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Water, water, everywhere . . . (S T Coleridge, Rime of the Ancient Mariner)

Whether we do physics, chemistry, biology, computation, mathematics,
engineering or the humanities, we are likely to encounter fluids and be
fascinated and challenged by their flows.

Fluid flows are all around us: the air through our nostrils, tea stirred in a cup,
water down a river, charged particles in the ionosphere etc.

Let us take a few minutes to brainstorm and write down terms and
phenomena that come to our mind when we think of fluid flows.
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Terms that come to mind in connection with fluids

flow, waves, ripples, sound, wake,

water, air, hydrodynamics, aerodynamics, lift, drag, flight.

velocity, density, pressure, viscosity, streamlines,

laminar, turbulent, chaotic

vortex, bubble, drop

convection, clouds, plumes, hydrological cycle

weather, climate,

rain, flood, hurricane, tornado, cyclone, typhoon, tsunami,

shock, sonic boom, compressible, incompressible,

surface, surface tension, splash,

solar flares, aurorae, plasmas
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Clouds from plumes

Plume of ash and gas from Mt. Etna, Sicily, 26 Oct, 2013. NASA.
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Water water every where . . .

Some of the best scientists have worked on fluid mechanics: I Newton, D
Bernoulli, L Euler, J L Lagrange, Lord Kelvin, H Helmholtz, C L Navier, G G
Stokes, N Y Zhukovsky, M W Kutta, O Reynolds, L Prandtl, T von Karman,
G I Taylor, J Leray, L F Richardson, A N Kolmogorov, L Onsager, R P
Feynman, L D Landau, S Chandrasekhar, O Ladyzhenskaya, etc.

Fluid dynamics finds application in numerous areas: flight of airplanes and
birds, weather prediction, blood flow in the heart and blood vessels, waves
on the beach, ocean currents and tsunamis, controlled nuclear fusion in a
tokamak, jet engines in rockets, motion of charged particles in the solar
corona and astrophysical jets, accretion disks around active galactic nuclei,
formation of clouds, melting of glaciers, climate change, sea level rise, traffic
flow, building pumps and dams etc.

Fluid motion can be appealing to the senses and also present us with
mysteries and challenges.

Fluid flows can range from regular and predictable (laminar) to seemingly
disorganized and chaotic (turbulent) while displaying remarkable patterns.
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Splashes from a drop of milk

Arthur Worthington (1879) and Harold Edgerton (1935) took photos of
splashes of milk. One sees a remarkable undulating corona in such a
splash.

Symmetry breaking - initially we have circular symmetry in the liquid
annulus, but as the splash develops, segmentation occurs and spikes
emerge at regular intervals reducing the symmetry to a discrete one.

How did Worthington take such a photograph?

Worthington’s and Edgerton’s milk splashes
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Mathematical modelling of fluid phenomena

“The Unreasonable Effectiveness of Mathematics in the Natural Sciences” –
article published in 1960 by the physicist Eugene Wigner.

His concluding paragraph: The miracle of the appropriateness of the
language of mathematics for the formulation of the laws of physics is a
wonderful gift which we neither understand nor deserve. We should be
grateful for it and hope that it will remain valid in future research and that it
will extend, for better or for worse, to our pleasure, even though perhaps
also to our bafflement, to wide branches of learning.

Relationships between physical quantities in a flow are fruitfully expressed
using differential equations. Before discussing these equations, we will
introduce fluid phenomena through pictures and mention some of the
physical concepts and approximations developed to understand them.
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Language of fluid mechanics: pictures and calculus

Leonardo da Vinci (1452-1519) wanted to understand the flow of water. He
had neither the laws of Newton nor the tools of calculus at his disposal.
Nevertheless he made much progress by observing flows and trying to
understand and use them. His notebook Codex Leicester contains detailed
accounts of his observations, discoveries, questions and reflections on the
subject.

It was not until the time of I Newton (1687), D Bernoulli (1738) and L Euler
(1757) that our understanding of the laws of fluid mechanics began to take
shape and mathematical modelling became possible.

Mathematical modelling of natural/behavioral phenomena is not always very
successful. Sometimes the phenomena do not match the predictions of the
models we propose. Sometimes we do not even know the laws to formulate
appropriate models.

We believe we know the physical laws governing fluid motion. However,
despite much progress since the time of Euler, it is still a challenge to
predict and understand many features of the flows around us.

10/76



Leonardo da Vinci
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Continuum, Fluid element, Fields

In fluid mechanics we are not interested in microscopic positions and
velocities of individual molecules. Focus instead on macroscopic fluid
variables like velocity, pressure, density, energy and temperature that we
can assign to a fluid element by averaging over it.

By a fluid element, we mean a sufficiently large collection of molecules so
that concepts such as ‘volume occupied’ make sense and yet small by
macroscopic standards so that the velocity, density, pressure etc. are
roughly constant over its extent. E.g.: divide a container with 1023

molecules into 10000 cells, each containing 1019 molecules.

