equation in terms of the Christoffel symbols and
arc length parametrization:

ẍl + Γlij ẋ
iẋj = 0 where Γlij =

1

2
mlk [mki,j +mkj,i −mij,k] . (64)

We notice that the Christoffel symbols vanish if the metric components are constant.
In particular, in Cartesian coordinates on Euclidean space (where mij = δij), the
geodesic equation reduces to that for a straight line: ẍl = 0.

Geodesic equation in terms of covariant derivative. It is possible to write the geodesic
equation in a nice way if we introduce the so-called covariant derivative. The covariant
derivative ∇uv of a vector v along the vector u is a generalization of the directional
derivative of vector calculus. In addition to the partial derivative, it includes a ‘correc-
tion’ term involving the Christoffel symbols (64):

(∇uv)i = uj∇jv
i = uj∂jv

i + ujΓijkv
k. (65)

We will soon show (see §11) that this correction term ensures that ∇uv transforms
as a contravariant vector field just as v itself does. By contrast, uj∂jvi does not (in

39Notice that if we did not use arc length parametrization (or one that is affinely related to it), the resulting
formulae would be more complicated. In fact, if we try to work with τ instead of s, to calculate the τ
derivative of the ‘momentum’ conjugate to ẋk in (61), we would need to calculate d(1/c)

dτ
. This would

produce additional terms in the condition for ` to be extremal. Thus, the geodesic equation takes the simple
form (64) only for affine parameters.
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general) transform as a vector field. Now taking u = v = ẋ and using the chain rule
d
ds = dxj

ds
∂
∂xj = ẋj ∂

∂xj we get

(∇ẋẋ)i = ẋj∂j ẋ
i + ẋjΓijkẋ

k. (66)

Thus, the geodesic equation is simply the statement that ∇ẋẋ = 0. This means the
covariant derivative of the tangent vector along the tangent to a geodesic is zero. We
say that the tangent vector to a geodesic is covariantly constant along the geodesic.
Thus, a geodesic may also be viewed as a curve parametrized by arc length that parallel
transports its own tangent vector.

11 Covariant derivative

The laws governing the dynamics of physical systems (especially continuum me-
chanical systems with infinitely many degrees of freedom) are often formulated in
terms of (partial) differential equations involving scalar, vector and tensor fields. Given
a p-form, we have learned (in §8) how to take its exterior derivative using partial
derivatives and the Leibniz rule to arrive at a p+1-form. What about the derivative of
a vector field v? If one is given another vector field u, then as in §4, one may differ-
entiate v along the integral curves of u to arrive at the Lie derivative Luv = [u, v] (an
example of this is the Lie derivative of the vorticity along the velocity field of a fluid).
In the absence of such a u, one could consider the partial derivatives ∂ivj . Unfortu-
nately, the partial derivatives of a vector field do not form the components of a tensor.
As we will soon show, although ∂ivj has one upper and one lower index, it does not
transform as a (1,1) tensor field. In the absence of additional structure (like another
vector field), it is not possible to differentiate a vector field (or other contravariant ten-
sors or covariant tensors that are not antisymmetric) in a manner that produces a ten-
sor. An advantage of working with tensors is that they have a coordinate-independent
meaning (as multilinear maps) although one may choose to write their components in
a particular coordinate system with simple transformation properties under a change
of coordinates. However, if the manifold is equipped with a metric tensor gij (as may
arise from a kinetic energy quadratic in velocities or from the geometry of space or
space-time), then it is possible to ‘covariantly’ differentiate a vector field to arrive at a
(1,1) tensor field ∇iv

jdxi ⊗ ∂j .
This notion of covariant differentiation (also called a metric connection) can then

be extended to other tensor fields in such a way that it satisfies the Leibniz rule and
reduces to the partial derivative for functions. It turns out that in Euclidean space
(Rn with the metric δij in Cartesian coordinates), the covariant derivative reduces to
the partial derivative. However, the covariant derivative is essential if we wish to use
curvilinear coordinates in Euclidean space or work on a curved manifold such as a
sphere or hyperboloid. In fact, we have already met the covariant derivative in our
discussion of the geodesic equation in (65) of §10, where we noted that the tangent
vector to a geodesic is covariantly constant along the geodesic.

There are several ways of introducing the covariant derivative such as by (a) pos-
tulating axioms (such as linearity and the Leibniz rule) it must satisfy, (b) using the
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geometric notion of parallel transport and (c) combining the partial derivative with the
Christoffel symbols from the geodesic equation and requiring tensorial behavior under
coordinate transformations. Since we already have a provisional formula (65) for the
covariant derivative40:

∇jv
i = ∂jv

i + Γijkv
k, (67)

we will follow approach (c). In other words, we will examine how ∂jv
i transforms

under a coordinate change and observe that it fails to behave like a (1,1) tensor. Then,
we will use our definition (64) of the Christoffel symbols to similarly observe that
they do not transform as a tensor. The offending terms in the transformation laws for
the partial derivative and Christoffel symbols will be seen to cancel, allowing ∇jv

i to
transform as the components of a (1,1) tensor.

Thus, suppose we make a change of coordinates xi 7→ x̃i(x) under which the
components of the vector field vi become ṽi = ∂x̃i

∂xj v
j . Then the components of the

partial derivatives of ṽi are

∂ṽi

∂x̃j
=

∂

∂x̃j

(
∂x̃i

∂xk
vk
)

=
∂x̃i

∂xk
∂xl

∂x̃j
∂vk

∂xl
+

∂2x̃i

∂xl∂xk
∂xl

∂x̃j
vk. (68)

The first term on the RHS is all there would have been if ∂vi

∂xj transformed as a (1,1)
tensor. The second term with the second derivative is an inhomogeneous nontensorial
term. In particular, unlike a tensor, which vanishes in all coordinate systems, if it
vanishes in one, ∂jvi fails to have this property.

Next, we use the transformation law for the metric to find how the term involving
Christoffel symbols

Γijk =
1

2
gil (∂jglk + ∂kglj − ∂lgjk) (69)

transforms. To make a long story short (see Prob. ??) one finds that

Γ̃ijkṽ
k =

∂x̃i

∂xk
∂xl

∂x̃j
Γklmv

m − ∂2x̃i

∂xl∂xk
∂xl

∂x̃j
vk. (70)

Again, the first term is all there would have been if Γijkv
k transformed as a (1,1) tensor.

Interestingly, the second (inhomogeneous) term cancels the corresponding one in (68)
so that the covariant derivative transforms as a (1,1) tensor.

Remarks. (a) As mentioned, we define the covariant derivative of a scalar function
as its partial derivative: ∇if = ∂if . Thus ∇if are the components of a 1-form. (b)
Equipped with formula (67), it is now easy to check that the covariant derivative of a
vector field fv satisfies the Leibniz rule (see Prob. ??)

∇i(fv
j) = (∂if)vj + f∇iv

j for any scalar function f. (71)

40It is noteworthy that the proposed formula (67) for the covariant derivative is linear in the components
of v, this will allow it to satisfy appropriate Leibniz-type rules of differentiation.
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(c) In Riemannian geometry, the analog of the divergence of a vector field is the co-
variant divergence: ∇ · v = ∂iv

i + Γiijv
j . (d) The covariant derivative of v along a

vector field u is defined as having the components (∇uv)i = (u ·∇v)i = ui∇iv
j .

