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1 Introductory remarks

• The theory of vectors, matrices and linear equations is called linear algebra. It is useful in
many classical physics and engineering problems. Linear equations are a first approximation to
more complicated and accurate non-linear equations (such as Newton’s second law). Near a point
of equilibrium we can often linearize the equations of motion to study oscillations: vibrations of
a solid or LC oscillations in an electrical circuit.

• Importance of linear algebra in physics is greatly amplified since quantum mechanics is a
linear theory.

• Linear algebra is important in analysing experimental data: least squares fitting of data,
regression.

• Linear algebra is fun and the basic concepts are not difficult. It has a nice interplay between
algebra (calculation) and geometry (visualization). It may also be your first encounter with
mathematical abstraction, eg. thinking of spaces of vectors rather than single vectors.

• The basic objects of linear algebra are (spaces of) vectors, linear transformations between
them and their representation by matrices.

• Examples of vectors include position ~r and momentum ~p of a particle, electric ~E(~r, t) and
magnetic fields at a point, velocity field of a fluid ~v(~r, t). Examples of matrices include inertia
tensor Iij of a rigid body, stress tensor (momentum flux density) Sij = pδij + ρvivj of an ideal
fluid, Minkowski metric tensor ηµν of space-time in special relativity.

• Matrix multiplication violates the commutative law of multiplication of numbers AB 6= BA in
general. Also there can be non-trivial divisors of zero: matrices can satisfy AB = 0 with neither
A nor B vanishing. Matrix departure from the classical axioms of numbers is as interesting as
spherical geometry departure from the axioms of Euclidean geometry.

1.1 Some text books for linear algebra

• C. Lanczos, Applied analysis - chapter 2 on matrices and eigenvalue problems

• C. Lanczos, Linear differential operators, chapter 3 on matrix calculus

• T. M. Apostol, Calculus Vol 2, chapters 1-5

• Gilbert Strang, Introduction to linear algebra

• Gilbert Strang, Linear algebra and its applications

• Courant and Hilbert, Methods of mathematical physics, Vol 1

• Arfken and Weber, Mathematical methods for physicists

• Sheldon Axler, Linear algebra done right

• P.R. Halmos, Finite-dimensional vector spaces

• Erwin Kreyszig, Advanced engineering mathematics

• K T Tang, Mathematical Methods for Engineers and Scientists 1: Complex Analysis, Determinants and Matrices
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1.2 A Foretaste: Physical examples of linear equations in matrix form

• Linear algebra deals with systems of linear algebraic equations. One example is the relation
of the angular momentum vector to the angular velocity vector of a rigid body: L = IΩ, where

Iij =

∫
ρ(~r)

(
r2δij − rirj

)
d3r

is the 3 × 3 real symmetric inertia matrix depending on the mass density ρ of the body. This
system of linear equations is expressed in matrix formL1

L2

L3

 =

 I11 I12 I13

I11 I12 I13

I11 I12 I13

Ω1

Ω2

Ω3

 . (1)

• Many equations of physics and engineering are differential equations (some of which are dis-
cussed in the first module of this lecture workshop). Linear algebraic equations often arise from
discretizing linear differential equations. Consider for instance the equation for simple harmonic
motion ẍ(t) = −ω2x(t). The same differential equation also appears when one separates space
and time variables in the wave equation ∂2

t u = c2∂2
xu for a vibrating string. If u = T (t)X(x),

then T̈ (t) = −ω2T (t) and X ′′(x) = −k2X(x) where ω = ck is a separation constant. In the
latter case, this ODE is in fact an eigenvalue problem for the (infinite dimensional) ‘matrix’ (op-
erator) d2/dt2 with x(t) the eigenvector and −ω2 the eigenvalue (in the case of the harmonic
oscillator ω is a fixed constant and we do not interpret the ODE as an eigenvalue problem). It
would be nice to see this equation written in terms of matrices and column vectors. To do so
we notice that a differential like dx/dt is the limit of a difference quotient [x(t+ δt)− x(t)]/δt .
By discretizing time we may turn linear differential equations into systems of linear algebraic
equations.

• To make this connection explicit, we discretize time and represent x(t) by the column vector
whose entries are x(ti) where ti are a suitable set of times, say δt(· · · ,−3,−2,−0, 1, 2, 3, · · ·)
where δt is a small time-step. We write it as the transpose of a row vector to save space

x(t) ≈ ( · · · x(−2δt) x(−δt) x(0) x(δt) x(2δt) · · · )t . (2)

Approximating ẋ(t) ≈ (x(t + δt) − x(t))/δt by the forward difference, we have for instance
ẋ(0) = (x(δt)− x(0))/δt etc. Thus the entries of the column vector for ẋ are

dx(t)

dt
≈ 1

δt



...
x(−δt)− x(−2δt)
x(0)− x(−δt)
x(δt)− x(0)
x(2δt)− x(δt)
x(3δt)− x(2δt)

...


=



...
...

...
...

...
...

...
. . . −1 1 0 0 0 . . .
. . . 0 −1 1 0 0 . . .
. . . 0 0 −1 1 0 . . .
. . . 0 0 0 −1 1 . . .
. . . 0 0 0 0 −1 . . .
...

...
...

...
...

...
...





...
x(−2δt)
x(−δt)
x(0)
x(δt)
x(2δt)

...


(3)

From this we see that d/dt may be represented by a matrix with −1s along the diagonal,
+1s along the first super diagonal and zeros elsewhere. Other discretizations are possible. For
instance, we could use the backward difference ẋ(t) ≈ (x(t) − x(t − δt))/δt , in which case the

3



corresponding matrix would have 1s along the diagonal and −1s along the first sub-diagonal.
The more symmetrical centered-difference ẋ ≈ (x(t+ δt)−x(t− δt))/2δt leads to a tri-diagonal
matrix with zeros along the diagonal and ±1 along the first super(sub) diagonal. All these
formulae tend to the derivative ẋ in the limit as δt→ 0.

• A convenient discretization for the second derivative is

ẍ ≈ 1

δt

(
x(t+ δt)− x(t)

δt
− x(t)− x(t− δt)

δt

)
=
x(t+ δt)− 2x(t) + x(t− δt)

(δt)2
. (4)

Then we may represent the operator d2/dt2 in this basis by a tri-diagonal real symmetric matrix,
a few of whose ‘middle’ rows and columns are

d2

dt2
≈ 1

(δt)2



...
...

...
...

...
...

...
. . . −2 1 0 0 0 . . .
. . . 1 −2 1 0 0 . . .
. . . 0 1 −2 1 0 . . .
. . . 0 0 1 −2 1 . . .
. . . 0 0 0 1 −2 . . .
...

...
...

...
...

...
...


where x(t) ≈



...
x(−2δt)
x(−δt)
x(0)
x(δt)
x(2δt)

...


(5)

Thus we have approximated the linear differential equation ẍ = −ω2x by an infinite system of
linear algebraic equations expressed in terms of column vectors and matrices:

1

(δt)2



...
...

...
...

...
...

...
. . . −2 1 0 0 0 . . .
. . . 1 −2 1 0 0 . . .
. . . 0 1 −2 1 0 . . .
. . . 0 0 1 −2 1 . . .
. . . 0 0 0 1 −2 . . .
...

...
...

...
...

...
...





...
x(−2δt)
x(−δt)
x(0)
x(δt)
x(2δt)

...


= −ω2



...
x(−2δt)
x(−δt)
x(0)
x(δt)
x(2δt)

...


. (6)

This is called an eigenvalue problem, −ω2 is the eigenvalue, and a non-zero column vector x(t)
satisfying this equation is called an eigenvector of the matrix. We will introduce and study
eigenvalue problems in more detail. x(t) clearly has infinitely many components, and the tri-
diagonal matrix representing d2/dt2 has infinitely many entries. We say that d2/dt2 is an
operator on an infinite dimensional vector space. To understand these terms and concepts we
begin with some elementary notions and definitions.

2 Vector spaces

• Often our first examples of vectors are vectors in the plane or in three dimensional space.
These are geometrically viewed as directed line segments from the origin to a point. If Cartesian
coordinates are used, then the coordinates (x, y) or (x, y, z) of the tip of the vector are called the
components of the vector ~v = (x, y, z) (we will often omit the vector sign and speak of the vector
v ). On the plane, x̂ = (1, 0) and ŷ = (0, 1) are called the unit vectors in the corresponding
directions.
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2.1 Linear combinations and (in)dependence

• Given a collection of vectors v1, v2, · · · , vn , a linear combination is a weighted sum a1v1 +
a2v2 + · · · anvn , where ai are numbers (real or complex). For example, 3x̂ + 2ŷ is a linear
combination of these two unit vectors.

• Vectors are linearly dependent if there is a non-trivial linear combination of them that vanishes.
i.e. the vectors satisfy a linear relation. For example x̂ and 3x̂ are linearly dependent since they
satisfy the linear relation 3(x̂)− 3x̂ = 0. More formally, v1, v2, · · · , vn are linearly dependent if∑n
i=1 aivi = 0 for some real numbers ai not all zero.

• On the other hand, there is no non-trivial linear combination of u =

 1
0
0

 and v =

 0
1
0


that vanishes. We say that u, v are linearly independent.

• Definition: v1, v2, · · · , vn are linearly independent if: a1v1 + a2v2 + · · · anvn = 0 implies that
a1 = a2 = a3 = · · · = an = 0.

2.2 Definition and basic examples of vector spaces

1. The basic operation defining a vector space is that of taking linear combinations of vectors
av + bw . a, b are called scalars and v, w vectors.

2. A vector space is a space of vectors that is closed under linear combinations with scalar
coefficients.

3. The multiplication by scalars distributes over addition of vectors a(v + w) = av + aw .

4. The scalars a, b that we can multiply a vector by are either real or complex numbers and
give rise to a real or complex vector space. More generally, they can come from a field.

5. Examples of vector spaces: R2, R3, R, C2, Rn, Cn

6. Non-examples: the following are not closed under linear combinations

• A line not passing through the origin.

• A half plane or quadrant or the punctured plane.

• Unit vectors in R2

7. So a vector space is also called a linear space, it is in a sense flat rather than curved.

2.3 Linear span of vectors

• Given vectors v, w , say in R3 , we can form all possible linear combinations with real or
complex coefficients, {av + bw|a, b ∈ R or C} . This is their (real or complex linear) span. For
example, 3v−w is a linear combination. Unless otherwise specified, we will use real coefficients.

• span(v, w) is a two dimensional plane provided v and w were linearly independent. It is a
vector space by itself.
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• Eg ax̂+ bŷ is the span of the unit vector in the x and y directions. Geometrically, we go a
units in the horizontal direction and b units in the vertical direction.

• For example, the span of the unit vector x̂ is the x-axis while the span of (1, 0, 0) and (0, 1, 0)
is the whole x− y plane R2 contained inside R3

2.4 Subspace

• A subspace W of a vector space V is a subset W ⊆ V that forms a vector space by itself
under the same operations that make V a vector space.

• The span of any set of vectors from a vector space forms a vector space. It is called the
subspace spanned by them.

• e.g., Any line or plane through the origin is a subspace of R3 . So is the point (0, 0, 0).

• On the other hand, notice that u = (1, 0, 0), v = (0, 1, 0), w = (1, 2, 0) span the same x − y
plane. There is a redundancy here, we don’t need three vectors to span the plane, two will do.

• In other words, w = (1, 2, 0) already lies in the span of u = (1, 0, 0) and v = (0, 1, 0), since
w − u− 2v = 0.

• We say that u, v, w are linearly dependent if there is a non-trivial linear combination that
vanishes.

• On the other hand, u and v are linearly independent and they span the plane.

• We say u, v are a basis for the plane.

2.5 Basis

• A basis for a vector space is a linearly independent collection of vectors {v1, v2, · · · , vn} which
span the space.