Thus, we model a fluid as a continuum system with an essentially infinite
number of degrees of freedom. A point particle has 3 translational degrees
of freedom. On the other hand, to specify the pattern of a flow, we must
specify the velocity at each point!

Fluid description applies to phenomena on length-scale� mean free path.
On shorter length-scales, fluid description breaks down, but Boltzmann’s
kinetic theory of molecules applies.
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Concept of a field: a gift from fluid flow

The concept of a point particle is familiar and of enormous utility.

We imagine a particle to be somewhere at any given time. By contrast, a
field is everywhere at any given instant!

Fluid and solid mechanics are perhaps the first places where the concept of
a field emerged in a concrete manner.

At all points of a fluid we have its density. It could of course vary from point
to point ρ(r). It could also vary with time: ρ(r, t) is a dynamical field.

Similarly, we have the pressure and velocity fields p(r, t),v(r, t). Unlike ρ

and p which are scalars, v is a vector. At each point r it is represented by a
little arrow that conveys the magnitude and direction of velocity.

Fields also arose elsewhere: the gravitational field of Issac Newton and the
electric and magnetic fields introduced by Michael Faraday. However, these
fields are somewhat harder to grasp. They were introduced to explain the
transmission of gravitational, electric and magnetic forces between masses,
charged particles and magnets.
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Flow visualization: Streamlines

Streamlines encode the instantaneous velocity pattern. They are curves
that are everywhere tangent to v.
If v(r, t) = v(r) is time-independent
everywhere, then the flow is steady and the
streamlines are frozen. In unsteady flow,
the stream lines continuously deform.
Streamlines at a given time cannot
intersect.
A flow that is regular is called laminar. This happens in slow steady pipe
flow, where streamlines are parallel. Another example is given in this movie
of water flowing from a nozzle.
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Flow visualization: Path-lines

In practice, how do we observe a flow pattern?

Leonardo suspended fine sawdust in water and observed the motion of the
saw dust (which reflects light) as it was carried by the flow.

This leads to the concept of path-lines.
Path-lines are trajectories of individual fluid
‘particles’ (e.g. speck of dust stuck to fluid).
At a point P on a path-line, it is tangent to
v(P) at the time the particle passed
through P. Pathlines can (self)intersect at
t1 6= t2.
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Flow visualization: streak-lines

Another approach is to continuously introduce a dye into the flow at some
point and watch the pattern it creates.

Streak-line: Dye is continuously injected into a flow
at a fixed point P. Dye particle sticks to the first fluid
particle it encounters and flows with it. Resulting
high-lighted curve is the streak-line through P. So
at a given time of observation tobs, a streak-line is
the locus of all current locations of particles that
passed through P at some time t ≤ tobs in the past.

Video of numerical simulation of streaklines in
cigarette plume.

Streamlines, path-lines and streak-lines all coincide for steady flow, but not
for unsteady flow.
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Bernoulli’s principle

Among the earliest quantitative observations about fluid flows is Bernoulli’s
principle: the pressure drops where a flow speeds up.

In its simplest form, it applies to steady flow of a fluid of uniform density ρ

and says that

B =
1
2

v2 +
p
ρ
+gz

is constant along streamlines. Here g is the acceleration due to gravity and
z the vertical height on the streamline.

For roughly horizontal flow, pressure is lower where velocity is higher.
Pressure drops as flow speeds
up at constrictions in a pipe.

Try to separate two sheets of
paper by blowing air between
them!

17/76



Daniel Bernoulli

Daniel Bernoulli
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Eulerian and Lagrangian viewpoints

In the Eulerian description, we are interested in the time development of
fluid variables at a given point of observation~r = (x,y,z). Interesting if we
want to know how density changes, say, above my head. However, different
fluid particles will arrive at the point~r as time elapses.

It is also of interest to know how the corresponding fluid variables evolve,
not at a fixed location but for a fixed fluid element, as in a Lagrangian
description.

This is especially important since Newton’s second law applies directly to
fluid particles, not to the point of observation!
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Leonhard Euler and Joseph Louis Lagrange

Leonhard Euler (left) and Joseph Louis Lagrange (right).
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Conservation of mass

There are two primary laws of fluid motion.

The conservation of mass states the obvious: the mass of a fluid element
remains constant as the element moves around. The same collection of
molecules reside in the element but the shape and size of the element can
change with time.

Said differently, the rate of increase in mass of fluid in a fixed volume must
be due to the influx of material across its boundary.

If the volume of a fluid element changes with time, we say the fluid is
compressible. Typical flows in water are incompressible, while high speed
flows in air tend to be compressible.

To formulate mass conservation via an equation, we need to use the
concept of a material derivative: it measures how the density ρ(r, t) of a
fluid element changes as it moves around.
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Material derivative measures rate of change along flow

Change in density of a fluid element in time dt as it moves from r to r+dr is

dρ = ρ(r+dr, t+dt)−ρ(r, t)≈ ∂ρ

∂ t
dt+dr ·∇ρ. (1)

Divide by dt, let dt→ 0 and use v = dr
dt to get instantaneous rate of change

of density of a fluid element located at r at time t:

Dρ

Dt
≡ ∂ρ

∂ t
+v ·∇ρ. (2)

Dρ/Dt measures rate of change of density of a fluid element as it moves
around. Material derivative of any quantity (scalar or vector) s in a flow field
v is defined as Ds

Dt = ∂ts+v ·∇s.