We check that it is linear in u in the sense that ∇fu+hwv = f∇uv + h∇wv for any
scalar functions f, h and vector fields u, v, w. (e) A vector field v whose covariant
derivative along itself vanishes (vi∇iv

j = 0) is called a geodesic vector field. The
integral curves of a geodesic vector field are geodesics. This is not a surprise. We have
already verified in (66) that the tangent to a geodesic is covariantly constant along the
geodesic: ẋi∇iẋ

j = 0. �

Covariant derivative of other tensors. The covariant derivative can be generalized to
other tensor fields. To begin with, one postulates that it reduces to the partial derivative
on smooth functions ∇if = ∂if . Next, proceeding as for vector fields, we propose a
formula for the covariant derivative of a 1-form φidx

i:

∇iφj = ∂iφj − Γkijφk, (72)

and check that the RHS transforms as a (0,2) tensor field.
Since a 1-form and a vector field can be contracted to obtain a function (on which

the covariant derivative reduces to the partial derivative), we should expect a Leibniz-
like identity among covariant derivatives of 1-forms, vector fields and their contrac-
tion. In fact, we verify in Prob. ?? that

∇i(φjv
j) = ∂i(φjv

j) = (∇iφj)v
j + φj∇iv

j . (73)

The extension to higher rank tensor fields is obtained by requiring ∇ to be a linear
map (over R) from the space of (p, q) tensors to (p, q + 1) tensors that satisfies the
Leibniz rule: ∇(s⊗ t) = ∇s⊗ t+ s⊗∇t where s, t are a pair of tensor fields. This
leads, for instance, to a formula for the covariant derivative of a (0,2) tensor (which
can be regarded as a linear combination of tensor products of pairs of (0,1) tensors)41:

∇itjk = ∂itjk − Γlijtlk − Γliktjl. (74)

We show in Prob. ?? that the metric tensor gjk is special. It is covariantly constant:
∇igjk = 0. This has a geometric meaning, it ensures that the operation of paral-
lel transport that one can define using the Christoffel connection preserves the inner
products of vectors.

12 Curvature on a Riemannian manifold

Recall (from Sect. 10) that geodesics are curves that extremize the distance be-
tween a pair of points on a Riemannian manifold (manifold M with a metric tensor
g). They play the same role that straight lines play in Euclidean space. The separa-
tion between straight lines on the Euclidean plane typically grows linearly with time.

41In general, aside from the partial derivative, the covariant derivative of a tensor involves one term with
Christoffel symbols for each index of the tensor (with a negative sign for lower/covariant indices).
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Based on this, we say that the Euclidean plane is flat. On the other hand, the sepa-
ration between geodesics on the round sphere (which are great circles like longitudes
on the Earth) oscillates in time. We say that the round sphere is positively curved.
Interestingly, on a hyperboloid or saddle, geodesics typically separate exponentially
fast: these surfaces are said to be negatively curved. Somewhat more precisely, cur-
vature measures the behavior of the separation between geodesics that begin nearby.
Gauss gave a way of quantifying the curvature of surfaces embedded in R3 without
any reference to geodesics, that nevertheless captures this behavior of geodesics. This
notion of curvature is called Gaussian curvature42.

It would be nice to have a notion of curvature for general Riemannian manifolds.
Remarkably, Riemann developed such a generalization of Gaussian curvature to man-
ifolds of any dimension. As with Gaussian curvature, Riemannian curvature is defined
without reference to geodesics. Following Christoffel, in Sect. 12.1, we will formulate
it in terms of the covariant derivative of Sect. 11. Then in Sect. 12.2 we will relate it
to the separation between geodesics by deriving the geodesic deviation equation and
finding Riemann’s curvature hidden inside it.

12.1 Riemann-Christoffel curvature tensor

Here we define the Riemann-Christoffel notion of curvature on an n-dimensional
manifold M with metric tensor g. Suppose u and v are a pair of vector fields: we may
think of these as the velocity vector of a geodesic and the separating vector to a nearby
geodesic. The Riemannian curvature R(u, v) takes vector fields to vector fields via

R(u, v)w = [∇u,∇v]w −∇[u,v]w. (75)

Here, ∇u is the covariant derivative along the vector field u introduced in Sect. 11,
[∇u,∇v]w = ∇u(∇vw)−∇v(∇uw) and [u, v] is the commutator of vector fields.
It is clear that R(u, v) = −R(v, u) is antisymmetric. Remarkably, despite the ap-
pearance of all these derivatives, R(u, v)w does not depend on the derivatives of u,
v or w. In fact, R behaves linearly (over the ring of functions on M ) in all three ar-
guments43. This establishes that R(u, v) is a (1, 1) tensor and that R is a tensor of
type (1, 3): it acts multilinearly on triples of vector fields to produce another vector
field (see Sect. 7). This means that when one changes coordinates, the components of
R transform via some Jacobian factors implying that if R vanishes in one coordinate
system, it also vanishes in any other coordinate system. In particular, the concept of a

42Let Σ be a surface embedded in R3. At each point p ∈ Σ, we have the tangent plane TpΣ. A normal
planeNp through p is one that is orthogonal to TpΣ. The osculating circle associated to a normal planeNp
is the best quadratic approximation (near p) to the curve of intersection between Np and Σ. The maximum
and minimum radii R1,2 of osculating circles through p are called the principle radii of curvature at p. The
Gaussian curvature K(p) is defined to have a magnitude equal to 1/R1R2. Its sign is positive/negative
according as the centers of the corresponding osculating circles lie on the same/opposite sides of Σ. Gauss
showed that his curvature is an intrinsic property of Σ, it does not depend on the embedding in R3. It is
invariant under isometries [deformations of the surface that preserve lengths and angles].

43In particular, using ∇fuv = f∇uv and ∇u(fv) = u(f)v + f∇uv, one finds that, R(fu, v)w =
fR(u, v)w and R(u, v)(fw) = fR(u, v)w for any scalar function f .
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flat manifold (one with zero curvature such as the Euclidean spaces Rn with gij = δij)
becomes independent of the choice of coordinates.

The components of the Riemann-Christoffel tensorRlkij in a basis for vector fields
{e1, · · · , en} are defined via

R(ei, ej)ek =
(
[∇ei ,∇ej ]−∇[ei,ej ]

)
ek = Rlkijel. (76)

Thus, for any three vector fields u, v, w,

R(u, v) w = wk ui vjRlkij el. (77)

Let us specialize to a coordinate basis ei = ∂
∂xi . Since coordinate vector fields com-

mute ([∂i, ∂j ] = 0), the Riemann tensor simplifies to R(∂i, ∂j) = [∇i,∇j ]. We
now wish to express its components in terms of the Christoffel symbols introduced in
Sect. 11. From (67),

(R(∂i, ∂j)w)
l

= (∇i(∇jw))l − (∇j(∇iw))l

= ∂i(∇jw)l + Γlik(∇jw)k − (i↔ j)
= ∂i(∂jw

l + Γljkw
k) + Γlik(∂jw

k + Γkjmw
m)− (i↔ j)

⇒ wkRlkij = ∂i∂jw
l + Γljk,iw

k + Γljk∂iw
k + Γlik∂jw

k + ΓlikΓkjmw
m

− ∂j∂iw
l − Γlik,jw

k − Γlik∂jw
k − Γljk∂iw

k − ΓljkΓkimw
m. (78)

As expected from the tensor character ofR, all terms involving derivatives ofw cancel
out. Relabeling m↔ k in terms quadratic in Γ, we get

wkRlkij =
[
Γljk,i + ΓlimΓmjk − (i↔ j)

]
wk (79)

with ‘, i’ denoting ∂i. Thus, the components of the (1, 3) Riemann tensor are

Rlkij = Γljk,i − Γlik,j + ΓmjkΓlim − ΓmikΓljm. (80)

By virtue of (69), they depend on the first two derivatives of the metric gij and its
inverse gij .