• x̂, ŷ is the standard basis for R2 , but 3x̂ + 2ŷ, ŷ is also a basis. Notice that bases have the
same number of vectors (cardinality).

• The standard basis for Rn is the Cartesian one (ei)j = δij

e1 =


1
0
0
...
0

 ; e2 =


0
1
0
...
0

 ; · · · ; en =


0
0
0
...
1

 . (7)

• Every vector can be uniquely written as a linear combination of basis vectors x = xivi . We
say that we have decomposed x into its components xi in the basis. Proof: Suppose x has two
different decompositions x = xivi and x = x′ivi , then 0 = x−x = (xi−x′i)vi . But then we have
a linear combination of basis vectors that vanish, which is not possible since vi were linearly
independent. So xi = x′i .
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2.6 Dimension

• The dimension of a vector space is the cardinality of any basis. Equivalently, it is the maximal
number of linearly independent vectors in the space.

• The dimension d of a subspace of an n-dimensional space must satisfy 0 ≤ d ≤ n . The
difference n− d is called the co-dimension of the subspace.

• The dimension of Cn as a complex vector space is n . But it is also a real vector space of
dimension 2n

• Note that the dimension of a vector space should not be confused with the number of vectors
in the space. The number of vectors is 1 for the trivial vector space and infinite otherwise.

• {(0)} is not a basis for the ‘trivial’ vector space consisting of the zero vector alone. This
is because the zero vector does not form a linearly independent set, it satisfies the equation
5(0) = 0 for instance. The dimension of the trivial vector space is zero.

2.7 More examples of vector spaces

• The space consisting of just the zero vector is a 0-dimensional space, the trivial vector space.

• Consider the set of 2 × 2 real matrices. We can add matrices and multiply them by real
numbers and the results are again 2 × 2 real matrices. So this is a real vector space M2(R).
More generally we have the real vector space Mn(R). The dimension of M2(R) is 4. What is
a basis? Note that if we consider the same set of 2 × 2 real matrices, it fails to be a complex
vector space. Multiplication by an imaginary number takes us out of the set.

• The vector space of solutions of a homogeneous linear differential equation: For example
consider the differential equation for the motion of a free particle on a line x(t) ∈ R m∂2x

∂t2
= 0.

If x(t) and y(t) are solutions, then so is any real linear combination of them. This is a two
dimensional real vector space, spanned by 1 and t . Acting on this space of solutions, we may
think of m ∂2

∂t2
as the 2× 2 zero matrix.

• Vector space spanned by the words in an alphabet: Given the English alphabet of 26 letters,
we can form all words (with or without meaning) by stringing letters together. Now consider
all real linear combinations of these words, such as the vectors

v = 10 a + 23 cat− π xyz + dog
w = pig − 7 xyz + 4dog (8)

Then v+w = 10 a + 23 cat− (7 + π) xyz + 5 dog + pig− 7 xyz This is a real vector space. But
it is infinite dimensional since there are an infinite number of (largely meaningless!) words. A
basis consists of all possible words.

• We see that vector spaces are often specified either by giving a basis or as the solution space
to a system of linear equations. A geometric example of a vector space is the space vectors
tangent to a curve or surface at a point. For example, the tangent space to the sphere at the
north pole is a two dimensional real vector space.
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3 Linear transformations between vector spaces and matrices

• A linear transformation from domain vector space D to target vector space T is a linear map
taking vectors in D and producing vectors in T :

L : D → T, L(au+ bv) = aL(u) + bL(v) (9)

• You can either form linear combinations before applying L or afterwards, the result is the
same. Importantly, L(0) = 0.

3.1 Matrix of a linear map

• Consider a linear transformation L : Rn → Rm , suppose we take the standard Cartesian
bases for Rn and Rm . L is determined by how it acts on the basis vectors ei of Rn . Here
e1 = (1 0 0 · · ·)t etc. If v = viei is a linear combination of basis vectors, then L(viei) = viL(ei).
So suppose L(ei) = fi where fi ∈ Rm are the images of ei . We view the fi as m-component
column vectors. Then the matrix representation of L in these bases is the n×m matrix whose
columns are the images fi of the basis vectors ei . L = (f1 f2 f3 · · · fn).

• Example. Consider a rotation R by 90 degrees counter clockwise on the x − y plane. Why
is it linear? In the standard basis for R2 , the images of the basis vectors are Rx̂ = ŷ = (0, 1)t

and Rŷ = −x̂ = (−1, 0)t . Thus R =

(
0 −1
1 0

)
.

• The matrix of a linear transformation will generally be different in different bases. Only very
special linear maps have the same matrix in all bases, these are multiples of the identity map
L(ei) = λei , which are represented by λ times the identity matrix I .

• Example: The projection P : R2 → R2 that projects every geometric vector to its horizontal
component. Check that this is a linear transformation. Here the domain and target are the
same vector space, so we can use a single basis. If f1 and f2 are the standard cartesian basis
vectors in the horizontal and vertical directions, then Pf1 = f1 and Pf2 = 0. In the f -basis,
the columns of the matrix representation of P are the images of f1 and f2 , so

f1 =

(
1
0

)
f

, f2 =

(
0
1

)
f

, Pf =

(
1 0
0 0

)
. (10)

Since P is diagonal in the f -basis, we say that the f -basis is an eigenbasis for P . f1, f2 are
eigenvectors of P with eigenvalues 1 and 0.

• Notice that P 2
f = Pf , this is common to all projection matrices: projecting a vector for a

second time does not produce anything new.

• But we are not obliged to work in the standard cartesian basis. So let us pick another basis
consisting of e1 = f1 and e2 = f1 +f2 . So geometrically, e1 is the standard cartesian horizontal
basis vector, but e2 is a vector that points north-east. In the f -basis we have

e1 =

(
1
0

)
f

, e2 =

(
1
1

)
f

(11)

But {e1, e2} are also a basis in their own right. So we can also write e1, e2 in the e-basis

e1 =

(
1
0

)
e

, e2 =

(
0
1

)
e

(12)
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So we see that the same geometric vector may have different representations in different bases!
Now the matrix of the projection P in the e-basis is the matrix whose columns are the images
of e1 and e2 in the e-basis. Since Pe1 = e1 and Pe2 = e1 , we have

Pe =

(
1 1
0 0

)
(13)

P is not diagonal in the e-basis, so the ei are not an eigenbasis for P . Nevertheless, the e-basis
is a legitimate basis to use.

• Moreover, even in the e-basis, we see that P 2
e = Pe

• We see that the same linear transformation P can have different matrix representations in
different bases. However, Pe and Pf are related by a change of basis. First observe that the
two bases are related by e1 = f1, e2 = f1 + f2 which may be written in matrix form as

e ≡
(
~e1

~e2

)
=

(
1 0
1 1

)( ~f1
~f2

)
≡ St

( ~f1
~f2

)
where S =

(
1 1
0 1

)
(14)

In short e = Stf . Calling it St is a matter of convenience so that the columns (rather than
rows) of S are the components of ei in the f -basis. S is called a change of basis. Notice that S
is invertible, which is guaranteed since its columns form a basis and so are linearly independent.

• Now we can state the change of basis formula for a matrix: Pe = S−1 Pf S , which can be
checked in our case

S−1 Pf S =

(
1 −1
0 1

)(
1 0
0 0

)(
1 1
0 1

)
=

(
1 1
0 0

)
= Pe (15)

3.2 Matrix multiplication

• Composition of linear transformations corresponds to matrix multiplication.

• An m × n matrix is a rectangular array of numbers (real or complex) with m rows and n
columns. If m = n we have a square matrix. If m = n = 1 the matrix reduces to a number
(scalar). A 1× n matrix is a row vector. An m× 1 matrix is a column vector.

• Matrix multiplication in components
∑n
k=1AikBkj = Cij . Summation convention: repeated

indices are summed except when indicated otherwise. Sometimes we write Aik for Aik , with row
superscript and column subscript. Then AikB

k
j = Cij .

• Matrix multiplication is associative, can put the brackets anywhere A(BC) = (AB)C ≡ ABC .
To see this, work in components and remember that multiplication of real/complex numbers is
associative

[A(BC)]il = Aij(BC)jl = AijBjkCkl = [(AB)C]il. (16)

• Matrix multiplication distributes over addition A(B +C) = AB +AC . Addition of matrices
is commutative A+B = B +A , we just add the corresponding entries.

• The zero matrix is the one whose entries are all 0′s . A+ 0 = A and 0A = 0 for every matrix,
and 0v = 0 for every vector.

9



• Outer product of a column vector with a row vector gives a matrix: This is just a special
case of matrix multiplication of Am×1 with B1×n to give a matrix Cm×n . For example(

x
y

)
( z w ) =

(
xz xw
yz yw

)
(17)

• Example that shows a product of non-zero matrices can be zero(
0 1
0 0

)(
0 1
0 0

)
=

(
0 0
0 0

)
(18)

• Multiplication of matrices is in general not commutative, i.e. AB need not equal BA . For
example, check this for

A =

(
0 1
1 0

)
, B =

(
1 0
0 −1

)
(19)

In this case you will find that AB = −BA . But this is not so in general, as the following
example indicates

A =

(
1 2
3 4

)
, B =

(
2 3
−1 −2

)
⇒ AB =

(
0 −1
−2 3

)
, BA =

(
11 16
−7 −8

)
. (20)

• A way of looking at matrix vector multiplication:

(
a b
c d

)(
x
y

)
= x

(
a
c

)
+ y

(
b
d

)
as linear

combinations of columns: x× first column plus y× second column.

• Av multiplication of a column vector by a matrix from the left is a new column vector. It is
a linear combination (specified by the components of v ), of the columns of A

 | | . . |
c1 c2 . . cn
| | . . |



v1

v2

.

.
vn

 = v1

 |c1

|

+ v2

 |c2

|

+ · · · vn

 |cn
|

 (21)

• Row picture of multiplication of a row vector from right by a matrix xA . The result is a
linear combination of the rows of A , i.e. a new row vector.

(
x1 x2 . . xm

)


row1

row2

.

.
rowm

 = x1(row1) + x2(row2) + · · ·+ xm(rowm) (22)

3.3 Inverse of a square matrix, kernel or null space and rank

• A square matrix maps n-component column vectors in the domain to n-component column
vectors in the target. The inverse of A (when it exists) must go in the opposite direction.
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• The problem of inverting a matrix A is related to the problem of solving Ax = b and
expressing the answer as x = Lb . But for this to be the case, we need LA = I . This motivates
the definitions that follow.

• If A has a left inverse LA = I and a right inverse AR = I , then they must be the same by
associativity (we can move brackets around)

(LA)R = L(AR) ⇒ IR = LI ⇒ R = L = A−1 (23)

• An n×n square matrix is defined to be invertible if there is a matrix A−1 satisfying A−1A =
AA−1 = I . If not, A is called singular.

• In terms of maps, invertibility implies that A and A−1 must be 1-1. Moreover, the image of
A must be the domain of A−1 , and the image of A−1 must equal the domain of A .

• When the inverse exists, it is unique by associativity. Suppose A has two inverses B and C ,
then by definition of inverse,

AB = BA = I, CA = AC = I. (24)

Using associativity, (CA)B = C(AB) but this simplifies to B = C .

• A real number is a 1 × 1 matrix. It is invertible as long as it is not zero. Its inverse is the
reciprocal.

• A 2× 2 matrix A = (ab|cd) is invertible iff the determinant ad− bc 6= 0. Its inverse is

A−1 =

(
a b
c d

)−1

=
1

ad− bc

(
d −b
−c a

)
(25)

• A matrix is invertible iff An×n does not annihilate any non-zero vector. Vectors annihilated
by A are called its zero-modes and they form a vector space called its kernel ker(A) or null
space N(A).

• Indeed, if A is invertible, then Ax = 0 implies x = A−10 = 0, so A has a trivial kernel.