Material derivative of velocity Dv
Dt = ∂tv+v ·∇v gives the instantaneous

acceleration of a fluid element with velocity v located at r at time t.

As a 1st order differential operator it satisfies Leibnitz’ product rule

D(fg)
Dt

= f
Dg
Dt

+g
Df
Dt

and
D(ρv)

Dt
= ρ

Dv
Dt

+v
Dρ

Dt
. (3)
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Continuity equation and incompressibility

Rate of increase of mass in a fixed vol V is equal to the influx of mass. Now,
ρv · n̂ dS is the mass of fluid leaving a volume V through a surface element
dS per unit time. Here n̂ is the outward pointing normal. Thus,

d
dt

∫
V

ρdr =−
∫

∂V
ρv · n̂dS =−

∫
V

∇ ·(ρv)dr ⇒
∫

V
[ρt +∇ · (ρv)]dr = 0.

As V is arbitrary, we get continuity equation for local mass conservation:

∂tρ +∇ · (ρv) = 0 or ∂tρ +v ·∇ρ +ρ∇ ·v = 0. (4)

In terms of material derivative, Dρ

Dt +ρ∇ ·v = 0.

Flow is incompressible if Dρ

Dt = 0: density of a fluid element is constant.
Since mass of a fluid element is constant, incompressible flow preserves
volume of fluid element.

Alternatively incompressible means ∇ ·v = 0, i.e., v is divergence-free or
solenoidal. ∇ ·v = limV,δ t→0

1
δ t

δV
V measures fractional rate of change of

volume of a small fluid element.

Most important incompressible flow is constant ρ in space and time.
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Sound speed, Mach number

Incompressibility is a property of the flow and not just the fluid! For instance,
air can support both compressible and incompressible flows.

Flow may be approximated as incompressible in regions where flow speed

is small (subsonic) compared to local sound speed cs =
√

∂p
∂ρ
∼
√

γp/ρ for

adiabatic flow of an ideal gas with γ = cp/cv. Sound is a disturbance by
which density variations propagate in a fluid.

Compressibility β = ∂ρ

∂p measures increase in density with pressure.

Incompressible fluid has β = 0, so c2 = 1/β = ∞. An approximately
incompressible flow is one with very large sound speed (cs� |v|).
Common flows in water are incompressible. So study of incompressible flow
is called hydrodynamics. High speed flows in air/gases tend to be
compressible. Compressible flow is called aerodynamics/ gas dynamics.

Incompressible hydrodynamics may be derived from compressible gas
dynamic equations in the limit of small Mach number M = |v|/cs� 1.

When M� 1 we have super-sonic flow and phenomena like shocks.
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Newton’s second law for a fluid

Newton’s second law of motion for a particle says ma = F. Its mass times
its acceleration is equal to the force acting on it. In other words, forces
cause the velocity to change.

The precise mathematical form of Newton’s 2nd law for a fluid (ignoring
viscous dissipation) was derived by Leonhard Euler (1757).

What does Newton’s law say for a small fluid element of volume δV? If ρ is
the density of fluid then its mass is ρδV . The acceleration is the rate of
change of its velocity along the flow: Dv

Dt =
∂v
∂ t +v ·∇v.

To apply Newton’s law to a fluid element we need to know the forces that act
on it.

There are three main forces: gravity, pressure and frictional/viscous forces
exerted by neighboring elements. Thus:

ρ(δV)
Dv
Dt

= ρ(δV)g+pressure and viscous forces.

• Here g is the acceleration due to gravity, 9.8 m/s2 acting downwards.
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Isaac Newton

Isaac Newton
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What are pressure and viscous forces?

Consider a small element E2 of fluid and its
neighbouring elements, E1 to the left and E3 to the
right. The elements are separated by imaginary
surfaces/membranes Σij: E1Σ12E2Σ23E3.

The molecules in E1 collide with those of E2 in the vicinity of the surface
Σ12. The normal component of this surface force (per unit area) is called the
pressure p12 due to E1 on E2.

Pressure provides a nice illustration of Newton 3rd law: the force exerted by
E1 on E2 is equal and opposite to the force E2 exerts on E1. Thus the
pressure p12 = p21 does not depend on which element one focuses on.

On the other hand, the normal surface force p32 exerted by E3 on E2 need
not be exactly opposite to that exerted by E1 on E2. Such a pressure
imbalance (p12 = p21 6= p32 = p23) or pressure gradient can cause the fluid
element E2 to accelerate and generate a flow.

Viscous forces are also surface forces, they are the tangential components
of the forces between elements.
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Newton’s 2nd law for fluid element: Inviscid Euler equation

Consider a fluid element of volume δV . Mass × acceleration is ρ(δV)Dv
Dt .

Force on fluid element includes ‘body force’ like gravity F = ρ(δV)g.