Symmetries. Rlkij is clearly antisymmetric in the last two indices Rlkij = −Rlkji.
Lowering l, we define a (0, 4) tensor Rmkij = gmlR

l
kij = g(R(ei, ej)ek, em) and

verify using (80) and (67) that Rmkij is antisymmetric in the first two indices and
symmetric under exchange of the first pair of indices with the last pair (see Prob. ??):

Rmkij = −Rkmij and Rmkij = Rijmk. (81)

The antisymmetry in the first pair is related to the behavior of a vector when parallel
transported around a small parallelogram spanned by u, v. Since parallel transport
preserves lengths and angles, such a vector can only undergo a rotation. The antisym-
metry in question arises because infinitesimal rotations differ from the identity by an
antisymmetric matrix, as shown in Eq. (107). The significance of the pair exchange
symmetry will be clarified in the context of the geodesic deviation equation (92).
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Ricci tensor and scalar. For some purposes, the (1, 3) Riemann tensor has more
information/components than we need, and it is useful to define its second rank and
scalar contractions. The Ricci curvature is the (0, 2) tensor defined as Rickl = Rikil
while the scalar curvature or Ricci scalar is R = gklRickl.

Sectional or Gaussian curvature. The information in the (1,3) Riemann tensor may
be packaged in sectional curvatures. These are the curvatures associated to each tan-
gent plane through any point of M . Given a pair of tangent vectors u, v, the sectional
curvature in the plane they span is defined as

K(u, v) =
r(u, v)

Ar(u, v)2
=

g(R(u, v)v, u)

g(u, u)g(v, v)− g(u, v)g(v, u)
. (82)

The numerator r(u, v) is called the curvature biquadratic form and the denominator is
the square of the area (|u × v|2) of the parallelogram spanned by u and v. It can be
shown that K does not depend on the choice of vectors that span a given plane (for
instance, rescaling either u or v leaves K unchanged). What is more, the sectional
curvature of the tangent plane at any point of a surface embedded in R3 reduces to its
Gaussian curvature.

12.2 Geodesic deviation and Riemannian curvature

Suppose x(t) is a geodesic with affine parameter t, so that ẍi + Γijkẋ
j ẋk = 0.

Let us look for a nearby geodesic zi = xi + yi where yi are small. We impose the
condition that zi also solves the geodesic equation up to terms quadratic in yi to get

ẍi + ÿi + Γijk(x+ y) (ẋj + ẏj)(ẋk + ẏk) = 0. (83)

Using Γijk(x+ y) = Γijk(x) + Γijk,ly
l +O(y2) and the symmetry of Γ, this becomes

ÿi + 2Γijkẋ
j ẏk + Γijk,lẋ

j ẋkyl = 0. (84)

This is the geodesic deviation equation (GDE) for the time evolution of the separating
vector y. It is also called the Jacobi equation and its solutions y are called Jacobi
vector fields (defined along the geodesic x(t)). To find the Riemann tensor hidden
inside (84), we wish to rewrite it in terms of covariant derivatives.

To this end, we calculate the covariant derivative of the separating vector along the
unperturbed geodesic:

(∇ẋy)i = ẋk∂ky
i + Γijkẋ

jyk = ẏi + Γijkẋ
jyk. (85)

Our search for ÿ leads us to evaluate the second covariant derivative:(
∇2
ẋy
)i

=
d

dt
(∇ẋy)

i
+ Γimnẋ

m(∇ẋy)n

= ÿi +
d

dt

(
Γijkẋ

jyk
)

+ Γimnẋ
m
(
ẏn + Γnjkẋ

jyk
)

= ÿi + 2Γijkẋ
j ẏk + Γijk,lẋ

lẋjyk
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−Γijky
kΓjmnẋ

mẋn + ΓimnΓnjkẋ
jykẋm. (86)

We used the geodesic equation in the last equality. Thus, the Jacobi equation becomes

(∇2
ẋy)i + Γijk,lẋ

j ẋkyl − Γijk,lẋ
lẋjyk + ΓijkΓjmnẋ

mẋnyk − ΓimnΓnjkẋ
jykẋm = 0.

(87)
After relabeling indices, we find that it may be written in terms of the Riemann tensor:

(∇2
ẋy)i = Rijklẋ

j ẋkyl. (88)

Using the definition (R(u, v)w)i = ukvlwjRijkl, we get the Jacobi equation

∇2
ẋy = R(ẋ, y)ẋ = −R(y, ẋ)ẋ. (89)

On a flat manifold, Rijlk = 0 and the GDE becomes ẋj ẋk∂j∂kyi = 0 or ÿi =

0 with solution yi(t) = yi(0) + ẏi(0)t. So on flat space, components of a Jacobi
vector field grow linearly with time (if ẏi(0) 6= 0) or remain constant (if ẏi(0) = 0).
These correspond to two straight lines starting nearby but in different directions or
with parallel initial velocities.
Relating geodesic separation to sign of sectional curvature. To understand and
interpret solutions of (89), it is convenient to expand the Jacobi vector field y(t) =∑
k ck(t)ek(t) in an orthonormal basis {e1(t), e2(t), . . . , en(t)} for Tx(t)M that is

parallel transported along the geodesic, i.e., ∇ẋek = 0. Then the Jacobi equation
becomes

c̈kek = −ckR(ek, ẋ)ẋ (90)

with a sum on k implied. Taking an inner product with ej and using orthonormality
(ej , ek) = δjk, the GDE becomes c̈j(t) = −g(R(ek, ẋ)ẋ, ej)ck(t) or

c̈j = −
∑

k
Rjk(t)ck where Rjk(t) = g(ej(t), R(ek(t), ẋ(t))ẋ(t)). (91)

So the components of the separating vector satisfy a coupled system of linear ODEs
with time-dependent coefficients. The geodesic deviation matrixRjk(t) is a real sym-
metric matrix44, so it can be diagonalized by a time-dependent orthogonal transforma-
tion to an orthonormal eigenbasis {ẽ1, . . . , ẽn} where Rjk is diagonal with eigenval-
ues κj along the diagonal:

R̃jk = g(ẽj , R(ẽk, ẋ)ẋ) = κjδjk. (93)

44The matrix Rjk(t) is obviously real. Symmetry follows from definition (77) and the index pair ex-
change symmetry of the (0,4) Riemann tensor (81):

Rij = g(R(ej , ẋ)ẋ, ei) = gkl(R(ej , ẋ)ẋ)k(ei)
l = gklR

k
pmn(ej)

mẋnẋp(ei)
l

= Rlpmn(ei)
lẋp(ej)

mẋn = Rmnlp(ei)
lẋp(ej)

mẋn

= Rlpmn(ei)
mẋn(ej)

lẋp = Rji. (92)
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What is more, the eigenvalue κj is simply the curvature biquadratic form (82) in the
plane spanned by the tangent ẋ to the unperturbed geodesic and the eigenvector ẽj :

κj = g(R(ẽj , ẋ)ẋ, ẽj) = r(ẽj , ẋ) = (Area〈ẽj , ẋ〉)2
K(ẽj , ẋ). (94)

The separating vector may also be expanded in the eigenbasis, y =
∑
j c̃j ẽj . The

Jacobi equation for the components c̃j is decoupled:

¨̃cj = −κj(t)c̃j for j = 1, 2, . . . , n. (95)

Each is the equation for a linear oscillator (??) with a time-dependent squared fre-
quency. However, both signs of κj are possible. Thus, we should expect the coef-
ficients c̃j to oscillate when κj are positive and to grow exponentially for negative
κj . Thus, at least for short times (till the linearized approximation breaks down),
the behavior of neighboring geodesics is determined by the sign of the curvature bi-
quadratic (or equivalently, the sign of the sectional curvature) in the plane spanned by
the tangent to the original geodesic and the initial separating vector. Positive sectional
curvatures lead to oscillatory behavior of nearby geodesics while negative sectional
curvatures lead to exponential growth in separation.