• For the converse note that if A has trivial kernel, then A is 1 − 1. Indeed, if A were not
1 − 1, then there would be distinct non-zero vectors x, y such that Ax = Ay or A(x − y) = 0
but then x− y would lie ker(A). On the other hand, if ker(A) is trivial, then the columns of A
are linearly independent1. So the image of A is the whole of the target space of n-component
vectors. So if A has trivial kernel, then A is both 1− 1 and onto and therefore invertible.

• The point about invertibility of A is that it guarantees unique solutions to the n×n systems
Ax = b and yA = c for any column n-vector b and any row n-vector c : x = A−1b and
y = cA−1 . But in practice inverting a matrix is not an efficient way of solving a particular
system of equations (i.e. for a specific b or c). Elimination is better.

• So square A is invertible iff the columns (or rows) of A are linearly independent.

• Example: Inverse of a diagonal matrix A = diag(λ1, · · · , λn) is again diagonal with entries
given by the reciprocals, A−1 = diag(λ−1

1 , · · · , λ−1
n ).

1Indeed Av = v1c1 +v2c2 + · · · vncn is a linear combination of the columns of A . So if the columns are linearly
independent, this vanishes only if vi ≡ 0.
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• Example of a singular matrix A =

(
1 1
0 0

)
. This matrix annihilates the vector x =

(
−1
1

)
.

It has a row of zeros. It has only one pivot. Its determinant vanishes. And finally, we can’t

solve Ax =

(
1
2

)
for instance. What are the only b′s for which we can solve Ax = b?

• A =

(
1 2
2 4

)
is also singular. The second row is twice the first. Check the other equivalent

properties.

• The inverse of an elimination matrix is easily found. Suppose A subtracts twice the first row
from the second row of a 2 × 2 matrix. Then its inverse must add twice the first row to the
second.

A =

(
1 0
−2 1

)
⇒ A−1 =

(
1 0
2 1

)
(26)

• Eg: A =

−1 2 0
3 −4 2
6 −3 9

 . This matrix has a non-trivial kernel. Notice that the third column

is twice the first added to the second. So any vector of the form c

 2
1
−1

 is annihilated by A .

So it is not invertible.

• The inverse of a product is the product of inverses in the reversed order, when they exist. To
see why, draw a picture of the maps.

(AB)−1 = B−1A−1 since B−1A−1AB = I (27)

• The sum of invertible matrices may not be invertible, e.g. I − I = 0 is not invertible.

• There is a formula for the inverse, A−1 = C(A)t/ detA . Here we assume familiarity with the
determinant and the matrix of cofactors C(A). The transpose is defined shortly.

• Remark: If A is an n×n matrix, we can express its inverse (when it exists) using its minimal
polynomial, which is a polynomial of minimal degree p(x) = p0 + p1x + · · · pkxk such that
p(A) = 0. A matrix is invertible iff p0 6= 0. In that case, A−1 = −p−1

0 (p1 + p2A+ · · · pnAn−1).
p(x) may have degree less than n and need not be the same as the characteristic polynomial,
though it is always a factor of the characteristic polynomial det(A− xI) = 0.

• The rank of a matrix is the number of linearly independent columns or rows. An invertible
n× n matrix has maximal rank n .

3.4 Transpose

• Transpose of an m× n matrix is the n×m matrix whose rows are the columns of A (in the
same order).

• In components, (At)ij = Aji

• Transpose of a column vector is a row vector.

• (At)t = A and (AB)t = BtAt and we also have (xtAy)t = ytAtx .
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• A square matrix which is its own transpose At = A is called symmetric. Real symmetric
matrices are a particularly nice class of matrices and appear in many physics and geometric
problems. They appear in quadratic forms defining the kinetic energy of a free particle or a
system of free particles. Real symmetric matrices behave a lot like real numbers.

• The operations of transposition and inversion commute (A−1)t = (At)−1 . Proof: Suppose A
is an invertible square matrix (i.e., has two-sided inverse AA−1 = A−1A = I ). Then At is also
invertible and (At)−1 = (A−1)t . To see this just take the transpose of A−1A = AA−1 = I to
get At(A−1)t = (A−1)tAt = I . But this is saying that (A−1)t is the inverse of At . In other
words (A−1)t = (At)−1 .

• The inverse of a symmetric invertible matrix At = A is again symmetric. Suppose B = A−1

AB = BA = I ⇒ BtAt = AtBt = I ⇒ BtA = ABt = I (28)

So Bt is also the inverse of A and by uniqueness of the inverse, Bt = B .

3.5 Trace of a square matrix

• The trace of a matrix is the sum of its diagonal entries in any basis tr A = Aii .
tr A is also the sum of its eigenvalues.

• The trace is cyclic: tr AB = tr BA , since tr AB = AijBji = BjiAij = tr AB . It follows
that tr ABC = tr CAB = tr BCA .

• We anticipate the basis independence of the trace under similarity transformations:
tr S−1AS = tr SS−1A = tr A . In particular the trace is invariant under orthogonal and
unitary transformations tr QtAQ = tr A , tr A = tr U †AU .

4 Inner product, norm and orthogonality

• The standard inner product (dot product) on Rn is x · y = (x, y) = xty =
∑
i xiyi . Here

we think of x, y as a column vectors, their inner product is a scalar (real number). The inner
product is symmetric (x, y) = (y, x) and linear in each entry: (ax, y) = a(x, y) and (x+ y, z) =
(x, z) + (y, z). A vector space with an inner product is also called a Hilbert space.

• The norm or length of a vector ||x|| is the square-root of its inner product with itself ||x|| =
(xtx)1/2 . Then norm is the usual Euclidean length of the vector since ||x||2 = xtx = x2

1 + x2
2 +

· · ·x2
n ≥ 0. The only vector with zero norm is the zero vector.

• Suppose x and y are a pair of vectors at right angles. The hypotenuse of the right triangle
formed by them has length ||x+ y|| , so ||x+ y||2 = ||x||2 + ||y||2 . The LHS-RHS must vanish,

||x+ y||2 − ||x||2 − ||y||2 = (x+ y)t(x+ y)− xtx− yty = xty + ytx = 2(x, y) = 0 (29)

So if a pair of vectors are orthogonal (i.e. at right angles), their inner product vanishes (x, y) = 0.
The converse is also true, a2 + b2 = c2 implies that a, b, c are the lengths of the sides of a right
triangle. This follows from the cosine formula in trigonometry: a2 + b2 − 2ab cos θ = c2 , where
a, b, c are the lengths of the sides of a triangle. So a pair of vectors are orthogonal iff their inner
product vanishes.
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• Cauchy-Schwarz Inequality: For a pair of n-vectors x, y , the Cauchy-Schwarz inequality is

|(x, y)|2 ≤ (x, x)(y, y) or |(x, y)| ≤ ||x|| ||y|| (30)

It says that the cosine of the angle between a pair of vectors is of magnitude ≤ 1:

cos θ =
(x, y)

||x|| ||y||
(31)

• The triangle inequality states that ||x+ y|| ≤ ||x||+ ||y|| . It says that the length of a side of a
triangle is always ≤ the sum of the lengths of the other two sides. Draw a picture of this. We
have equality precisely if x = λy (i.e. they are collinear).

• For complex vectors in Cn , the standard (hermitian) inner product is (z, w) = z̄tw = z†w ,
where z̄ denotes the complex conjugate vector.

• For a complex number z = x+ iy with real x, y , the complex conjugate z̄ = z∗ = x− iy . The
absolute value of a complex number is its length in the complex plane |z| =

√
|z̄z| =

√
x2 + y2 .

The notation z̄ is more common in the mathematics literature while z∗ is more common in
physics to denote the complex conjugate.

• The complex conjugate transpose, z† is called the (Hermitian) adjoint of the vector z . For
complex vectors, the hermitian adjoint plays the same role as the transpose does for real vectors.

• This is the appropriate inner product since it ensures that (z, z) = ||z||2 = z†z = |z1|2+· · · |zn|2
is real and non-negative and so its positive square-root (z†z)1/2 may be interpreted as the length
of the vector z .

• The hermitian inner product is not symmetric but satisfies (z, w)∗ = (w, z).

• A pair of vectors are orthogonal if their inner product vanishes z†w = 0.

• In the language of quantum mechanics, a vector is a possible state of a system and a (hermitian)
matrix is an observable. Expectation value of a matrix observable A in the state x is defined
as the complex number x†Ax/x†x .

4.1 Orthonormal bases

• A basis {qi}ni=1 for a vector (sub)space is orthogonal if the basis vectors are mutually orthog-
onal, qi ⊥ qj or qtiqj = 0 for i 6= j .

• In addition it is convenient to normalize the basis vectors to have unit length, ||qi|| = 1. Then
we say the basis qi is orthonormal or o.n.

• Example, the standard cartesian x − y basis is o.n. But so is any rotated version of it. The
columns of Q and Q′ below are both o.n. bases for R2

Q =

(
1 0
0 1

)
, Q′ =

(
cos θ sin θ
− sin θ cos θ

)
(32)

• The basis (1, 0, 0) and (0, 1, 0) is an orthonormal basis for the x− y plane contained in R3 .
In this case Q is a rectangular 3× 2 matrix,

Q =

 1 0
0 1
0 0

 (33)
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yet it satisfies QtQ = I2×2 . Note that QQt 6= I , in fact it is a projection matrix!

• But if Qn×n is a square matrix, then QtQ = I implies that Q has a left inverse. Does it
have a right inverse? Being a basis, we know that the columns of Q are linearly independent.
Being square, the rows must also be linearly independent as the rank is n . But if the rows are
linearly independent, it means the rows span the domain or equivalently, c = yQ has a unique
solution for any c . This means Q has a right inverse. By the equality of left and right inverses,
we conclude that Q−1 = Qt and that QQt = QtQ = I . Such a matrix is called an orthogonal
matrix.

4.2 Hilbert spaces and Dirac bra-ket notation

• A finite dimensional Hilbert space H is a finite dimensional vector space with an inner product
(u, v) that is linear in v and anti-linear in u satisfying

(u, v) = (v, u)∗ and (u, u) > 0, for u 6= 0 (34)

• We will work with the example Cn with the standard inner product (z, w) = z†w . Notice
that (z, w) = (w, z)∗ . Moreover, for scalars a, b , (az, w) = ā(z, w) while (z, bw) = b(z, w).
Finally, (z, w + u) = (z, w) + (z, u). These properties ensure linearity in the second entry and
anti-linearity in the first.

• Dirac notation: If we think of V = Cn as made of column vectors, we denote the column
vector v as the ket-vector |v〉 . The space of ket-vectors form the vector space V . Similarly
the n-component row vectors with complex entries are called the bra-vectors 〈v| . Moreover,
〈v| = |v〉† and 〈v|† = |v〉 are adjoints of each other. For example

|v〉 =

 1
i

−2i+ 3

 , 〈v| = |v〉† = ( 1 −i 2i+ 3 ) (35)

The space of bra-vectors form a so-called dual space V ∗ to V . V and V ∗ are isomorphic vector
spaces. Indeed any row vector 〈w| defines a linear function f〈w| on V , given by

f〈w|(|v〉) = 〈w|v〉 (36)

The dual space V ∗ is defined as the space of linear functions on V . 〈w|v〉 is called the pairing
between the dual spaces.

• If |v〉 =
∑
i vi|φi〉 is expressed as a linear combination of |φi〉 , then 〈v| = |v〉† =

∑
i〈φi|v∗ .