Also have surface force on a volume element, due to pressure exerted on it
by neighbouring elements

Fsurface =−
∫

∂V
pn̂dS=−

∫
V

∇pdV; if V = δV then Fsurf≈−∇p(δV).

Newton’s 2nd law then gives the celebrated (inviscid) Euler equation

∂v
∂ t

+v ·∇v =−∇p
ρ

+g; v ·∇v→ ‘advection term’ (5)

Continuity (∂tρ +∇ · (ρv) = 0) & Euler are 1st order in time: to solve initial
value problem, must specify ρ(r, t = 0) and v(r, t = 0).

Boundary conditions: Euler equation is 1st order in space derivatives;
impose BC on v, not ∂iv. On solid boundaries normal component of velocity
vanishes v · n̂ = 0. As |r| → ∞, typically v→ 0 and ρ → ρ0.
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Consequence of Euler equation: Sound waves (Video)

Sound waves are excitations of the ρ or p fields. Arise in compressible
flows, where regions of compression and rarefaction can form.

Notice first that a fluid at rest (v = 0) with constant pressure and density
(p = p0, ρ = ρ0) is a static solution to the continuity and Euler equations

∂tρ +∇ · (ρv) = 0 and ρ(∂tv+v ·∇v) =−∇p. (6)

Now suppose the stationary fluid suffers a small disturbance resulting in
small variations δv,δp and δρ in velocity, pressure and density

v = 0+v1(r, t), ρ = ρ0 +ρ1(r, t) and p = p0 +p1(r, t). (7)

What can the perturbations v1(r, t),p1(r, t) and ρ1(r, t) be? They must be
such that v,p and ρ satisfy the continuity and Euler equations with v1,p1,ρ1
treated to linear order (as they are assumed small).

It is found empirically that the small pressure and density variations are
proportional i.e., p1 = c2ρ1. We will derive the simplest equation for sound
waves by linearizing the continuity and Euler eqns around the static
solution. It will be possible to interpret c as the speed of sound.
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Sound waves in static fluid with constant p0, ρ0

Ignoring products of small quantities v1,p1 and ρ1, the continuity equation
∂t(ρ0 +ρ1)+∇ · ((ρ0 +ρ1)v1) = 0 becomes ∂tρ1 +ρ0∇ ·v1 = 0.

Similarly, the Euler equation (ρ0 +ρ1)(∂tv1 +v1 ·∇v1) =−∇(p0 +p1)
becomes ρ0∂tv1 =−∇p1 upon ignoring products of small quantities.

Now we assume pressure variations are linear in density variations
(p1 = c2ρ1) and take a divergence to get ρ0∂t(∇ ·v1) =−c2∇2ρ1.

Eliminating ∇ ·v1 using continuity eqn we get the wave equation for density
variations ∂ 2

t ρ1 = c2∇2ρ1.

Why is c called the sound speed? Notice that any function of ξ = x− ct
solves the 1D wave equation: ∂ 2

t ρ1 = c2∂ 2
x ρ1 for ρ1(x, t) = f (x− ct)

∂tρ1 =−cf ′, ∂
2
t ρ1 = c2f ′′ while ∂xρ1 = f ′ and ∂

2
x ρ1 = f ′′. (8)

f (x− ct) is a traveling wave that retains its shape as it travels at speed c to
the right. Plot f (x− ct) vs x at t = 0 and t = 1 for f (ξ ) = e−ξ 2

and c = 1.

For incompressible flow (ρ = ρ0,ρ1 = 0) c2 = p1
ρ1

= δp
δρ
→ ∞ as the density

variation is vanishingly small even for large pressure variations.
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Including viscosity: Navier-Stokes equations

Claude Navier (1822) and George Stokes (1845) figured out how to include
the viscous force. The resulting equation for incompressible (constant ρ)
hydrodynamics is called the Navier-Stokes (NS) equation.

∂v
∂ t

+v ·∇v =−∇p
ρ

+ν∇
2v, with ∇ ·v = 0.

Here ν with dimensions of area per unit time is the coefficient of kinematic
viscosity. NS needs to be supplemented with boundary conditions. At a
solid boundary, the velocity must vanish, due to friction: this is the no-slip
condition. Running a fan does not remove the dust accumulated on the
blades.

It is one of the important equations of physics, along with Newton’s
equations of celestial mechanics, Maxwell’s equations of electromagnetism,
Einstein’s equations for gravity and Schrödinger’s equation for an atom.
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Claude Louis Navier, Saint Venant and George Stokes

Claude Louis Navier (left), Saint Venant (middle) and George Gabriel Stokes (right).
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Motivating Navier Stokes: Heat diffusion equation

Empirically it is found that the heat flux between bodies grows with the
temperature difference. Fourier’s law of heat diffusion states that the heat
flux density vector (energy crossing unit area per unit time) is proportional to
the negative gradient in temperature

q =−k∇T where k = thermal conductivity. (9)

Consider gas in a fixed volume V . The increase in internal energy
U =

∫
V ρcvTdr must be due to the influx of heat across its surface S.∫
V

∂t(ρcvT)dr =−
∫

S
q · n̂ dS =

∫
S

k∇T · n̂ dS = k
∫

V
∇ ·∇T dr. (10)

cv = specific heat/mass (at constant volume, no work) and ρ = density.