13 Groups

Definition. A group is a mathematical construct that, among other things, helps us
express and work with symmetries. Groups occur in various parts of physics such as
crystallography, atomic physics, relativity and particle physics [?, ?]. They help to
recognize and organize patterns, but can also enter dynamical principles that constrain
or determine the nature of forces. For instance, the angular distribution of possible
locations of an electron in a hydrogen atom can be understood using the spherical
symmetry of the electric potential felt by the electron. On the other hand, the strong
nuclear force among quarks and gluons is determined by a gauge symmetry principle
based on a so-called color symmetry. In mechanics, groups typically arise as families
of symmetry transformations among states or configurations or solutions of the equa-
tions of a system. For example, rotations act on the possible locations of a planet in the
Kepler problem while the x→ −x reflection acts as a symmetry of an even harmonic
oscillator potential V (x) = 1

2kx
2 felt by a particle attached to a spring. However,

it is advantageous to separate the algebraic concept of a group from its action on a
space. Thus, we will begin by defining an ‘abstract’ group and later discuss how it
may be realized via an action on an auxiliary space like the state space of a mechani-
cal system. Precisely, a group G is a set of elements g, h, k, . . . among which a law of
composition G × G → G is defined: if g, h ∈ G, then their product or composition
gh ∈ G. The product must satisfy the following properties. (i) It must be associative,
i.e., g(hk) = (gh)k for any g, h, k ∈ G. (ii) G must include an identity element e
(sometimes denoted 1 or I) with ge = eg = g for any g ∈ G. (iii) Every element g
must have a two-sided inverse g−1, i.e., gg−1 = g−1g = e. Useful consequences are
(gh)−1 = h−1g−1 and the cancellation law: if gh = gk then h = k.
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Cardinality, discrete and continuous groups. The number of elements |G| in a
group G is called its order or cardinality. A group of finite order is called a fi-
nite group. The ‘trivial’ group has just one element, the identity: G = {1} with
1 · 1 = 1. The set C2 = {1,−1} under multiplication is a group of order two.
While 1 is the identity, (−1)(−1) = (−1)2 = 1. We say that −1 generates C2 since
−1 and (−1)2 account for all the distinct elements. C2 is called the cyclic group
of order two. Notice that ±1 are the two square-roots of unity. More generally, for
n = 1, 2, 3, . . ., we have the (multiplicative) cyclic group of order n consisting of
the nth roots of unity {1, e2πi/n, e4πi/n, . . . , e2(n−1)πi/n}. It is generated by e2πi/n

and we write Cn = 〈e2πi/n〉. For n = 1, 2, 3, . . ., the set Zn = {0, 1, · · · , n − 1}
with composition given by addition modulo n (e.g., 2 + 3 ≡ 1 (mod 4)) is also a
cyclic group of order n. The identity element is 0 and 1 is its generator. Note that
1 + 1 + · · ·+ 1 (n summands) = n1 ≡ 0 (mod n). We will soon see that Zn and Cn
are different presentations of the same group: up to ‘isomorphism’ there is just one
cyclic group of a given order. Infinite groups could be discrete (like the additive group
of integers Z or the infinite cyclic group) or continuous (like the multiplicative group
of complex numbers of unit magnitude). The latter group is denoted U(1) and its el-
ements may be represented as z(θ) = eiθ for a real angle θ which is defined modulo
2π (see Fig. 6). Composition is given by z(θ1)z(θ2) = ei(θ1+θ2) = z(θ1 + θ2).

Subgroup. A subset H of a group G is called a subgroup if it satisfies the group
axioms with respect to the operations inherited from G [see Prob. ??]. The identity
subgroup H = {e} and H = G are subgroups of any group G. Examples: (i) C2 =
{±1} and more generally Cn are subgroups of U(1). (ii) Given any element g of a
group G, it generates a (cyclic) subgroup, namely the set of its powers 〈g〉 = {g0 =
e, g, g−1, g2, g−2, · · · }. If there is a smallest positive integer n such that gn = e,
then 〈g〉 is essentially the same as (i.e., isomorphic to) a cyclic group of order n and
otherwise it is an infinite cyclic group. (iii) Every finite group may be realized as a
subgroup of a group of permutations (see Prob. ??).

Group homomorphisms. Given a pair of groups, a map φ : G → G′ is called a
homomorphism if it preserves products: φ(g1g2) = φ(g1)φ(g2) ∀ g1, g2 ∈ G. If φ
preserves products then (see Prob. ??) φ maps the identity in G to that in G′ and maps
inverses to inverses: φ(g−1) = φ(g)−1. The homomorphic image φ(G) ⊆ G′ is a
subgroup of G′. A homomorphism φ : G→ G′ is an isomorphism if it is bijective (1-
1 and onto, and hence invertible). Two groupsG andG′ are isomorphic (denotedG ∼=
G′) if there is an isomorphism between them. Isomorphic groups are algebraically
identical but could arise or be presented differently. E.g., Cn and Zn are isomorphic,
with the isomorphism mapping the generators to each other: φ(e2πi/n) = 1, so that
φ(e2πij/n) = j for j = 0, 1, · · · , n − 1. The group of unimodular complex numbers
U(1) is isomorphic to that of 2 × 2 orthogonal matrices (real A with AtA = I)
with unit determinant (SO(2)). Composition is given by matrix multiplication. Its
elements are A(θ) = (cos θ, sin θ| − sin θ, cos θ) for a real angle θ defined modulo
2π. The isomorphism maps z = eiθ to A(θ). Verify that under matrix multiplication,
A(θ1)A(θ2) = A(θ1 + θ2).

38



Isomorphisms and Automorphisms. An isomorphism φ from a group G to itself is
called an automorphism. Every group has the identity or trivial automorphism defined
by φ(g) = g for all g ∈ G. C2 = {1,−1} has no nontrivial automorphism since we
cannot define φ(1) = −1. Verify that C3 has just one nontrivial automorphism given
by φ(1) = 1, φ(ω) = ω2 and φ(ω2) = ω where ω = e2πi/3. Since an automorphism
must preserve the algebraic structure, it must take a generator to another generator:
we check that both ω and ω2 are generators of C3. C4 = {1, i,−1,−i} also has
one nontrivial automorphism: it exchanges the two generators: φ(1) = 1, φ(i) =
−i, φ(−1) = −1, φ(−i) = i.

Conjugation. Given a group G, we say that k ∈ G is conjugate to h ∈ G if k =
ghg−1 for some45 g ∈ G. Conjugation φg(h) = ghg−1 by a fixed element g defines
an automorphism of G. It is called an inner automorphism. It is a homomorphism
since φg(h1h2) = gh1h2g

−1 = gh1g
−1gh2g

−1 = φg(h1)φg(h2). It is 1 − 1 since
φg(h1) = φg(h2) implies gh1g

−1 = gh2g
−1 whence h1 = h2. It is surjective

since given any k ∈ G we can always find an h ∈ G such that φg(h) = k, in fact
h = g−1kg. What is more, the inverse of φg is just φg−1 .

The conjugacy class of h is the set Ch = {ghg−1|g ∈ G}. The identity element
is always in a conjugacy class by itself Ce = {e}. Conjugacy is an equivalence
relation46. This implies G is a disjoint union of conjugacy classes.

Abelian and nonabelian groups. The nature of conjugation and conjugacy classes
are related to the notion of a commutative group. We begin by defining the group
commutator of a pair of elements as [g, h] = ghg−1h−1. The commutator measures
the extent to which gh and hg differ. If gh and hg are the same, then [g, h] = e and
they are said to commute. A group is called abelian or commutative if [g, h] = e or
gh = hg or ghg−1 = h for all g, h ∈ G. Otherwise, it is nonabelian. Evidently, a
group is abelian iff all conjugacy classes are singleton sets or equivalently, if every
inner automorphism is the identity. Roughly, conjugacy classes get longer the more
nonabelian a group is. Only the first 4 groups below are abelian.