• If ei are a basis, v ∈ H a vector and A : H → H a linear transformation, then we can write
Aej =

∑
iAijei and v =

∑
j vjej and Av =

∑
j vjAej =

∑
ij vjAijei =

∑
ij(Aijvj)ei . In other

words (Av)i = Aijvj . Now let us assume that ei are an orthonormal basis, so 〈ei|ej〉 = δij .
Then we have

A|ej〉 = Aij |ei〉 ⇒ 〈ek|A|ej〉 =
∑
i

Aij〈ek|ei〉 =
∑
i

Aijδki = Akj (37)

We conclude that Aij = 〈ei|A|ej〉 in any orthonormal basis {ei} . Similarly, in an orthonormal
basis, |v〉 =

∑
i vi|ei〉 implies that vj = 〈ej |v〉 . Thus the components of a vector or a matrix are

easy to find in an o.n. basis using the inner product.
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• In a finite dimensional Hilbert space, we have seen that any vector can be decomposed in an
o.n. basis as |v〉 =

∑
i〈ei|v〉|ei〉 or rearranging, |v〉 =

∑
i |ei〉〈ei|v〉 . So we see that the linear

transformation
∑
i |ei〉〈ei| takes every vector to itself, in other words, it must be the identity

transformation, which is represented by the identity matrix in any basis. So∑
i

|ei〉〈ei| = I (38)

This is called the completeness relation or property. We see that it is the sum of outer products
of the orthonormal basis vectors eie

†
i = I . It says that the sum of the projections to the one-

dimensional subspaces spanned by the o.n. basis vectors ei is the identity. We say that ei are
a complete o.n. basis.

• For example,

(
1
0

)
,

(
0
1

)
form a complete o.n. basis for R2 . The completeness relation is

satisfied: (
1
0

)
( 1 0 ) +

(
0
1

)
( 0 1 ) =

(
1 0
0 1

)
(39)

• For a finite dimensional Hilbert space, every o.n. basis is complete. More generally, a sequence
of vectors ui ∈ H is complete if there is no non-zero vector in H that is orthogonal to all of
them.

• Similarly, for the bra-vectors, completeness of the o.n. basis ei allows us to write

〈v| =
∑
i

〈v|ei〉〈ei| =
∑
i

v∗i 〈ei| (40)

• Let us see some more uses of the completeness relation of an orthonormal basis

〈v|w〉 =
∑
i

〈v|ei〉〈ei|w〉 =
∑
i

v∗iwi (41)

We say that we have inserted the identity between 〈v| and |w〉 .
• 〈v|v〉 = ||v||2 =

∑
i〈v|ei〉〈ei|v〉 =

∑
i〈v|ei〉〈v|ei〉∗ =

∑
i |〈v|ei〉|2 . This expresses the norm2 of

v as the sum of the absolute squares of its components in a complete o.n. basis.

• Note that for brevity, sometimes the basis-kets are denoted |i〉 instead of |ei〉 .
• Recover the formula for matrix multiplication: (AB)ij = 〈i|AB|j〉 =

∑
k〈i|A|k〉〈k|B|j〉 =∑

k AikBkj . The completeness relation says I =
∑
i |i〉〈i| =

∑
i Pi where Pi = |i〉〈i| (no sum on

i) is the projection to the subspace spanned by |i〉 .
• PiPj = |i〉〈i|j〉〈j| = |i〉δij〈j| = δijPj (no sum on i or j ). This says for instance that
projections to orthogonal subspaces is zero P1P2 = 0 while P1P1 = P1 .

• A hermitian matrix H† = H is also called self-adjoint. (H†)ij = Hij can be written as
〈i|H†|j〉 = 〈i|H|j〉 . Now notice that 〈j|H|i〉∗ = 〈j|H|i〉† = 〈i|H†|j〉 . So the condition of
hermiticity can be expressed

〈i|H|j〉 = 〈j|H|i〉∗ (42)
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5 Consistency of Ax = b. Particular and general solutions

• Consider the system of inhomogeneous linear equations Ax = b for an n × n matrix A and
n-component column vector b . We have n equations in n unknowns (the components of the
column vector x). This is called an even determined system2. b is called the inhomogeneity or
source. If b = 0 the system is homogeneous. Though it is called an even determined system, it
may have zero, one or infinitely many solutions depending on the nature of A and b .

• First b and A must satisfy a compatibility condition, without which there are no solutions.
The condition simply states that b must lie in the image of A , i.e., b bust be a linear combination
of the columns of A . A more useful form of the condition is obtained by taking the transpose
of the equation xtAt = bt . Now taking the inner product with an arbitrary vector y we get
xtAty = bty = (b, y). Thus a necessary consistency condition is that bty must be zero whenever
y is annihilated by At . In other words, b must be orthogonal to the null space of At . Henceforth,
we suppose the compatibility condition b ·N(At) = 0 is satisfied.

• To find the nature of solutions to Ax = b we notice that if x and x′ are both solutions, then
A(x−x′) = 0. In other words two solutions differ by a solution of the homogeneous equation or
equivalently x− x′ must lie in the kernel N(A). Now suppose xp is one ‘particular’ solution of
Ax = b . Then the general solution is given by xp + xh where xh ∈ N(A) is any homogeneous
solution. Thus the solution space to Ax = b has dimension equal to that of the kernel of A .
An interesting special case is when N(A) is trivial, consisting only of the zero vector. In this
case A is invertible and we have a unique solution x = A−1b . Moreover, in this case At is
also invertible and N(At) is trivial so that the consistency condition b ·N(At) is automatically
satisfied.

• A particularly important special case is the homogeneous equation Ax = 0. x = 0 is always
a solution, the trivial solution. If A is invertible, then there are no non-trivial solutions. A
non-trivial solution exists iff detA 6= 0. In general, the solution space is just the kernel or null
space of A .

6 Operators on inner-product spaces

• An inner product space is a vector space V with an inner product (x, y) (which is a scalar,
real or complex) for x, y ∈ V . The inner product on a real vector space must be symmetric
[(x, y) = (y, x)] and bilinear [(ax+ by, z) = a(x, z) + b(y, z)]. For example, Rn with the stan-
dard dot product (x, y) = xty is an inner product space. Inner product spaces are also called
Hilbert spaces and are the arena for geometric discussions concerning lengths and angles as well
as for quantum dynamics.

• Suppose A : U → U is a linear transformation from the inner product space U to itself,
then we call A an operator on the inner product space U . This concept also applies to
A : U → V .

• Dirac Bra-Ket notation: Suppose ei are a basis for a vector space, say Rn . Think of
these as column vectors. Dirac’s notation for them is |ei〉 . Indeed any column vector x is
called a ket-vector, and may be written as a linear combination |x〉 =

∑n
i=1 xi|ei〉 . On the other

2More generally we could have m equations in n unknowns. In this case x is an n -component column vector,
A an m× n matrix and b an m -component column vector.

17



hand, the basis of row vectors eti are denoted 〈ei| . Any row vector y is a linear combination
〈y| =

∑
i yi〈ei| .

• Moreover, the inner product is written as (x, y) = 〈x|y〉 =
∑
i,j xiyj〈ei|ej〉 . If ei are an

orthonormal basis, then 〈ei|ej〉 = δij , and 〈x|y〉 =
∑
i xiyi .

• The matrix elements Aij of a linear transformation A : V → V in the basis ei is given by

Aij = etiAej = (ei, Aej) = 〈ei|A|ej〉 (43)

To see this note that Aej is the jth column of A and etiA is the ith row of A or equivalently,
the ith column of At . Combining these, etiAej is the entry in the ith row and jth column.
Alternatively, write ej in the e-basis as the column vector with zeros everywhere except for a
1 in the jth slot and similarly eti as the row vector with a 1 in the ith slot and zeros elsewhere
and perform the matrix multiplication.

• More generally, A could be rectangular. Suppose A : U → V , then the matrix element Aij
in the ej basis for U and fi basis for V is given by Aij = f tiAej = (fi, Aej) = 〈fi|A|ej〉 .

6.1 Orthogonal transformations

• A rotation of the plane about the origin is a linear transformation that preserves distances
and angles. A reflection about a line through the origin also preserves lengths and angles
of vectors. Orthogonal transformations generalize this concept to other dimensions. Recall
that the inner product is used to define lengths of vectors as well as angles between vectors.

• An orthogonal transformation on a real inner product space is one which preserves
the inner product, i.e. (u, v) = (Qu,Qv) for all u, v . It is called orthogonal because it
is represented by an orthogonal matrix, as we will see. Transformations that preserve inner
products are also called isometries.

• In particular, an orthogonal transformation u → Qu preserves the length of u : (u, u) =

||u||2 = (Qu,Qu) = ||Qu||2 and the angle between u and v : (u,v)
||u||||v|| = (Qu,Qv)

||Qu||||Qv|| . For the

standard inner product (u, v) = utv , we have utv = utQtQv . Since this is true for all u and
v , it follows that QtQ = I . In more detail, take u and v to be any orthonormal basis etiej = δij ,

then utv = utQtQv becomes etiQ
tQej = etiej = δij . This merely says that the matrix elements of QtQ ,

(QtQ)ij = etiQ
tQej are the same as the matrix elements of the unit matrix.

• So an orthogonal matrix is an n×n matrix that satisfies QtQ = I . In other words, the columns
of Q are orthonormal. So the left inverse of Q is Qt . But we showed earlier that if the columns
of Q are orthonormal, then the right inverse is also Qt . In other words QQt = QtQ = I . This
means the rows of Q are also orthonormal.

• The inverse and transpose of an orthogonal matrix are also orthogonal. Check that the product
of two orthogonal matrices is also orthogonal.

• The identity matrix and −I are obviously orthogonal. The reflection in the x axis in R2 is
orthogonal

Q =

(
1 0
0 −1

)
(44)
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• A 2 × 2 real matrix

(
a b
c d

)
is orthogonal provided the rows are orthonormal: a2 + b2 =

c2+d2 = 1 and ac+bd = 0. These conditions can be ‘solved’ in terms of trigonometric functions.
2× 2 orthogonal matrices are either rotations by θ

Q =

(
cos θ sin θ
− sin θ cos θ

)
(45)

or rotations by θ composed with a reflection (x, y)→ (x,−y)

Q =

(
cos θ sin θ
sin θ − cos θ

)
. (46)

• Permutation matrices are matrices obtained from permutations of the columns (rows) of the
identity matrix. But permuting the columns (rows) does not change the fact that the columns
(rows) of I are orthonormal. So permutation matrices are orthogonal

Q(132) =

 0 0 1
1 0 0
0 1 0

 . (47)

So the inverse of a permutation matrix is just its transpose Qt132Q132 = I .

6.2 Unitary transformations

• A unitary transformation preserves the inner product on a complex vector space
(z, w) = (Uz, Uw) for all z, w . For the standard hermitian inner product on Cn , (z, w) = z†w
this becomes z†w = (Uz, Uw) = z†U †Uw . Repeating the steps used for orthogonal matrices,
unitary matrices are those square matrices that satisfy

U †U = UU † = I (48)

Here the hermitian adjoint of any matrix or vector is the complex conjugate transposed: A† =
(At)∗ . Notice that (z,Aw) = z†Aw = (A†z)†w = (A†z, w) where we used (A†)† = A .

• For a general inner product space the adjoint A† of a matrix A is defined through its matrix
elements using the above relation (A†z, w) ≡ (z,Aw).

• We notice that the inverse of a unitary matrix U is its adjoint U † .

• All real orthogonal matrices are automatically unitary, since complex conjugation has no
effect.

• A 2×2 complex matrix

(
a b
c d

)
is unitary provided |a|2 + |b|2 = |c|2 + |d|2 = 1, ac̄+ bd̄ = 0.

• Define the matrix exponential as the matrix eAx =
∑∞
n=0

Anxn

n! . The sum is absolutely
convergent for any square matrix and defines eAx . We can use it to find more unitary matrices,
the exponential of any anti-hermitian matrix is unitary.

• Example: σ1 =

(
0 1
1 0

)
is the first Pauli matrix, it is hermitian. It turns out that U = eiσ1x

is a unitary matrix for any real x . To see this, use the formula for the matrix exponential to
show that U = eiσ1x = I cosx + iσ1 sinx . It follows that U † = I cosx − iσ1 sinx and that
U †U = UU † = I .
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6.3 Orthogonal projection and projection matrices

• Projections are an important class of matrices, not least because the density matrix of a
pure state of a quantum system is a projection matrix.