V is arbitrary, so integrands must be equal. Heat equation follows:

∂T
∂ t

= α∇
2T where α =

k
ρcv

is thermal diffusivity. (11)

Heat diffusion is dissipative, temperature differences even out and heat flow
stops at equilibrium temperature. It is not time-reversal invariant.
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Including viscosity: Navier-Stokes equation

Heat equation ∂tT = α∇2T describes diffusion from hot→ cold regions.

(Shear) viscosity causes diffusion of velocity from a fast layer to a
neighbouring slow layer of fluid. The viscous stress is ∝ velocity gradient. If
a fluid is stirred and left, viscosity brings it to rest.

By analogy with heat diffusion, velocity diffusion is described by ν∇2v.

Kinematic viscosity ν has dimensions of diffusivity (areal velocity L2/T).

Postulate the Navier-Stokes equation for viscous incompressible flow:

vt +v ·∇v =− 1
ρ

∇p+ν∇
2v (NS). (12)

NS has not been derived from molecular dynamics except for dilute gases.
It is the simplest equation consistent with physical requirements and
symmetries. It’s validity is restricted by experiment.

NS is second order in space derivatives unlike the inviscid Euler eqn.
Experimentally relevant boundary condition is impenetrability v · n̂ = 0 and
‘no-slip’ v|| = 0 on fixed solid surfaces.
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Navier-Stokes equation: challenges

Though simple to write down, the Navier-Stokes (NS) equation

vt +v ·∇v =− 1
ρ

∇p+ν∇
2v (NS). (13)

is notoriously hard to solve in most physically interesting situations.

A key issue is that the equation is non-linear in v. Roughly, it is like the
difference between trying to solve 2x+3 = 0 and 2x7 +3x5 +4x4 +9 = 0.

The conditions at boundaries and interfaces encode important physical
effects, but can add to the complications. Ludwig Prandtl (1904) developed
boundary layer theory for this.

In fact, there is a million dollar Clay millenium prize attached to
understanding some features of solutions to the NS equation.

The challenge lies in deducing the observed, often complex, patterns of flow
from the known laws governing fluid motion. This often requires a mix of
physical insight, experimental data, mathematical techniques and
computational methods.
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Exact solutions: Creeping or Stokes flow

Though the NS equation is very hard to solve in general, there are a few
situations where exact solutions are available.

This happens especially when the viscous force of dissipation is very large
relative to inertial forces, as for instance in ‘creeping flow’ at very low flow
speed. We recall two famous results.

Poiseuille flow through a cylindrical pipe of length l and
radius a due to a pressure drop ∆p. The velocity profile is
parabolic and the mass flowing through the pipe per unit time
is Q = π∆p

8ν l a4.
Stokes studied steady constant density flow around a sphere of radius a
moving at velocity U through a fluid with viscosity ν . He found the drag force
on the sphere: Fdrag =−6πρνaU. Viscous drag is proportional to speed at
low speeds. At higher speeds, there are deviations (the drag can be
quadratic in velocity) as the flow ceases to be laminar.
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Eddies and Vorticity

Vorticity is a measure of local rotation/angular
momentum in a flow. A flow without vorticity is
called irrotational.

Vortices are manifestations of vorticity in a flow.

Vortices are ubiquitous in flows.

We have many names for bananas: Vazhai, Kela,
Puvan, Malapazham, Mondhan, Rasthali,
Nendran, Yelakki, Karpuravalli, Chevvazhai, Musa,
Virupakshi, Robusta, Udhayam etc.

Similarly, there are many names for vortex-like structures: swirls, eddies,
vortices, whirlpools, whorls, cyclones, hurricanes, tornadoes, typhoons,
maelstroms etc.

Vortices can be created easily and put to good used, as this video by Walter
Lewin indicates.

37/76



Leonardo da Vinci and vortices

da Vinci was fascinated by vortices: many of his sketches contain detailed
illustrations of eddies in fluids.

Eddies can be of various sizes: in a sink, in the sea and in the atmosphere.
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Leonardo da Vinci and vortices

He even noticed similarities between vortices in the wake behind a flat plate
and braided hair!
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Vorticity and circulation

Vorticity is a vector field, defined as w = ∇×v. It
measures local rotation/angular momentum in a
flow.

Vorticity has dimensions of a frequency [w] = 1/T .

Given a closed contour C in a fluid, the circulation
around the contour Γ(C) =

∮
C v ·dl measures how

much v ‘goes round’ C. By Stokes’ theorem, it
equals the flux of vorticity across a surface that
spans C.

Γ(C)=
∮

C
v ·dl=

∫
S
(∇×v)·dS=

∫
S

w ·dS where ∂S=C.