Examples. There are many elementary examples of groups that arise in interesting
ways, some of which we have met: (i) the multiplicative group C2 = {1,−1} consist-
ing of the identity and reflection symmetry x→ −x of an even potential V (x) in one
dimension, (ii) the cyclic group C5 of order 5, of rotational symmetries47 of a regular
pentagon (if one includes reflection symmetries, one obtains the dihedral group of or-
der 10), (iii) the groups R3 and R of translations of 3d Euclidean space and time, (iv)
the group SO(2) of rotational symmetries of a circle or an axisymmetric (cylindri-

45If g works, so do ghn for n ∈ Z and more generally gg′ for any g′ that commutes with h.
46Conjugacy is reflexive: h = ehe−1 (h is conjugate to h), symmetric: h = g′kg′−1 where g′ = g−1

(h is conjugate to k if k is conjugate to h) and transitive: k conjugate to h and h conjugate to l implies
k conjugate to l. A binary relation with these properties is called an equivalence relation. It ensures that
conjugacy classes either coincide or do not overlap. For instance, transitivity implies that Ch1 and Ch2

cannot have a ‘partial’ overlap.
47Cyclic and dihedral groups are point groups in 2d. They are symmetries of regular polygons and

molecules with a fixed point and are discrete subgroups of the orthogonal group. Space groups are symme-
tries of an infinite crystal and include discrete translations.
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cally symmetric) potential, (v) the group SO(3) of proper rotations of 3d Euclidean
space, (vi) the group O(3) of rotations and reflections of R3, (vii) the Galilei group
and (viii) the groups S2 and S3 of permutations of two and three objects encountered
in Footnote 25 of §6 and Footnote 29 of §7.

Lie groups. While examples (i), (ii) and (viii) are discrete groups (in fact with finitely
many elements), the rest are examples of continuous groups, where the group elements
form continuous families and can be used to model continuous symmetries. Histor-
ically, discrete groups arose, in part, in modeling discrete symmetries of algebraic
equations, while continuous groups arose via continuous symmetries of differential
equations. Prominent among continuous groups are Lie groups, named after the Nor-
wegian mathematician Sophus Lie. A Lie group is a group which is also a differen-
tiable manifold, with the group operations of composition (g, h) 7→ gh and inversion
g 7→ g−1 being smooth maps from G ×G → G and G → G. The dimension dimG
of a Lie group G is the dimension of the corresponding group manifold. Note that the
Cartesian product G×G inherits a 2(dimG)-dimensional manifold structure from G
upon using ordered pairs of charts and transition functions. The concept of smooth
maps is as introduced in §1.

Matrix Lie groups. Natural examples of Lie groups are the matrix groups GLn(R)
and GLn(C) of invertible n × n real and complex matrices with composition and
inversion given by matrix multiplication and inversion (Nb. GL stands for general
linear). Since matrix multiplication is generally noncommutative, these groups for
n > 1 are nonabelian. Other examples of ‘classical’ Lie groups48 such as the spe-
cial linear, orthogonal, symplectic and unitary groups arise as closed subgroups of
GLn(R) and GLn(C). The special linear groups SLn(R) and SLn(C) consist of in-
vertible matrices with unit determinant. The orthogonal and special orthogonal groups
O(n) and SO(n) consist of orthogonal matrices (AtA = I) in GLn(R) and SLn(R)
respectively. Similarly, the unitary and special unitary groups U(n) and SU(n) con-
sist of unitary matrices (U†U = I) in GLn(C) and SLn(C). The symplectic group
Sp(2n,R) consists of 2n × 2n matrices M that preserve the canonical symplectic
structure: M tωM = ω where ω = (0,−I|I, 0) and I is the n × n identity matrix.
They are the linear canonical transformations of the phase space R2n. Later in this
section, we will discuss some basic properties of Lie groups in the context of the
orthogonal group.

Transformation group acting on a set. In physics, groups often arise as families of
(often symmetry) transformations of a space M such as a configuration or state space
or the space of solutions of equations of motion. For instance, the rotation group
SO(3) acts on the configuration space R3 of a particle in a spherically symmetric
potential by rotating the radius vector about the force center: r 7→ Rr forR ∈ SO(3).
Evidently, such a ‘transformation group’ is to be regarded as an action of an abstract
group G on a set M . Precisely, an action of G on M is a map from G ×M → M
taking m ∈ M to g ·m ∈ M such that e ·m = m and g · (h ·m) = (gh) ·m for all
g, h ∈ G and m ∈ M . The set of points that a given point m ∈ M can be mapped

48‘Classical’ here is used to mean that these were among the first Lie groups to be studied.
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to, Om = {g ·m|g ∈ G} is called the orbit of m under the action of G. The action
is said to be transitive if every point of M can be mapped to every other point of M
by the action of some group element. In other words, the action is transitive if M
is the orbit of any of its points. The action of rotations on R3 is not transitive: for
instance, the origin cannot be mapped to any other point by a rotation. On the other
hand, translations act transitively on R3: any point can be translated to any other point.

Lie group as a homogeneous manifold. A manifold M (or even just a topological
space or set) is homogeneous for a group G if it carries a transitive action of G. To be
meaningful, one needs to specify the nature of the manifold M (topological, smooth
or geometrically rigid like a Riemannian manifold) and the action of the group must
respect that structure. Roughly, all points of a homogeneous manifold look locally
the same. For example, the unit circle x2 + y2 = 1 on the plane is homogeneous
under the action of the group SO(2) of rotations about the z axis. The time axis R is
homogeneous under the action of the group of time-translations t 7→ t+ s. Euclidean
space R3 is homogeneous under the action of the group of space-translations r 7→
r + s. The term homogeneous should ring a bell: recall the homogeneity of time
and space. By contrast, the rigid toroidal surface of an inflated tube of a car tyre is
not homogeneous for the action of the group of rotations about the axle. This action
is not transitive since it cannot change the distance of a point on the tyre from the
axle. In fact, near a point on the inner rim, the tubular surface looks like a saddle or
mountain pass while near a point on the outer rim, it looks like a hill, so neighborhoods
of points do not all look the same. Though not a group49, the round unit sphere S2

is homogeneous for the rotation group in 3d as it carries a transitive action of the
latter: any point can be rotated to any other point on S2. An ellipsoid of revolution
E = {x2 + y2 + 2z2 = 1} regarded as a rigid surface in R3 is not homogeneous
under 3d rotations since they do not preserve E. Rotations about the z-axis act on the
ellipsoid, though not transitively.

Any group is homogeneous under its own action: G acts on itself transitively
via both left and right multiplication. We define the left action of G on itself via
Lgh = gh for any g, h ∈ G. The action is transitive since, given any h, k ∈ G, we
have Lkh−1h = k. The right action Rgh = hg is similarly transitive. The right and
left actions coincide if G is abelian. For a Lie group, Lg and Rg are diffeomorphisms
of G. Thus, a Lie group G is a homogeneous manifold under the action of G.

Lie algebra of a Lie group. Among the points of G, the identity is distinguished by
its simplicity. It makes sense to begin a detailed study of G by focusing on the linear
neighborhood of the identity50. This leads to the idea of the Lie algebra G, which,
as a vector space, is the tangent space at the identity TeG. Each tangent vector at the
identity is a Lie algebra element. We may use left translations Lg (by all elements of

49Any Lie group has at least one nonvanishing vector field: the left-invariant vector field obtained by
pushing forward a nonzero tangent vector at the identity. However, as noted in Fig. 5b, S2 does not admit
a nonvanishing vector field.