• Orthogonal projection onto a line through the origin: A line through the origin is just
a 1-d vector space spanned by a vector a . We seek to project a vector v onto the span of a .
Let us call the projection Pv = aξ , where ξ is a scalar, since Pv must be a multiple of a . Then
the orthogonality of the projection means that the difference between v and its projection Pv ,
i.e. the error vector e = v − Pv must be perpendicular to a

e ⊥ a ⇒ ate = 0⇒ at(v − Pv) = 0 ⇒ atv = ξata ⇒ ξ =
atv

ata
. (49)

• So Pv = aξ = aat

atav .

• Another way to find the projection Pav is to observe that Pv = ξa is the vector along a
that is closest to v . So ξ must be chosen so that the error vector e = v − Pv has minimal
length.

||e||2 = (v − ξa)t(v − ξa) = vtv − 2ξatv + ξ2ata⇒ ∂||e||2

∂ξ
= −2atv + 2ξata = 0⇒ ξ =

atv

ata
. (50)

• Projection map v 7→ Pv is a linear transformation, since it is linear in v . The matrix of the
projection onto the subspace spanned by a is

Pa =
aat

ata
or Pij =

aiaj∑
k akak

(51)

• The product of a column vector by a row vector with the same number n of components
is called the outer product, it is an n × n matrix. So Pa is the outer product of a with
itself divided by the inner product of a with itself. Notice that Paa = a . Also, if v ⊥ a
(vta = 0), then Pav = 0.

• It is easy to check that Pa satisfies the following two properties: it is symmetric P t = P
and squares to itself P 2 = P . We will see that more general projections also satisfy these
properties and they can be taken as the defining properties of projections. Caution: P t = P is
true only in orthonormal bases.

• Notice that I−Pa also satisfies these conditions. It is the projection onto the orthogonal
complement of a . Indeed, it is just the error vector (I − Pa)v = v − Pav , which we know to
be orthogonal to ~a .

• For example, the projection matrix onto the line spanned by the unit column vector a =
(1, 0, 0) is

Pa =

 1
0
0

( 1 0 0
)

=

 1 0 0
0 0 0
0 0 0

 (52)

Notice that tr Pa = 1 is its rank, Pa has one independent column or row. In general, the
trace of a projection is the dimension of the space to which it projects.
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• However, not all rank-1 matrices are projections. A rank-1 matrix can always be written
as an outer product A = uvt . Multiplying by columns we see that uvt is the matrix whose
columns are (v1u, v2u, · · · , vnu), so it has only one linearly independent column. Conversely,
any matrix with only one linearly independent column is of this form. Only if u, v point in the
same direction and have reciprocal lengths is the rank one matrix uvt a projection.

• Consider another example, projection onto a =

(
1
2

)

Pa =
1

5

(
1 2
2 4

)
, tr Pa = 1 (53)

• Since Pa = Pλa we see that Pa only depends on the subspace spanned by a .

• If a ⊥ b , i.e. bta = 0, then PaPb = PbPa = 0 as can be seen from the formula. Projections
to orthogonal directions commute.

• Projection to orthonormal basis vectors: A virtue of orthonormal bases is that it is very
easy to find the projection onto a basis vector in an orthonormal basis. If ~x =

∑
i xi~ei where ~ei

are an o.n. basis, then Peix = xi~ei (no sum on i) where xi = (x, ei) are the components. To
see this use the above formula and orthonormality ~eti~ej = δij

Peix =
eie

t
i

etiei
x = eie

t
ix = eixi (no sum on i) (54)

In particular, any vector can be expanded in an orthonormal basis ~ei as a =
∑
i Peia

6.4 Gram-Schmidt orthogonalization

• We have seen that orthonormal bases qTi qj = δij are very convenient, The components of any
vector in an orthonormal basis are just its inner products with the basis vectors

x = xiqi ⇒ xi = (qi, x) (55)

• So given any basis, it is useful to convert it into an orthonormal basis. This is what the Gram-
Schmidt procedure of successive orthogonalization does. It begins with linearly independent
vectors a1, a2 · · · an which may be regarded as the columns of A . From them, it produces an
orthonormal basis for the column space C(A), q1, q2, · · · qn .

• Suppose first that the ai are orthogonal but not necessarily of length 1. Then we can get an
orthonormal basis by defining qi = ai

||ai|| . So the key step is to get an orthogonal basis of vectors.

• To start with, let q1 = a1/||a1|| . The next vector is a2 , but it may not be orthogonal to a1 ,
so we subtract out its projection on a1 , and then normalize the result. We continue this way:

q̃1 = a1, q1 = q̃1/||q1||
q̃2 = a2 − Pq1a2, q2 = q̃2/||q2||
q̃3 = a3 − Pq1a3 − Pq2a3, q3 = q̃3/||q3||

...
q̃n = (1− Pq1 − Pq2 − · · · − Pqn−1)an−1, qn = q̃n/||qn||

(56)
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• By construction, for each r , qr is orthogonal to all the q ’s before it, and it is normalized.
So we have an orthonormal system of vectors which may be assembled as the columns of an
orthogonal matrix Q = (q1q2 · · · qn), QTQ = I

• But we also see the triangular character of the construction. a1 is along q1 , a2 is a combination
of q1 and q2 , ar is a combination of q1 · · · qr etc. But precisely which combinations? To find out,
we just reap the benefit of our construction. Since qi are an orthonormal basis, the components
of any vector in this basis are just the inner products:

a1 = (q1, a1)q1

a2 = (q1, a2)q1 + (q2, a2)q2

a2 = (q1, a3)q1 + (q2, a3)q2 + (q3, a3)q3
...

an = (q1, an)q1 + (q2, an)q2 + · · ·+ (qn, an)qn (57)

• In matrix form this is A = QR

( a1 a2 · · · an ) = ( q1 q2 · · · qn )


qT1 a1 qT1 a2 · · · qT1 an

0 qT2 a2 · · · qT2 an
0 0 · · · · · ·
0 0 · · · q2

nan

 (58)

• As an example, let us find the orthonormal basis arising from and the corresponding QR
decomposition

a1 =

 1
0
0

 , a2 =

 1
2
0

 , a3 =

 1
2
3

 (59)

In this case you can guess the answer easily.

• Apply the Gram-Schmidt procedure to the following basis for R3

a1 =

 1
−1
0

 , a2 =

 2
0
−2

 , a3 =

 3
−3
3

 (60)

• Use the QR decomposition to invert A .

• 2 dimensional example

a1 =

(
sin θ
cos θ

)
, a2 =

(
0
1

)
(61)

• Consider the vector space of real polynomials in one variable −1 ≤ x ≤ 1 with the inner
product (f, g)

∫ 1
−1 f(x)g(x)dx . A basis is given by the monomials 1, x, x2, x3 , . . . . However the

basis is not orthogonal or even normalized, for example (1, 1) = 2. Use the Gram-Schmidt pro-
cedure to convert it to an orthonormal basis. The corresponding polynomials are the Legendre
polynomials.
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6.5 Invariance of matrix equations under orthogonal/unitary and general linear changes
of basis

• Consider the matrix equation Ax = b . Since both x and b are vectors, they transform in the
same way under an orthogonal transformation, say x = Qx̄ and b = Qb̄ . Thus

AQx̄ = Qb̄ ⇒ QtAQx̄ = b̄ (62)

• Thus the equation takes the same form in the new reference frame if we let Ā = QtAQ . This
is the transformation rule for a matrix under an orthonormal change of basis.

• It follows that Ā + B̄ = Qt(A + B)Q and ĀB̄ = QtABQ . So any polynomial (algebraic
function) in matrices transforms in the same way as a single matrix.

F (Ā, B̄, · · · , P̄ ) = QtF (A,B, · · · , P )Q (63)

• So if we have an algebraic relation among matrices F (A,B, · · ·P ) = 0 then we have the same
algebraic relation among the orthogonally transformed matrices

F (Ā, B̄, · · · , P̄ ) = 0. (64)

• Thus we have the invariance of matrix equations under orthogonal transformations.

• Moreover, the inverse of an (invertible) matrix transforms in the same way Ā−1 = QtA−1Q .

• Furthermore, the transpose of a matrix transforms in the same way: Āt = QtAtQ . So any
algebraic matrix equation involving matrices, their inverses and their transposes is invariant
under orthogonal transformations.

• If we replace orthogonal by unitary and transpose by adjoint, all of the above continues to
hold. So a matrix that is hermitian in one o.n. frame is hermitian in every other o.n. basis for
Cn .

• While components of vectors and matrices generally transform as above, some special vectors
and matrices, have the same components in every o.n. frame. These are the zero vector and
multiples of the identity matrix.

• The angle between two vectors, length of a vector and inner product of a pair of vectors are
also invariant under orthogonal and unitary transformations as discussed earlier. The trace and
determinant of a matrix are also orthogonally and unitarily invariant, as discussed shortly.

• Algebraic equations in matrices (not involving the transpose) are also invariant under general
linear transformations Ā = S−1AS , where S is invertible but not necessarily orthogonal or
unitary. General linear transformations are also called similarity transformations.

7 Diagonalization of square matrices: eigenvalues and eigenvectors

• For an n × n matrix, the domain and target space are both Rn or both Cn and may be
identified. So x 7→ Ax transforms x ∈ Cn to another vector in Cn . The vectors that behave
in the simplest manner are those sent to a multiple of themselves. If Ax = λx then A does
not change the direction of x . The equation Ax = λx is called the eigenvalue problem for
A . A non-zero solution x is called an eigenvector corresponding to the eigenvalue or
characteristic value λ .
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• The subspace spanned by an eigenvector x is called an invariant subspace under
A . This is a particularly useful feature if we want to apply A again, for then A2x = λ2x ,
A3x = λ3x, · · · . An eigenvector does not ‘mix’ with other vectors under application of
A . This is very useful in solving time-evolution problems. Eg systems of differential equations
∂u
∂t = Au , where we need to apply A repeatedly to evolve u(t) forward in time.

• The scalars λ1, λ2, · · · , λn for which the eigenvalue problem can be solved non-trivially are
called the eigenvalues and the corresponding non-zero vectors x1, x2, · · ·xn are the eigenvec-
tors or principal axes. The zero vector x = 0 is not considered an eigenvector of any matrix,
since it trivially solves Ax = λx for any λ .

• Eigen-vector is a German word meaning own-vector, the eigenvectors of a matrix A are
characteristic or special vectors associated to A , they are like its private property.

• Note that if x is an eigenvector of A with eigenvalue λ , Ax = λx , then so is any non-zero
multiple, A(cx) = λ(cx). So eigenvectors are defined up to an arbitrary normalization
(scale) factor. Often, it is convenient to normalize eigenvectors to have length one, ||x|| = 1.

• Consider Ax = λx which is the homogeneous system (A − λI)x = 0. We know that a
non-trivial solution (eigenvector) exists iff det(A− λI) = 0.

• So the eigenvalues λi are precisely the solutions of det(A− λI) = 0.

det(A− λI) = det


a11 − λ a12 · · · a1n

a21 a22 − λ α23 · · ·
...

...
...

...
an1 an2 · · · ann−λ

 = 0 (65)

• This is an nth order polynomial equation in λ . It is called the characteristic equation.

• For example, the characteristic equation of the real symmetric matrix A =

(
1 2
2 4

)
is

det

(
1− λ 2

2 4− λ

)
= (1− λ)(4− λ)− 4 = λ2 − 5λ = λ(λ− 5) = 0 (66)

The eigenvalues are λ = 0, 5 and the corresponding eigenvectors are

(
2
−1

)
and

(
1
2

)
. Notice

that the eigenvalues are real, we will see that had to be the case because A is symmetric. The
determinant is 1× 4− 2× 2 = 0 which is the same as the product of eigenvalues, 5× 0. Notice
that the trace is 1 + 4 = 5 which is the same as the sum of eigenvalues.