Enstrophy
∫

w2 dr measures global vorticity. It is conserved in ideal 2d
flows, but not in 3d: it can grow due to ‘vortex stretching’ (see below).
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Examples of flow with vorticity w = ∇×v
Shear flow with horizontal streamlines is an
example of flow with vorticity:
v(x,y,z) = (U(y),0,0). Vorticity
w = ∇×v =−U′(y)ẑ.

A bucket of fluid rigidly rotating at small angular
velocity Ωẑ has v(r,θ ,z) = Ωẑ× r = Ωrθ̂ . The
corresponding vorticity w = ∇×v = 1

r ∂r(rvθ )ẑ is
constant over the bucket, w = 2Ωẑ.

The planar azimuthal velocity profile v(r,θ) = c
r θ̂

has circular streamlines. It has no vorticity
w = 1

r ∂r(r c
r )ẑ = 0 except at r = 0:

w = 2πcδ 2(r)ẑ. The constant 2πc comes from
requiring the flux of w to equal the circulation of v
around any contour enclosing the origin∮

v ·dl =
∮
(c/r)r dθ = 2πc.
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Vortex rings and tubes

Vortices can take the shape of tubes and rings. Kelvin and Helmholtz
discovered many interesting properties of vortex tubes.

Smoke rings are examples of vortex tubes. Dolphins blow vortex rings in
water and chase them.

Fluid flow tends to stretch and bend vortex tubes while carrying them along.
They survive in the absence of viscosity but dissipate due to friction as seen
in this video.
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Lord Kelvin and Hermann von Helmholtz

Lord Kelvin (left) and Hermann von Helmholtz (right).
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Evolution of vorticity and Kelvin’s theorem

Taking the curl of the Euler equation ∂tv+(∇×v)×v =−∇
(
h+ 1

2 v2
)

allows us to eliminate the pressure term in barotropic flow to get

∂tw+∇× (w×v) = 0. (14)

This may be interpreted as saying that vorticity is ‘frozen’ into v.

The flux of w through a surface moving with the flow is constant in time:
d
dt

∫
St

w ·dS = 0 or by Stokes’ theorem
d
dt

∮
Ct

v ·dl =
dΓ

dt
= 0. (15)

Here Ct is a closed material contour moving with the flow and St is a surface
moving with the flow that spans Ct.

The proof uses the Leibnitz rule for material derivatives Dt ≡ ∂t +v ·∇
d
dt

∮
Ct

v ·dl =
∮

Ct

Dtv ·dl+
∮

Ct

v ·Dtdl. (16)

Using the Euler equation Dtv =−∇h and Dtdl = dv we get

d
dt

∮
Ct

v ·dl =
∮

Ct

d
(

1
2

v2−h
)
= 0. (17)
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Kelvin & Helmholtz theorems on vorticity

d
dt

∮
Ct

v ·dl = 0 is Kelvin’s theorem: circulation around a material contour is
constant in time. In particular, in the absence of viscosity, eddies and
vortices cannot develop in an initially irrotational flow (i.e. w = 0 at t = 0).

Vortex tubes are cylindrical surfaces everywhere tangent
to w. So on a vortex tube, w ·dS = 0.

The circulation Γ around a vortex tube is independent of
the choice of encircling contour. Consider part of a vortex
tube S between two encircling contours C1 and C2
spanned by surfaces S1 and S2.

Applying Stokes’ theorem to the closed surface Q = S1∪S∪S2 we get∫
Q

w ·dS =
∫

∂Q
v ·dl = 0 as ∂Q is empty,

⇒
∫

S1

w ·dS−
∫

S2

w ·dS = 0 or Γ(C1) = Γ(C2) since w ·dS = 0 on S.

As a result, a vortex tube cannot abruptly end, it must close on itself to form
a ring (e.g. a smoke ring) or end on a boundary.
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Helmholtz’s theorem: inviscid flow preserves vortex tubes

Suppose we have a vortex tube at initial time t0.
Let the material on the tube be carried by flow
till time t1. We must show that the new tube is a
vortex tube, i.e., that vorticity is everywhere
tangent to it, or w ·dS = 0.

Consider a contractible closed curve C(t0) lying on the initial vortex tube,
the flow maps it to a contractible closed curve C(t1) lying on the new tube.
By Kelvin’s theorem, Γ(C(t0)) = 0 = Γ(C(t1)). Now suppose S is the
surface on the new vortex tube enclosed by C(t1), ∂S = C(t1), then

0 = Γ(C(t1)) =
∫

S
w ·dS.

This is true for any contractible closed curve C(t1) on the new tube.
Considering an infinitesimal closed curve, we conclude that w ·dS = 0 at
every point of the new tube, i.e., it must be a vortex tube.
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Vorticity: Creation, diffusion, stretching and cascade

If there is no vorticity initially in a flow, then it cannot develop in the absence
of viscosity.

Viscous forces, especially in a layer near solid boundaries, can generate
vorticity.

Vorticity can diffuse through a flow and spread out.

Vortex tubes tend to stretch and become narrower. As the flow develops,
energy in larger vortices cascades to smaller ones. Vortices are finally
destroyed by viscosity at the Taylor microscale.