50By homogeneity, the linear neighborhood TgG of any other point g ∈ G may be studied by left-
or right-translating the tangent space at the identity via Lg or Rg . This idea is also used in studying the
rotational dynamics of a rigid body.
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G) to pushforward (38) any fixed tangent vector u ∈ TeG to obtain a ‘left-invariant’
vector field Lg∗u on G. Thus, for each u ∈ G we get an associated left-invariant
vector field on G. Consequently, the Lie algebra may also be regarded as the space
of left-invariant (or right-invariant) vector fields on G. The algebraic structure of the
group endows TeG (or the space of left-invariant vector fields) with the additional
structure of a linear Poisson algebra (i.e., with a bilinear antisymmetric product or
‘Lie bracket’ satisfying the Jacobi identity). In fact, the Lie bracket is simply the
commutator of left-invariant vector fields (which is known to be antisymmetric and to
satisfy the Jacobi identity, see Prob. ??). For the Lie algebra of a matrix Lie group, the
Lie bracket may be realized concretely in terms of the commutator of matrices, as we
shall soon see in the context of the rotation group (??). In fact, we may write a group
element in the infinitesimal neighborhood of the identity as g = esu ≈ I+su+s2u2/2
for a real s with |s| � 1. The matrix u is then an element of the Lie algebra. The
group commutator [g, h] of two such elements g = esu and h = etv may be shown to
be [g, h] ≈ I + st[u, v] (see Prob. ??). Thus, the matrix commutator of Lie algebra
elements is the first nontrivial approximation to the group commutator.

Coset spaces. The idea of a group acting on itself is extremely useful and can be
used to ‘subdivide’ a group. Given a subgroup H of G, we may consider all its left
translates, i.e., the subsets gH = {gh|h ∈ H} where g ranges over elements of G.
The subsets gH are called left cosets of G by H . Note that distinct elements of G
may produce the same coset. For instance, all elements h1, h2, . . . of H give rise to
the same coset51 h1H = h2H = eH = H . Moreover, all cosets have the same
cardinality as H . In fact, the elements of the list gH are all distinct.

Additionally, two cosets are either the same or disjoint: g1H = g2H or g1H ∩
g2H = {}. The former happens if g1 = g2h for some h ∈ H and the latter happens
if there is no such h ∈ H . Thus, a group is a disjoint union of (left) cosets52. The set
of left cosets forms the left coset space denoted G/H and pronounced ‘G mod H’.
Similarly, the right translates Hg of the subgroup by elements of G leads to the right
coset space, denoted H\G. It is often convenient to pick an element from each coset
and use it as a representative for the coset. For example, the even integers 2Z form a
subgroup of the additive group of integers Z. There are only two cosets: the sets of
even and odd integers: 2Z and 2Z + 1 (left and right cosets coincide since addition is
commutative). In this case, we could pick 0 and 1 as the two coset representatives.

Normal subgroup and quotient or factor group. In general, neither the space of
left nor right cosets is a group. However, they acquire the structure of a group if H
is a so-called normal or invariant subgroup of G. Precisely, N is a normal subgroup
(denoted N C G) if each left coset gN is also a right coset Ng for the same g ∈ G.

51In formulae such as h1H = h2H we mean that the two sets are the same, although the order of
elements in the two lists may differ.

52(Left) cosets may be interpreted as equivalence classes. For any two elements of G, define the relation
g ∼ g′ if there is an h ∈ H such that gh = g′. This relation is reflexive (g ∼ g since ge = g), symmetric
(g ∼ g′ ⇒ g′ ∼ g since gh = g′ implies g′h−1 = g) and transitive (g ∼ g′ and g′ ∼ g′′ implies g ∼ g′′
since gh = g′ and g′h′ = g′′ implies ghh′ = g′′) and therefore an equivalence relation. Evidently, the
equivalence class of g is the left coset gH .
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The name invariant subgroup comes from a reinterpretation of this condition. Indeed,
consider the action of G on itself by conjugation: h 7→ Ag(h) = ghg−1. Evidently,
conjugation is the composition of left and right actions: Ag = LgRg−1 = Rg−1Lg .
Now, a subgroupN is normal if gN = Ng or gNg−1 = N , i.e., if it is invariant under
conjugation by any element of G. It is then easy to see that the set of left (or right)
cosets of G by N is a group with identity given by the coset eN = N . Indeed, the
group multiplication and inversion (for left cosets) are given by

(gN) (g′N) = (gg′)N and (gN)−1 = g−1N (96)

Here, we used the formulae: gNg′N = gg′NN = gg′N and (gN)−1 = N−1g−1 =
Ng−1 = g−1N since N = N−1 on account of it being closed under inverses. G/N
is called the quotient group or factor group. Some elementary properties are worth
noting. (i) Every subgroup of an abelian group is a normal subgroup. (ii) If G is
finite, then the cardinality of the coset space G/H is |G|/|H| (Lagrange’s theorem).
(iii) If N is an invariant Lie subgroup of the Lie group G, then the dimension of the
coset space G/N is the difference between the dimensions of G and N . (iv) The
kernel K (inverse image φ−1(e′) of the identity e′ ∈ G′) of a group homomorphism
φ : G → G′ is always a normal subgroup of G (see Prob. ??) and the image φ(G) is
isomorphic to G/K. (v) The center Z(G) of a group G, consisting of elements that
commute with all other elements, is an abelian normal subgroup. It is normal since
every group element commutes with elements in the center: Zg = gZ.

Commutator subgroup. The commutator subgroup [G,G] consists of products of
any number of group commutators [h1, h2][h3, h4] · · · for hi ∈ G. Notably, the in-
verse of a commutator is a commutator: [h, k]−1 = [k, h], so this is a subgroup. It
is normal since the conjugate of a commutator is the commutator of conjugates. The
quotient G/[G,G] is an abelian group since we have factored out all commutators.
More formally, gh = [g, h]hg and gh = hg[g−1, h−1]. Thus, gh and hg lie in the
same right (and left) coset so that the composition of cosets is commutative:

(g[G,G])(h[G,G]) = gh[G,G] = hg[G,G] = (h[G,G])(g[G,G]). (97)

In fact, [G,G] is the smallest invariant subgroup such that the factor group is abelian.

Simple and semisimple groups. A simple group G is one that does not have any
normal subgroups other than G and {e}. Simple groups are like prime numbers, they
do not admit any nontrivial factor groups and can serve as building blocks for other
groups. The cyclic groupCp for prime p is simple as every nontrivial element is a gen-
erator. By contrast, C4 = {±1,±i} is not simple: C2 = {±1} is a normal subgroup.
More generally, G is semisimple if G has no nontrivial abelian invariant subgroups. If
G is simple, then it is automatically semisimple. A connected nonabelian Lie group
is called simple if it does not have any proper connected normal Lie subgroups (it can
have discrete normal subgroups). SO(3), SU(2) and SL2(R) are simple Lie groups
while SO(4) is semisimple but not simple. The unitary groups U(n) and general lin-
ear groupsGLn(R) for n ≥ 2 are neither simple nor semisimple since multiples of the

43



identity (eiθI for real θ and λI for nonzero real λ) form nontrivial abelian connected
invariant Lie subgroups. In fact, U(2) also admits SU(2) as a normal subgroup.

We now introduce two ways in which we may combine a pair of groups to synthe-
size a larger one: the direct and semidirect products.

Direct product. Suppose H and N are a pair of groups with identity elements eH
and eN . Then the Cartesian product H ×N consisting of all ordered pairs (h, n) with
h ∈ H and n ∈ N can be given the structure of a group called the direct product of H
andN . The composition law is defined as (h, n)·(h′, n′) = (hh′, nn′) and (h, n)−1 =
(h−1, n−1). The subgroups consisting of elements of the form (eH , n) and (h, eN ) are
isomorphic toN andH respectively. H×N andN×H are isomorphic groups. When
the groups are abelian, one tends to use additive rather than multiplicative notation.
For example, the group R2 of translations of the Euclidean plane is the direct product
(or sum) of two copies of the group R of translations of the real line: R2 = R× R.