• The characteristic polynomial det(A− λI) has n complex roots. These roots λ1, λ2, · · · , λn
are the n eigenvalues of an n× n matrix. Generically, they are distinct. But it may happen
that some of the eigenvalues coincide. Repeated roots should be counted with (algebraic)
multiplicity.

• So the characteristic polynomial may be written as

det(A− λI) = (λ1 − λ)(λ2 − λ) · · · (λn − λ) (67)

• Actually, it is convenient to multiply by (−1)n so that the polynomial is monic, i.e. coefficient
of λn is 1. Expanding out the product, the characteristic equation may be written as

(−1)n det(A− λI) = λn + cn−1λ
n−1 + cn−2λ

n−2 + · · · c1λ+ c0 = 0 (68)
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• Setting λ = 0 we see that the constant term is the determinant upto a possible sign and
this may also be identified with the product of eigenvalues

(−1)n detA = c0; detA = λ1λ2 · · ·λn (69)

• Moreover −cn−1 , the coefficient of −λn−1 is the sum of the eigenvalues λ1 +λ2 + · · ·+λn .
It turns out that this is the trace of A .

• The eigenvalues of At are the same as the eigenvalues of A . This is because det(At − λI) =
det(A− λI). So A and At have the same characteristic polynomial.

• To any given eigenvalue λ1 , there is a solution to the eigenvalue problem A~u1 = λ1~u1 , giving

the eigenvector ~u1 =


x1

x2
...
xn

 . In summary,

eigenvalues : λ1, λ2, · · · , λn
eigenvectors : ~u1, ~u2, · · · , ~un (70)

• For example, for the 3×3 identity matrix, the roots of the characteristic equation (λ−1)3 = 0
are λ = 1, 1, 1, and we would say that 1 is an eigenvalue with (algebraic) multiplicity three. We
also say that 1 is an eigenvalue with degeneracy 3. If eigenvalue λ has multiplicity 1 we say it
is a non-degenerate eigenvalue.

• The identity matrix In×n , satisfies Ix = x for every vector. So every non-zero vector is
an eigenvector. The characteristic equation is (λ − 1)n = 0, so the only eigenvalue is 1, with
an algebraic multiplicity n . Moreover, since every non-zero vector is an eigenvector, there are
n-linearly independent eigenvectors corresponding the the eigenvalue 1.

• The space spanned by the eigenvectors corresponding to eigenvalue λ is called the
λ-eigenspace of A . This is because it is closed under linear combinations and forms a vector
space Ax = λx,Ay = λy ⇒ A(cx+ dy) = λ(cx+ dy).

• For the identity matrix In×n , the 1-eigenspace is the whole of Rn .

• The dimension of the λ-eigenspace is called the geometric multiplicity of eigenvalue
λ . It is always ≤ algebraic multiplicity. For the identity matrix, the algebraic and geometric
multiplicities of eigenvalue 1 are both equal to n .

• A matrix is deficient if the geometric multiplicity of some eigenvalue is strictly less
than its algebraic multiplicity. This means it is lacking in eigenvectors. Analysis of
such matrices is more involved. Fortunately, the matrices we encounter often in basic physics
((anti)symmetric, orthogonal, (anti)hermitian and unitary) are not deficient.

• The eigenvectors of non-deficient n× n matrices span the whole n-dimensional vector space.

• An example of a deficient matrix is

N =

(
0 1
0 0

)
⇒ det(N − λI) = λ2 = 0 ⇒ λ1 = 0, λ2 = 0 (71)

The eigenvectors are then the non-trivial solutions of

(
0 1
0 0

)(
x1

x2

)
= 0. So there is only one
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independent eigenvector

(
1
0

)
. So the 0-eigenspace is 1-dimensional, though the eigenvalue 0

has algebraic multiplicity two. In this case, the eigenvectors do not span the whole of R2 .

• On the other hand, the eigenvectors corresponding to a pair of distinct eigenvalues
are always linearly independent.

• Proof: So we are given Ax = λx and Ay = µy , with λ 6= µ and eigenvectors x, y 6= 0.
Now suppose x, y were linearly dependent, i.e. cx + dy = 0 with c, d 6= 0. We will arrive at a
contradiction. Applying A ,

cAx+ dAy = 0 ⇒ cλx+ dµy = 0 ⇒ λ(cx+ dy) + (µ− λ)dy = 0 ⇒ (µ− λ)dy = 0 (72)

But µ 6= λ and d 6= 0, so y = 0, which contradicts the fact that y is a non-zero vector. So
we conclude that eigenvectors corresponding to a pair of distinct eigenvalues are always linearly
independent.

• This can be extended to any number of distinct eigenvalues: Eigenvectors corresponding
to a set of distinct eigenvalues are linearly independent. One can prove this inductively.

• It follows that if an n × n matrix has n distinct eigenvalues, then the corresponding n
eigenvectors are linearly independent and span the whole vector space. So matrices
with n distinct eigenvalues are not deficient.

• When eigenvalues coincide, their corresponding eigenvectors may remain inde-
pendent or become collinear. Deficiencies arise in the latter case.

7.1 More examples of eigenvalues and eigenvectors

• The zero matrix 0n×n annihilates all vectors 0x = x , so every non-zero vector is an eigenvector
with eigenvalue 0. The characteristic equation is λn = 0, so 0 is an eigenvalue with multiplicity
n .

• Consider the diagonal matrix D = diag(λ1, λ2, · · · , λn). Let us take n = 3 for definiteness.
The eigenvalue equation becomes λ1x1

λ2x2

λ3x3

 = λ

x1

x2

x3

 . (73)

The solutions are λ = λ1 with x2 = x3 = 0 and x1 arbitrary (in particular we could take
x1 = 1 to get an eigenvector of length 1) and similarly two more. So the eigenvectors can be

taken as

 1
0
0

 with eigenvalue λ1 ,

 0
1
0

 with eigenvalue λ2 and finally

 0
0
1

 with eigenvalue

λ3 . Notice that the normalized eigenvectors are just the columns of the identity matrix. The
characteristic equation is (λ− λ1)(λ− λ2)(λ− λ3) = 0. So the eigenvalues of a diagonal matrix
are just its diagonal entries, and the eigenvectors are the corresponding columns of the identity
matrix. The determinant is just the product of the diagonal elements.

• The eigenvalues are not always real, consider the rotation matrix

A =

(
cos θ sin θ
− sin θ cos θ

)
, det(A− λI) = det

(
cos θ − λ sin θ
− sin θ cos θ − λ

)
= λ2 − 2λ cos θ + 1 = 0 (74)
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The roots of the characteristic polynomial are λ = cos θ ± i sin θ = e±iθ , which are generally
complex, but lie on the unit circle.

• The set of eigenvalues is called the spectrum of the matrix. It is a subset of the
complex plane.

• Consider the projection from R3 to the sub-space spanned by the vector a =

 1
0
0

 , i.e.

to the x-axis. Pa = aat =

 1 0 0
0 0 0
0 0 0

 . Geometrically, Px = x for precisely those vectors

along the x-axis. So a is itself a normalized eigenvector with eigenvalue 1. The 1-eigenspace
of P is one-dimensional. Only vectors v orthogonal to the x-axis are annihilated Pv = 0. So
non-zero vectors in the y -z plane are the eigenvectors with eigenvalue 0. So the 0-eigenspace
of A consists of all vectors orthogonal to a . Of course, Pa is a diagonal matrix, so we could
have read off its eigenvalues: {1, 0, 0} .
• The characteristic equation for PA is det(P − λI) = 0, or λ2(λ− 1) = λ(λ2 − λ) = 0. Recall
that for a projection matrix, P 2 = P . So we make the curious observation that P satisfies its
own characteristic equation P (P 2 − P ) = 0.

7.2 Cayley Hamilton Theorem

• One of the most remarkable facts about matrices is that every matrix satisfies its own
characteristic equation. This is the Cayley-Hamilton theorem.

• Let us first check this in the above example A =

(
1 2
2 4

)
. The characteristic equation is

λ2 − 5λ = 0. The Cayley-Hamilton theorem says that A2 − 5A = 0. It is easy to check that

A2 =

(
5 10
10 20

)
= 5A .

• Any matrix An×n satisfies its own characteristic equation

(A− λ1)(A− λ2) · · · (A− λn) ≡ 0 (75)

• Proof of the Cayley-Hamilton theorem. We will indicate the proof only for non-deficient
matrices, i.e., those whose eigenvectors span the whole n-dimensional space. This is the case
for matrices with n distinct eigenvalues.

• Essentially, we will show that every vector is annihilated by the matrix given by the
characteristic polynomial P (A) = (A − λ1)(A − λ2) · · · (A − λn). It will follow that P (A)
is the zero matrix. Now (A − λ1) annihilates the first eigenvector x1 , (A − λ1)x1 = 0. Now
consider (A−λ2)(A−λ1), this matrix annihilates any linear combination of the eigenvectors x1

and x2 since the first factor annihilates x2 and the second annihilates x1 (the various factors
commute). Continuing this way

P (A)(a1x1 + a2x2 + · · ·+ annn) = 0 (76)

But for a non-deficient matrix, the eigenvectors span the whole space, so P (A) annihilates every
vector and must be the zero matrix.
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• The Cayley-Hamilton theorem states that a matrix satisfies an nth order polynomial equation

An + cn−1A
n−1 + cn−2A

n−2 + · · ·+ c1A+ c0 = 0 (77)

In other words, we can express An in terms of lower powers of A . Similarly any power Ak with
k ≥ n , can be reduced to a linear combination of I, A,A2, · · · , An−1

• Returning to the example A =

(
1 2
2 4

)
, let us use the Cayley-Hamilton theorem to calculate

A20 . Here the characteristic equation satisfied by A reads A2 = 5A . This implies A3 = 5A2 =
52A , A4 = 52A2 = 53A , An = 5n−1A for n ≥ 2. Thus we have without having multiplied 20
matrices,

A20 = 519A = 519
(

1 2
2 4

)
. (78)

7.3 Diagonalization of matrices with n distinct eigenvalues

• If An×n is not deficient (as when it has n distinct eigenvalues), by a suitable
invertible change of basis, we can bring it to diagonal form Λ with the diagonal
entries of Λ given by the eigenvalues.

A = SΛS−1 or S−1AS = Λ. (79)

This process is called the diagonalization of the matrix. The invertible change of basis is
called a general linear or similarity transformation S . If A is symmetric or hermitian,
it turns out that the change of basis can be chosen to be an orthogonal or unitary
transformation.

• It is important to emphasize that the resulting diagonal matrix of eigenvalues Λ is in general
different from the diagonal matrix D that might be obtainable through row elimination in the
case when A has n (non-zero) pivots. The pivots are in general different from the eigenvalues.
Row elimination involves left multiplication of A by elementary matrices while diagonalization
involves left and right multiplication of A by S−1 and S .

• We can collect the n eigenvalues of A in the diagonal matrix

Λ =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
...

...
0 0 · · · λn

 . (80)

• And collect the corresponding n eigenvectors xi satisfying Axi = λixi as the columns of a
matrix S

S =

 | | · · · |
x1 x2 · · · xn
| | · · · |

 . (81)

Then notice that multiplying by columns

AS = (Ax1 Ax2 · · · Axn ) , and SΛ = (λ1x1 λ2x2 · · · λnxn ) . (82)
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Then the n solutions of the eigenvalue problem may be summarized as

AS = SΛ. (83)

Similarly we can consider the left eigenvalue problem for A , ytA = µyt with row eigenvectors
yt . But taking the transpose, this is just the eigenvalue problem for the transpose Aty = µy .