This was nicely captured in a poem by L F Richardson in Weather
Prediction by Numerical Process (1922):

Big whorls have little whorls that feed on their velocity,
and little whorls have lesser whorls and so on to viscosity.

Video of vortex ring collisions.
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Lewis Fry Richardson

Big whorls have little whorls that feed on their velocity,
and little whorls have lesser whorls and so on to viscosity.

– L F Richardson, Weather Prediction by Numerical Process (1922).
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Reynolds number R and similarity principle
Suppose we consider water with uniform velocity Ux̂
flowing down a broad and deep channel. It meets a
cylindrical obstacle of diameter L and flows round it
creating a pattern.

It turns out that if we double the speed U and halve the radius a, then the
same flow pattern results. This is the ‘similarity’ principle named after
Osborne Reynolds who did careful experiments with fluids flowing down a
pipe in the late 1800s.

Incompressible flows with the same Reynold’s number R look the same
(the flows need not be laminar). R = LU/ν is a dimensionless parameter
that is a measure of the ratio of inertial to viscous forces.

Flow around an aircraft is simulated in wind tunnels using a scaled down
aircraft with the same R.

When R is small (e.g. in slow creeping flow), viscous forces dominate and
the flow is regular. Interesting things happen as the flow speeds up and R
increases!
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Osbourne Reynolds

Osbourne Reynolds
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Flow past a cylinder
Consider flow with asymptotic velocity Ux̂ past a fixed cylinder of diameter L
and axis along ẑ. The components of velocity are (u,v,w).
At very low R ≈ .16, the symmetries of the
(steady) flow are (a) y→−y (reflection in z− x
plane), (b) time and z translation-invariance (c)
left-right symmetry w.r.t. center of cylinder
(x→−x and (u,v,w)→ (u,−v,−w)).
All these are symmetries of Stokes
flow (ignoring the non-linear
advection term).

At R ≈ 1.5 a marked left-right
asymmetry develops.

At R ≈ 4, change in topology of flow: flow separates and recirculating
standing eddies (from diffusion of vorticity) form downstream of cylinder.

At R ≈ 40, flow ceases to be steady, but is periodic: undulating wake.
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von Karman vortex street
At R & 50, recirculating eddies are periodically
(alternatively) shed to form the celebrated von
Karman vortex street as shown in this video.

Vortex streets appear behind an obstacle in a river, in clouds passing
around a high pressure region, past the wings of insects and birds etc.
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Theodore von Kármán

von Karman
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Transition to turbulence in flow past a cylinder
At R & 40, the vortex street develops with paired
vortices being shed alternatively.

The z-translation invariance is spontaneously
broken when R ∼ 40−75.

As R increases, some vortices lose their identity,
vortex street is interspersed by turbulent patches.

At R ∼ 200, flow becomes chaotic with turbulent
boundary layer with vortex street persisting only
close to the cylinder.

At R ∼ 1800, only about two vortices in the von
Karman vortex street are distinct before merging
into a quasi uniform turbulent wake.

At much higher R, many of the symmetries of
NS are restored in a statistical sense and
turbulence is called fully-developed.
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Practical consequences: Drag on a sphere in creeping flow

Flow past a cylinder can be used to model drag force on car/plane/ship.

Stokes studied incompressible (constant ρ) flow around a sphere of radius
a moving through a viscous fluid with velocity U

v′t +v′ ·∇′v′ =− 1
ρ

∇
′p+

1
R

∇
′2v,

1
R

=
ν

aU
(18)

For steady flow ∂tv′ = 0. For creeping flow (R� 1) we may ignore
advection term and take a curl to eliminate pressure to get

∇
′2w′ = 0. (19)

By integrating the stress over the surface Stokes found the drag force

Fi =−
∫

σijnjdS ⇒ Fdrag =−6πρνaU. (20)

Upto 6π factor, this follows from dimensional analysis! Magnitude of drag
force is FD = 12

R ×
1
2 πa2ρU2. For Stokes flow, drag coefficient is 12/R: this

is experimentally verified.
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Drag on a sphere at higher Reynolds number R = Ua
ν

At higher speeds (R� 1), naively expect viscous term to be negligible.
However, experimental flow is far from ideal (inviscid) flow!
At higher R, flow becomes unsteady, vortices
develop and a turbulent wake is generated.
Dimensional analysis implies drag force on a
sphere is expressible as FD = 1

2 CD(R) πa2 ρU2,
where CD = CD(R) is the dimensionless drag
coefficient, determined by NS equation.

F can only depend on ρ,U,a,ν . To get mass
dimension correctly, F ∝ ρUbνcad. Dimensional
analysis⇒ b = d and c = 2−d, so
F ∝ ρ

(Ua
ν

)d
ν2. Thus, F = C′D(R) (ρa2 U2)/R2

= 1
2 CD(R) πa2 ρU2.