∗ Semidirect product. The semidirect product is a generalization of the direct prod-
uct. Here, we suppose that we are given an action of H on N . More precisely, for
each h ∈ H , we have an automorphism ϕh : N → N such that ϕh′ϕh = ϕh′h
and ϕ−1

h = ϕh−1 . We may use this to define the composition law (h, n) · (h′, n′) =
(hh′, nϕh(n′)). We verify in Prob. ?? that H × N with this composition law is a
group. It is called the semidirect product of H acting on N via ϕ and is denoted
H o N . Evidently, the semidirect product reduces to the direct product if H acts
trivially on N , i.e., ϕh(n′) = n′ for all h ∈ H and n′ ∈ N . What is more, the
set of elements (eH , n) forms a normal subgroup of H o N isomorphic to N . The
Euclidean group is a semidirect product of 3d rotations acting on space translations.
The Galilei and Poincaré groups are semidirect products of the group of rotations and
boosts acting on space-time translations.

We now illustrate some of the concepts introduced so far in the context of the
discrete permutation group and the continuous circle and orthogonal groups.

Permutation group. The permutation group Sn or symmetric group on n letters is the
set of all permutations of n distinct objects, usually denoted 1, 2, · · · , n, with group
multiplication given by composition of permutations. A permutation σ may be written
in two-row notation as σ =

(
1 2 3 ···

σ(1) σ(2) σ(3) ···
)
. The group has order n! since σ(1) can

be chosen in nways followed by σ(2) in n−1 ways and so on. A permutation may also
be written as a product of disjoint cycles: its cycle decomposition. For k = 0, 1, . . ., a
(k + 1)-cycle is of the form (i σ(i) σ2(i) · · ·σk(i)) with σk+1(i) = i. For example,
S2 consists of 2 elements: the identity σ = e [with e(1) = 1, e(2) = 2] and exchange
transposition σ = τ [τ(1) = 2, τ(2) = 1] with τ2 = e. Thus,

e = ( 1 2
1 2 ) = (1)(2) and τ = ( 1 2

2 1 ) = (12). (98)

The group S3 has 6 elements. The identity σ(i) = i is denoted (1)(2)(3). There
are three pairwise transpositions53 (12)(3), (1)(23) and (2)(31). Here, (1)(23) means
σ(1) = 1, σ(2) = 3, σ(3) = 2. There are also two cyclic permutations (123) =

53When clear from context, we suppress 1-cycles. So in S3, (23) is short for (1)(23).
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g ↓, h→ e (12) (23) (31) (123) (132)
e e (12) (23) (31) (123) (132)

(12) (12) e (123) (132) (23) (31)
(23) (23) (132) e (123) (31) (12)
(31) (31) (123) (132) e (12) (23)

(123) (123) (31) (12) (23) (132) e
(132) (132) (23) (31) (12) e (123)

Table 1: Multiplication table of gh for g, h ∈ S3

(12)(23) = (13)(12) and (132) = (12)(13) which have been written as products of
pairwise exchanges composed from right to left. Here (132) means σ(1) = 3, σ(3) =
2 and σ(2) = 1. In the composition σ = (12)(13), 3 is mapped to 1 which is then
mapped to 2, so that σ(3) = 2. On the other hand, σ(2) = 1 and σ(1) = 3.

S3 can be realized as the group of rigid motion symmetries of an equilateral tri-
angle ∆ with vertices labelled v1, v2, v3, say counterclockwise, with horizontal base
v1v2 and apex v3. The symmetries of ∆ are counterclockwise rotations Rθ about
the center by angles θ = 0, 2π/3, 4π/3 and reflections about the perpendiculars
through the vertices v1, v2 and v3. The transformation group consisting of these
6 symmetries is called the dihedral group of order 6 and is isomorphic to S3 via
the following map. To R0 we associate the identity element e. R2π/3 is mapped
to (123) since it takes v1 → v2, v2 → v3, v3 → v1. Similarly, R4π/3 corre-
sponds to (132) as it takes v1 → v3, v3 → v2, v2 → v1. In the same spirit,
reflection through the perpendicular through v1 is mapped to (23) and so on. No-
tice that the square of any reflection is the identity and that R2

2π/3 = R4π/3 while
R2

4π/3 = R8π/3 = R2π/3. Correspondingly, the square of any transposition is the
identity while (123)2 = (132) and (132)2 = (123). The ‘multiplication table’ of S3

is displayed in Table. 1. Evidently, it is a nonabelian group. In general, reflections do
not commute [(12)(23) = (123) while (23)(12) = (132)] nor do rotations commute
with reflections: (123)(12) = (31) while (12)(123) = (23).

By Lagrange’s theorem, since the order of a subgroup must divide that of the
group, S3 can only have subgroups of order 1, 2, 3 and 6. There are 4 nontrivial
subgroups, each is cyclic and is generated by a transposition or cyclic permutation:

{e, (12)}, {e, (23)}, {e, (31)} and {e, (123), (132)}. (99)

The first 3 are reflection symmetries while the fourth consists of rotations of ∆. Pair-
wise transpositions are the building blocks: any permutation can be expressed as a
product of transpositions, although the expression is not unique. However, a permu-
tation σ requires an even or odd number of transpositions to be expressed this way.
Thus, we define the sign (or signature or parity) of a permutation sgn(σ) as ±1 in
the even and odd cases. The identity has sign +1 and any exchange has sign −1. For
S3, cyclic permutations have sign +1 as (123) = (31)(12) and (132) = (12)(31).

The sign of a permutation gives a homomorphism: Sn → C2. The kernel is the
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alternating group An of even permutations, a normal subgroup54 of Sn. For n = 3,
A3 = {e, (123), (132)} consists of rotational symmetries of ∆. It has 2 left cosets

(12)A3 = (23)A3 = (31)A3 = {(12), (23), (31)}
and eA3 = (123)A3 = (132)A3 = {e, (123), (132)} = A3. (100)

As expected, the left cosets are also right cosets, i.e., (12)A3 = A3(12) etc.
All members of a conjugacy class have cycle decompositions of the same struc-

ture. Cycle structure refers to the number of 1-cycles, 2-cycles etc. Hence, we should
expect S3 to have three conjugacy classes: the identity, the transpositions and the
cyclic permutations: {e}, {(12), (23), (31)} and {(123), (132)}. The members of a
conjugacy class must have the same parity. For instance, the conjugates of (12) are

(23)(12)(23)−1 = (31), (31)(12)(31)−1 = (23),
(123)(12)(123)−1 = (23) and (132)(12)(132)−1 = (13). (101)

S3 can be realized as a semidirect product H o N of H acting on N , where H
and N are cyclic groups of order 2 and 3. For instance, we take H = {e, (12)}
and N = A3 regarded as subgroups of S3 and consider the action of H on A3 via
conjugation: ϕh(n′) = hn′h−1. Thus, the semidirect product is

(h, n) · (h′, n′) = (hh′, nhn′h−1). (102)

The Cartesian product has six elements

(e, e), (e, (123)), (e, (132)), ((12), e), a = ((12), (123)) & b = ((12), (132)).
(103)

The first 4 elements are identified with e, (123), (132), (12) ∈ S3. If a ↔ (31) and
b↔ (23) then one finds that (102) agrees with the S3 composition law. For instance,

((12), (123)) · ((12), (123)) = ((12)2, (123)(12)(123)(12)) = (e, (31)2) = (e, e),
(104)

which agrees with (31)2 = e in S3.