• But we know that the eigenvalues of At are the same as those of A , so we can write Atyi = λiyi
for the n eigenvectors of At . The eigenvectors of A and At are in general different, but we
will see that they are related. Let us collect the eigenvectors of At as the columns of a matrix
T = ( y1 y2 · · · yn ). Then

At T = TΛ and AS = SΛ. (84)

Taking the transpose of these, we can calculate T tAS in two different ways to get

T tAS = ΛT tS and T tAS = T tSΛ. (85)

Now let W = T tS , then combining, we conclude that W commutes with Λ

ΛW = WΛ (86)

In other words, 
0 (λ1 − λ2)w12 · · · (λ1 − λn)w1n

(λ2 − λ1)w21 0 · · · (λ2 − λn)w2n
...

...
...

...
(λn − λ1)wn1 (λn − λ2)wn2 · · · 0

 = 0 (87)

Now since the λ ’s are distinct, we must have wij = 0 for i 6= j . Thus W = T tS is the diagonal
matrix

W =


w11 0 · · · 0
0 w22 · · · 0
...

...
...

...
0 0 · · · wnn

 (88)

But W = T tS is merely the matrix of dot products of the eigenvectors of At and A , wij = ytixj .
So we have shown that the left and right eigenvectors of A corresponding to distinct
eigenvalues are orthogonal! We say that the xi and yj are in a biorthogonal relation to
eachother.

• But the normalization of the eigenvectors was arbitrary. By rescaling the xi 7→ xi
wii

we can
make W the identity matrix.

W = T tS = I, ytixj = δij (89)

Now we showed earlier that if A has distinct eigenvalues, its eigenvectors form a linearly in-
dependent set. So the columns of S are linearly independent and it is invertible. The same
holds for T . So with this normalization, we find that T t = S−1 . Putting this in the formula for
T tAS = we get

S−1AS = Λ or A = SΛS−1 (90)
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In other words, A may be diagonalized by the general linear transformation (similarity transfor-
mation) given by the invertible matrix S whose columns are the (appropriately normalized)
eigenvectors of A !

• Now suppose At = A is a symmetric matrix. Then there is no difference between left and
right eigenvectors and S = T . But since T tS = I , we must have StS = I i.e., S is an
orthogonal matrix. In other words, a symmetric matrix may be diagonalized by an orthogonal
transformation. But the columns of an orthogonal matrix are orthonormal, so we conclude that
the eigenvectors of a symmetric matrix may be chosen orthonormal. (Actually we have
only proved this if the eigenvalues are distinct, though the result is true even if the symmetric
matrix has repeated eigenvalues)

• Similarly, a hermitian matrix H may be diagonalized by a unitary transformation U whose
columns are the eigenvectors of H . Moreover the eigenvectors are orthogonal and may be taken
orthonormal by rescaling them

H = UΛU †, with U †U = I (91)

• More generally, a normal matrix is one that commutes with its adjoint, A†A = AA†

or [A†, A] = 0. Essentially the same proof as above can be used to show these two statements:
If the eigenvectors of a matrix A with distinct eigenvalues are orthogonal, then A is a normal
matrix. Conversely, the eigenvectors of a normal matrix with distinct eigenvalues may be taken
orthonormal. In fact, more is true A may be diagonalized by a unitary transformation iff
A is normal. Examples of normal matrices include but are not restricted to (anti)-symmetric,
orthogonal, (anti)-hermitian and unitary matrices.

• A matrix A is diagonalizable if there is a basis where it is diagonal. In other words, it may
be diagonalized by some similarity transformation S , i.e. S−1AS = Λ, where Λ is the
diagonal matrix with eigenvalues for the diagonal entries. The columns of S are then n linearly
independent eigenvectors.

• If a matrix is diagonalizable, the basis in which it is diagonal is called the eigen-basis.
The eigenbasis consists of n linearly independent eigenvectors. We have shown above that every
matrix with n distinct eigenvalues is diagonalizable.

• Every hermitian or symmetric matrix is diagonalizable. For example σ2 =

(
0 −i
i 0

)
is diagonalizable. Find its eigenvalues and eigenvectors and the unitary transformation that
diagonalizes it.

• Deficient matrices are not diagonalizable. Proof: Suppose a deficient matrix N were
diagonalizable, S−1NS = Λ. Then the columns of S would be n linearly independent eigen-
vectors of N . But a deficient matrix does not possess n linearly independent eigenvectors!
Contradiction.

• Eg: The matrix N =

(
0 1
0 0

)
is not diagonalizable. 0 is an eigenvalue with algebraic

multiplicity 2 but geometric multiplicity one. N has only one eigenvector.

• Simultaneous diagonalizability: A pair of matrices A,B : V → V are said to be si-
multaneously diagonalizable if the same similarity transformation S diagonalizes them
both i.e. S−1AS = ΛA and S−1BS = ΛB . Here ΛA and ΛB are the diagonal matrices with
eigenvalues of A and B along the diagonal respectively. Now the invertible matrix S contains
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the eigenvectors of A and B , so A and B share the same eigenvectors (though they may
have different eigenvalues). Since S is invertible, the eigenvectors span the whole vector space
V .

• If A and B are simultaneously diagonalizable, then they commute. S−1AS = ΛA and
S−1BS = ΛB . Now [ΛA,ΛB] = 0 as can be checked using the fact that they are diagonal. By
the invariance of matrix equations under similarity transformations we conclude that [A,B] = 0.
If they commute in one basis, they commute in any other basis.

• Sufficient criterion for simultaneous diagonalizability. Suppose A has n distinct eigenvalues
and that a matrix B commutes with A , [A,B] = 0. Then B and A are simultaneously
diagonalizable.

• Proof: Suppose x is an eigenvector of A with eigenvalue λ , Ax = λx . Then we will show that
x is also an eigenvector of B . Consider λBx , which can be written as λBx = BAx = ABx .
So A(Bx) = λ(Bx). x was already an eigenvector of A with eigenvalue λ . Now we found
that Bx is also an eigenvector of A with eigenvalue λ . Since A has distinct eigenvalues, its
eigenspaces are one dimensional and therefore Bx must be a multiple of x , i.e., Bx = µx . So
we have shown that any eigenvector of A is also an eigenvector of B . Since the eigenvectors of
A span the whole vector space we conclude that A and B have common eigenvectors and are
simultaneously diagonalizable.

• Remark: We can replace the assumption that A have n distinct eigenvalues with some other
hypotheses. For example we could assume that A and B both be hermitian and commuting.
Then it is still true that they are simultaneously diagonalizable.

• Eg: Pauli matrices do not commute and they are not simultaneously diagonaliz-

able. For example [σ2, σ3] = iσ1 with σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. Check that the unitary

transformation that makes σ2 diagonal forces σ3 to become non-diagonal.

• Suppose A is invertible (in particular 0 is not an eigenvalue of A). Then eigenvalues of A−1

are the reciprocals of the eigenvalues of A . This is why:

Ax = λx ⇒ A−1Ax = λA−1x ⇒ A−1x =
1

λ
x (92)

In fact, this shows that the eigenvector corresponding to the eigenvalue 1
λ of A−1 is the same as

the eigenvector x of A corresponding to the eigenvalue λ . They have the same corresponding
eigenvectors. In particular, if A was diagonalizable, then A−1 is diagonalizable simultaneously.

• Caution: An invertible matrix may not be diagonalizable. For example N =

(
1 1
0 1

)
is invertible but not diagonalizable. It has only one linearly independent eigenvector,

(
1
0

)
corresponding to the twice repeated eigenvalue λ = 1. λ = 1 has algebraic multiplicity two but
geometric multiplicity only one. N is deficient. There is no basis in which N is diagonal.

7.4 Quadratic surfaces and principle axis transformation

• There is a geometric interpretation of the diagonalization of a symmetric matrix. It
is called the principal axis transformation.
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• In analytic geometry, the equation for an ellipse on the plane is usually given as

x2

a2
+
y2

b2
= 1 (93)

In this form, the major and minor axes are along the cartesian coordinate axes. Similarly, the
equation of an ellipsoid embedded in 3d Euclidean space is often given as

x2

a2
+
y2

b2
+
z2

c2
= 1 (94)

Since it is defined by a quadratic equation, the ellipsoid is called a quadratic surface. The lhs
involves terms that are purely quadratic in the variables. Such an expression (lhs) is called a
quadratic form.

• More generally, an ellipsoid in n-D space with axes along the cartesian coordinate axes is

λ1x
2
1 + λ2x

2
2 + · · ·+ λnx

2
n = 1 (95)

This can be regarded as a matrix equation xtΛx = I for the column vector x = (x1, x2, · · · , xn)t

and diagonal matrix Λ = diag(λ1, λ2, · · · , λn). xtΛx is called the quadratic form associated
to Λ.

• However, often we are confronted with quadratic surfaces that are not aligned with the coor-
dinate axes, but are in an arbitrarily rotated position. The equation for such a surface is again
quadratic but with cross-terms of the form xixj . For example

ax2 + by2 + cxy + dyx = 1 (96)

But since xy = yx , only c+ d contributes, so we could have taken the coefficients of xy and yx
to both equal c+d

2 . More generally we have a quadratic equation

xiAijxj = 1 or xtAx = 1 (97)

where we may assume that Aij = Aji is a real symmetric matrix.

• At each point P on the surface we have a normal direction to the surface, one that is
normal (perpendicular) to the tangential plane to the surface through P .

• There is also the radius vector (‘position vector’ from the origin) x of the point P . In
general, the position vector and normal do not point along the same direction.

• The principal axes are defined as those radius vectors which point along the normal.

• In general, the normal to the surface at x points along Ax . To see this we first observe
that if x lies on the surface, then a neighboring vector x + δx also lies approximately on the
surface if (x+δx)tA(x+δx) = 1 up to terms quadratic in δx . In other words, xtAδx+δxtAx = 0,
or δxtAx = 0 as A is symmetric. Such δx are the tangent vectors to the surface at x . But this
is just the statement that δx must be normal to Ax . So the normal vector must be along Ax .

• So the condition for x to be a principal axis is that it must be proportional to the
normal Ax , or Ax = λx , which is just the eigenvalue equation.

• Moreover, the eigenvalue has a geometric interpretation. Suppose x is a principal axis
of A through P . Then xtAx = λxtx = 1 So xtx = 1

λ . But xtx is the square of the length of
the position vector. So 1

λ is the square of the length of the semi-axis through P .
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• Since A is symmetric, from the last section, we know that its eigenvectors are orthogonal. In
other words, the principal axes are orthogonal. However, the principal axes may not point along
the original cartesian coordinate axes. But if we take our new coordinate axes to point along
the principal axes, then A is diagonal in this new basis. More precisely, A is diagonalized by
an orthogonal transformation

QtAQ = Λ (98)

where the columns of Q are the eigenvectors, QtQ = I and Λ is the diagonal matrix of eigen-
values. So if we let y = Qtx then the equation of the surface xtAx = 1 becomes xtQΛQtx = 1
or simply ytΛy .

• In this geometric interpretation, we have implicitly assumed that the eigenvalues are real and
that the eigenvectors are real vectors (for a real symmetric matrix). This is indeed true, as we
will show in the next section.

• Finally, we point out the geometric meaning of coincidence of eigenvalues. Suppose n = 2,
and suppose we have transformed to the principal axes. Then we have an ellipse λ1x

2 +λ2y
2 = 1

whose principal axes are along the x and y axes. Now if the eigenvalues gradually approach
each other, λ1, λ2 → λ the ellipse turns into a circle. At the same time the diagonal matrix

Λ =

(
λ1 0
0 λ2

)
tends to the multiple of the identity Λ →

(
λ 0
0 λ

)
. But every vector is an

eigenvector of λI . In particular, we are free to pick any pair of orthogonal vectors and call them
the principal axes of the circle.

• So when eigenvalues of a symmetric matrix coincide, the matrix does not become
deficient in eigenvectors. It still possesses a system of n orthogonal eigenvectors, but some of
them are no longer uniquely determined.