Circle group U(1). Perhaps the easiest Lie group to understand is the group U(1) of
unimodular complex numbers {z ∈ C|z∗z = 1}. As shown in Fig. 6, the group ele-
ments lie on the unit circle in the complex plane, so the group is also called the circle
group S1. This establishes that it is a differentiable manifold. It is called U(1) since
it is also the set of 1 × 1 unitary matrices55. Any unimodular z may be expressed as
z = eiθ where θ is defined modulo 2π. The identity element is z = 1, corresponding to
θ ≡ 0 modulo 2π. The multiplication law is abelian eiθ1eiθ2 = ei(θ1+θ2) = eiθ2eiθ1 .
The inverse of z = eiθ is the reciprocal 1/z = e−iθ. Since (θ1, θ2) 7→ θ1 + θ2 and

54Conjugation by any element (gσg−1) cannot change the parity of σ, so An invariant.
55The unitary group U(n) consists of n × n complex matrices with U†U = I where U† = (Ut)∗.

Equivalently, it consists of linear maps on an n-dimensional complex vector space that preserve a Hermitian
positive-definite inner product. It is a real Lie group of dimension n2: transition functions are smooth real
(not complex) functions.
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θ 7→ −θ modulo 2π are smooth maps, U(1) is a one-dimensional Lie group. It is
compact (closed and bounded as a subset of the complex plane) and path connected
though not simply connected. Its Lie algebra U(1) is the tangent space at z = 1,
which is isomorphic to R. U(1) can be taken to be the 1d vector space of imagi-
nary numbers iy for y ∈ R. A basis for the Lie algebra may be chosen as i. We
notice that exponentiating a Lie algebra element such as πi gives us a group element
eπi = cosπ + i sinπ = −1. This map from Lie algebra to Lie group is called the
exponential map. More generally, given a nonzero Lie algebra element (say i), expo-
nentiating all its real multiples iy, we get a 1-parameter subgroup eiy . In this case, the
exponential map surjects onto the group but is many-to-one: eiy = ei(2nπ+y) for any
n ∈ Z. Since U(1) is abelian, all its subgroups are also abelian, they are given by the
cyclic groups Cn for n = 1, 2, · · · . Here, Cn = {e2πij/n|j = 0, 1, 2, · · ·n − 1}, so
the elements of Cn lie at the vertices of a regular n-gon centered at the origin of the
complex plane, with the identity as one of its vertices.

Circle group
 U(1)

Tangent
space at
z = 1

U(1) Lie
algebra

Re z

Im z

|z| = 1

z = 0

Figure 6: The groupU(1) of unimodular complex numbers and its Lie algebraU(1) ∼=
R.

The orthogonal group O(3). The orthogonal group G = O(3) consists of the set of
3× 3 real orthogonal matrices, i.e., matrices A that satisfy AtA = I (see Prob. ?? for
examples). The generalization56 to n × n orthogonal matrices for n = 1, 2, 3, 4, . . .
is called O(n). The group composition law is associative matrix multiplication: note
that (AB)tAB = BtAtAB = I if A and B are orthogonal. The identity element is
the identity matrix while the inverse of A is simply its transpose At. It is a nonabelian
group since AB 6= BA in general for a pair of orthogonal matrices (see Prob. ??).
The orthogonal group is a matrix group, it is a subgroup of the general linear group of
all invertible real 3× 3 matrices. The orthogonal group is important as it is the group
of rotations and reflections of 3d Euclidean space. It frequently arises as a group of
symmetries or as the configuration space of a mechanical system. We will soon view
O(3) as a manifold. First, what is its dimension? The condition AtA = I implies
that a 3 × 3 orthogonal matrix is one whose columns furnish an orthonormal basis
{a, b, c} for R3 (see below). The first basis vector a is any unit vector. The latter
are parametrized by points on the unit sphere S2 ⊂ R3. Thus, 2 real parameters are

56Alternatively, suppose V is an n dimensional real vector space with positive-definite inner product
〈·, ·〉. Then O(n) is the group of linear maps A : V → V that preserve the inner product 〈Au,Av〉 =
〈u, v〉 for all u, v ∈ V with product given by composition of maps. The definition is independent of the
choice of V and inner product, it only depends on n.
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needed to specify a. Having picked a, the second basis vector b can be any unit vector
in the plane orthogonal to a and is specified by a point on the unit circle S1 on this
plane. Thus, one additional parameter is needed to specify b. Having chosen a and b,
the third basis vector c must be perpendicular to both: c = ±a× b. Thus, there is no
additional continuous real parameter needed to specify c. We conclude that O(3) is a
3-parameter family of matrices. In fact, we may view it as a 3d submanifold of R9.
Suppose we write A in terms of its columns,

A = ( a b c ) so that At =

(
at

bt

ct

)
. (105)

The constraint AtA = I , becomes 6 conditions on the 9 matrix elements of A:

ata− 1 = btb− 1 = ctc− 1 = atb = btc = cta = 0. (106)

Thus, O(3) is the common zero locus of these six independent quadratic functions
of nine real variables. Hence, we may view O(3) as a 3d algebraic submanifold of
R9. It is bounded since a, b and c must each be a unit vector. It is closed57 since it
is the intersection of the inverse images of the closed one-element set {0} under the
continuous maps ata− 1, · · · , cta from R9 → R. Thus, O(3) is a compact 3d man-
ifold. However, it is not path connected. Taking the determinant of AtA = I , we find
(detA)2 = 1, so detA = ±1. In Prob. ?? we show that there are orthogonal matrices
with either sign of determinant. Since the determinant cannot jump discontinuously
from 1 to -1 along a continuous path, we conclude that O(3) is disconnected. It has
two connected components. The identity I lies in the connected component where
detA = 1 and comprises proper rotations of R3. In fact, the connected component
of the identity is a closed subgroup of O(3) and is a Lie group in its own right, the
special orthogonal group SO(3) which is also the kernel of the determinant homo-
morphism from O(3) to {±1}. This subgroup of proper rotations and its Lie algebra
play a key role in rigid body mechanics. The other component where detA = −1 is
not a subgroup as it is not closed under composition. It consists of so-called improper
rotations and is a coset of SO(3) by a reflection: product of a reflection and a proper
rotation.

The orthogonal Lie algebra. Roughly, the Lie algebra (denoted G or g) is the linear
approximation to the group in the neighborhood of the identity. More precisely, the
Lie algebra as a vector space is defined as the tangent space to the group at the identity.
To identify the orthogonal Lie algebraO(3), we supposeA ≈ I+u where u is treated
to linear order. To this order, the orthogonality condition

(I + u)(I + ut) ≈ I becomes u+ ut = 0. (107)

57For our purposes, a closed set C is one that contains all its limit points with respect to the Euclidean
distance function. The inverse image f−1(C) of a closed set under a continuous map f is closed. The
intersection of a finite number of closed sets is closed. A closed and bounded subset of Euclidean space is
called compact.
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Thus, the Lie algebra of the orthogonal group consists of 3×3 real antisymmetric ma-
trices58. A real linear combination of antisymmetric matrices αu + βv remains anti-
symmetric, so this is indeed a vector space. The entries above the diagonal are the only
linearly independent entries of an antisymmetric matrix, so O(3) is a 3-dimensional
real vector space isomorphic to R3. We say that O(3) is a 3-dimensional Lie algebra.
It is no surprise that G and G have the same dimension.

58 Since SO(3) is the identity component of O(3), they have the same Lie algebra. We note in passing
that the group SU(2) of 2×2 unitary matrices with unit determinant has an isomorphic Lie algebra. Indeed,
the Lie brackets among (i/2)× the Pauli matrices (??) [which furnish a basis for SU(2)] are the same as
those among e1, e2 and e3 of (??).
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