7.5 Spectrum of symmetric or hermitian matrices

• A real symmetric matrix is a real matrix A : Rn → Rn which equals its transpose A = At . A
hermitian matrix is a complex matrix H : Cn → Cn whose transpose is its complex conjugate:
(Ht)∗ = H , also written as H† = H . A special case is a real symmetric matrix. So every real

symmetric matrix is also hermitian. Examples: The Pauli matrix σ2 =

(
0 −i
i 0

)
is hermitian

but not symmetric. The Pauli matrix σ1 =

(
0 1
1 0

)
is hermitian and symmetric.

• The diagonal matrix elements of H in any basis are real. In other words, let z ∈ Cn
be any vector, then (z,Hz) = z†Hz ∈ R . To see this, take the complex conjugate of ztHz ,
which is the same as the hermitian adjoint of the 1× 1 matrix z†Hz ,

(z†Hz)∗ = (z†Hz)† = z†H†z = z†Hz. (99)

So z†Hz is a number that equals its own complex conjugate, it must be real! In quantum
mechanics (QM), (z,Hz)/(z, z) is called the normalized expectation value of H in the
state z .

• Eg: The 3D representation of angular momentum matrices in QM are these hermitian matrices

Lx =
1

2

(
0
√

2 0√
2 0

√
2

0
√

2 0

)
; Ly =

1

2i

(
0

√
2 0

−
√

2 0
√

2
0 −

√
2 0

)
; Lz =

(
1 0 0
0 0 0
0 0 −1

)
(100)
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• The eigenvalues of a hermitian matrix are real. Suppose z is an eigenvector with
eigenvalue λ , i.e., Hz = λz . Taking the inner product with z ,

(z,Hz) = z†Hz = z†λz = λ||z||2 ⇒ λ =
(z,Hz)

||z||2
(101)

z†z = |z1|2 + · · · |zn|2 is real. Being the ratio of two real quantities, the eigenvalue λ is real.

• Example: Check that the eigenvalues of σ2 are real.

• Eigenvectors of a hermitian matrix corresponding to distinct eigenvalues are or-
thogonal. Proof: Suppose z, w are two eigenvectors, Hz = λz and Hw = µw , with eigenvalues
λ 6= µ , which are necessarily real. Then w†Hz = λw†z and z†Hw = µz†w . But the lhs are
complex conjugates of each other, (w†Hz)∗ = (w†Hz)† = z†Hw . So λw†z = (µz†w)∗ . Or we
have w†z(λ− µ) = 0. By distinctness, λ 6= µ , so w†z = 0 and w, z are orthogonal.

• Find the eigenvectors of σ2 and show they are orthogonal.

• More generally, even if H has a repeated eigenvalue, we can still choose an orthogonal basis for
the degenerate eigenspace so that eigenvectors of a hermitian matrix can be chosen orthogonal.

• Eigenvectors of a real symmetric matrix may be chosen real. This is important for
the geometric interpretation of the eigenvectors as principal axes of an ellipsoid. We will assume
that the eigenvalues are distinct. Proof: We are given a real (A∗ = A) symmetric matrix,
so its eigenvalues are real. Suppose z is a possibly complex eigenvector corresponding to the
eigenvalue λ = λ∗ , i.e., Az = λz . Taking the complex conjugate, A∗z∗ = λ∗z∗ or Az∗ = λz∗ ,
so z∗ is also an eigenvector with the same eigenvalue. So x = z + z∗ is a real eigenvector with
eigenvalue λ . So for every eigenvalue we have a real eigenvector. [The eigenspaces of A are
1-dimensional since we have n distinct eigenvalues and the corresponding eigenvectors must be
orthogonal. So z and z∗ are (possibly complex) scalar multiples of x .]

• Exercise: Check that if H is hermitian, iH is anti-hermitian.

7.6 Spectrum of orthogonal and unitary matrices

• Orthogonal matrices are those real matrices that satisfy QtQ = QQt = I . The columns
(and rows) of an orthogonal matrix are orthonormal. Unitary matrices are complex matrices
satisfying U †U = 1. If a unitary matrix happens to be real, then it is necessarily orthogonal.
The columns (and rows) of a unitary matrix are orthonormal.

• A rather simple example of an orthogonal matrix is a reflection in the x axis, Q =

(
1 0
0 −1

)
.

This happens to be diagonal. so the eigenvalues are +1 and −1, and the corresponding eigen-
vectors are the columns of the 2× 2 identity matrix. Another example of an orthogonal matrix
is the rotation matrix

A =

(
cos θ sin θ
− sin θ cos θ

)
,det(A− λI) = det

(
cos θ − λ sin θ
− sin θ cos θ − λ

)
= λ2 − 2λ cos θ + 1 = 0(102)

The roots of the characteristic polynomial are λ = cos θ ± i sin θ = e±iθ , which are generally
complex, but lie on the unit circle.

• Eigenvalues of orthogonal and unitary matrices lie on the unit circle in the complex
plane. This follows from the fact that orthogonal QtQ = I and unitary U †U = I matrices
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are isometries. They preserve the lengths of vectors: ||Qx|| = ||x|| and ||Ux|| = ||x|| . So if we
consider an eigenvector Qv = λv , we have ||λv|| = ||v|| or |λ| ||v|| = ||v|| , which implies |λ| = 1.
The same works for unitary matrices.

• To see that orthogonal transformations are isometries, consider ||Qx||2 = (Qx)tQx = xtQtQx =
xtx = ||x||2 since QtQ = I . Taking the positive square root, ||Qx|| = ||x|| for all vectors x .

• Eigenvectors of unitary matrices corresponding to distinct eigenvalues are orthog-
onal.

• Proof: Suppose z, w are eigenvectors corresponding to distinct eigenvalues λ 6= µ , Uz = λz
and Uw = µw . Then we want to show that z†w = 0. So take the adjoint of the first equation
z†U † = λ∗z† and multiply it with the second and use U †U = I

z†U †Uw = λ∗µz†w or (1− λ∗µ)z†w = 0 (103)

But since λ∗λ = 1 and λ 6= µ we have that λ∗µ 6= 1. So the second factor must vanish, z†w = 0
and z and w are orthogonal.

• Remark: If H is hermitian, U = eiH is unitary.

7.7 Exponential and powers of a matrix through diagonalization

• Powers of a matrix are easily calculated once it is diagonalized. If A = SΛS−1 , and
n = 0, 1, 2, . . .

An = (SΛS−1)n = SΛnS−1 (104)

Moreover, Λn is just the diagonal matrix with the nth powers of the eigenvalues along its
diagonal entries.

• Exponential of a matrix through diagonalization. If a matrix can be diagonalized by a simi-
larity transformation A = SΛS−1 , then calculating its exponential eA is much simplified

eA = eSΛS−1
=
∞∑
n=0

(SΛS−1)n

n!
=
∑
n

SΛnS−1

n!
= SeΛS−1 (105)

So we just apply the similarity transformation to eΛ to get eA . Moreover, since Λ is a diagonal
matrix, its exponential is easy to calculate. If Λ = diag(λ1, · · · , λn), then

eΛ = diag(eλ1 , eλ2 , eλ3 , · · · , eλn) (106)

7.8 Coupled oscillations via diagonalization

• Small displacements of a system about a point of stable equilibrium typically lead to
small oscillations due to restoring forces. They are described by linearizing the equations of
motion, assuming the departure from equilibrium is small. Hookes law for a slightly elongated
spring is an example. If δx is the small displacement, Newton’s law in Hooke’s approximation
says mδ̈x = −k δx . This is a linear equation for one unknown function δx(t).

• Similarly, suppose we have a pair of equally massive objects in one dimension connected by a
spring to each other and also by springs to walls on either side in this order: wall spring mass
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spring mass spring wall. Let δx1, δx2 be small displacements of the masses to the right.
Draw a diagram of this configuration. Newton’s equations in Hooke’s approximation (when the
springs have the same spring constant k ) are

m ¨δx1 = −kδx1 + k(δx2 − δx1)
m ¨δx2 = −kδx2 − k(δx2 − δx1) (107)

This is a pair of coupled differential equations; it is not easy to solve them as presented.

But we can write them as a single matrix differential equation ẍ = Ax were x =

(
δx1

δx2

)
d2

dt2

(
δx1

δx2

)
=

k

m

(
−2 1
1 −2

)(
δx1

δx2

)
. (108)

Let A = k
m

(
−2 1
1 −2

)
. The off-diagonal terms in A are responsible for the coupled nature

of the equations. But A is real symmetric, so it can be diagonalized, which will make the
equations uncoupled. Upon performing the principal axis transformation, A = QΛQt where

Λ = k
m

(
−1 0
0 −3

)
is the diagonal matrix of eigenvalues and Q is the orthogonal eigenvector

matrix (which is independent of time, since A is). The equations become

ẍ = QΛQtx ⇒ Qtẍ = ΛQtx (109)

So let y = Qtx , then we get ÿ = Λy which are the pair of uncoupled equations

ÿ1 = −(k/m)y1, ÿ2 = −3(k/m)y2 (110)

If the initial condition was that the masses started from rest, then ẏ(0) = 0 and the solutions
are

y1(t) = y1(0) cos(

√
k

m
t)y2(t) = y2(0) cos(

√
3k

m
t) (111)

The method of solving these differential equations will be treated in the second part of this
course. To get back x(t) we just use x(t) = Qy(t). So it only remains to find the eigenvector
matrix Q , of A , which is left as an exercise.

8 Volume element: Change of integration variable and Jacobian determinant

• An important application of determinants is in the change of volume element when (non-
linearly) changing integration variables in multi-dimensional integrals.

• An invertible square matrix A can be regarded as a linear change of variable from the standard
o.n. basis (xi)j = δij to a new basis yi given by the columns of A :

I =

 | · · · |
x1 · · · xn
| · · · |

 ;A =

 | · · · |
y1 · · · yn
| · · · |

 ; (112)
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yi = Axi or (yi)j = Ajk(xi)k = Aji . (Thus A is the derivative of y with respect to x evaluated

at (xi)j = δij : Ajk =
∂(yi)j
∂(xi)k

). Under this change of variable, the unit hypercube (whose edges

are xi ) is transformed into a parallelepiped whose edges are the columns yi of A . So the volume
of the parallelepiped formed by the basis vectors is multiplied by detA .

• Now we would like to apply this idea to differentiable non-linear changes of variable. This
is given by a function from Rn → Rn : (x1 · · ·xn) 7→ (y1(x), · · · yn(x)). A non-linear change
of variable can be approximated by an affine (linear + shift) one in a small neighbourhood
of any point x′ , yi(x) = yi(x

′) + Jij(x − x′)j + · · · . Up to an additive constant shift, this

linear transformation is the linearization of y , or the Jacobian matrix Jij = ∂yi
∂xj

where the

derivatives are evaluated at x = x′ . So near each point, the unit hyper cube is transformed to
a parallelepiped whose volume is det J . The Jacobian matrix is Jij(x) = ∂yi

∂xj
and the Jacobian

determinant is det Jij .

• The change of variable formula for volume elements is

|det J | dx1 · · · dxn = dy1 · · · dyn (113)

So that ∫
dy1 · · · dyn f(y) =

∫
dx1 · · · dxn |det J(x)| f(y(x)) (114)

For transformation from cartesian to plane polar coordinates x = r cos θ, y = r sin θ

dx dy = dr dθ det

( ∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

)
= dr dθ det

(
cos θ −r sin θ
sin θ r cos θ

)
= r dr dθ. (115)

• Ex. Work out the Jacobian determinant for transformation from cartesian to spherical polar
coordinates. z = r cos θ, x = r sin θ cosφ, y = r sin θ sinφ.

• Note: The Jacobian matrix of the gradient of a function is the Hessian matrix of second
partials.
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