Comparing with Stokes’ formula for creeping flow
F = 6πaρνU we get CD ∼ 12/R as R→ 0.
Significant experimental deviations from Stokes’ law: enhancement of CD at
higher 1≤R ≤ 105, then drag force drops with increasing U!
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Drag crisis clarified by Prandtl’s boundary layers

In inviscid flow (Euler equation) tangential velocity on solid surfaces is
unconstrained, can be large.

For viscous Navier-Stokes flow, no slip boundary condition implies
tangential v = 0 on solid surfaces.

Even for low viscosity, there is a thin boundary
layer where tangential velocity drops rapidly to
zero. In the boundary layer, cannot ignore ν∇2v.

Though upstream flow is irrotational, vortices are generated in the boundary
layer due to viscosity. These vortices are carried downstream in a
(turbulent) wake.

Larger vortices break into smaller ones and so on, due to inertial forces.
Small vortices (at the Taylor microscale) dissipate energy due to viscosity
increasing the drag for moderate R.
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Ludwig Prandtl

Ludwig Prandtl (1875-1953)
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Kelvin Helmholtz instability

Why does a regular laminar flow become turbulent when the Reynolds
number is increased?

The laminar flow pattern is unstable to perturbations. Instabilities lead to the
growth of perturbations resulting in an alteration of the flow pattern.

The Kelvin-Helmholtz shear flow instability is a prototype. It occurs when
two neighbouring layers of fluid travel at different speeds. The flat interface
becomes wavy, leading to the generation of eddies as seen in this video.

Development of KH instability (Flow, P. Ball)
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Kelvin-Helmholtz instability: Roll-up of vortex sheet

Left: KH instability development made visible by injecting dye into the interface and
photographed by K R Sreenivasan.
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What is turbulence? Key features.

Slow flow or very viscous fluid flow tends to be regular & smooth (laminar).
If viscosity is low or speed sufficiently high (R large enough),
irregular/chaotic motion sets in: streamlines get convoluted as in this video.

Turbulence is chaos in a driven dissipative system with many degrees of
freedom. Without a driving force (say stirring), the turbulence decays.

v(r0, t) appears random in time and highly disordered in space.

Turbulent flows exhibit a wide range of length scales: from the system size,
size of obstacles, through large vortices down to the smallest ones at the
Taylor microscale (where dissipation occurs).
v(r0, t) are very different in distinct experiments
with approximately the same ICs/BCs. But the time
average v̄(r0) is the same in all realizations.
Unlike individual flow realizations, statistical properties of turbulent flow are
reproducible and determined by ICs and BCs.
As R is increased, symmetries (rotation/reflection/translation) are broken,
but can be restored in a statistical sense in fully developed turbulence.
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Andrei Kolmogorov and Lars Onsager

Andrei Kolmogorov (L) and Lars Onsager (R).
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Taylor experiment: flow between rotating cylinders

Oil with Al powder between concentric cylinders a≤ r ≤ b. Inner cylinder
rotates slowly at ωa with outer cylinder fixed. Oil flows steadily with
azimuthal vφ dropping radially outward from ωara to zero at r = b.
Shear viscosity transmits vφ from inner cylinder to
successive layers of fluid. Centrifugal force tends to
push inner layers outwards, but inward pressure due
to wall and outer layers balance it. So pure
azimuthal flow is stable.
When ωa ≈ ωcritical, flow is unstable to formation of toroidal Taylor vortices
superimposed on the circumferetial flow. Translation invariance with z is lost.
Fluid elements trace helical paths.
Above ωcritical, inward pressure and
viscous forces can no longer keep
centrifugal forces in check. The outer layer
of oil prevents the whole inner layer from
moving outward, so the flow breaks up into
horizontal Taylor bands.

63/76



Taylor experiment: flow between rotating cylinders
If ωa is further increased, keeping ωb = 0 then #
of bands increases, they become wavy and go
round at ≈ ωa/3. Rotational symmetry is further
broken though flow remains laminar.

At sufficiently high ωa, flow becomes fully turbulent but time average flow
displays approximate Taylor vortices and cells.

There are 3 convenient dimensionless combinations in this problem:
(b−a)/a, L/a and the Taylor number Ta = ω2

a a(b−a)3/ν2.

For small annular gap and tall cylinders (L� a), Taylor number alone
determines the onset of Taylor vortices at Ta = 1.7×104.
If the outer cylinder is rotated at ωb holding inner cylinder
fixed (ωa = 0), no Taylor vortices appear even for high ωb.
Pure azimuthal flow is stable.

When outer layers rotate faster than inner ones,
centrifugal forces build up a pressure gradient that
maintains equilibrium.
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Geoffrey Ingram Taylor

Geoffrey Ingram Taylor
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Reynolds’ expt (1883): Pipe flow transition to turbulence

Consider flow in a pipe with a simple, straight inlet. Define the Reynolds
number R = Ud/ν where pipe diameter is d and U is flow speed.

At very low R flow is laminar: steady Poiseuille flow (parabolic vel. profile).
In general, turbulence in the pipe seems to
originate in the boundary layer near the inlet or
from imperfections in the inlet.

If R . 2000, any turbulent patches
formed near the inlet decay.

When R & 104 turbulence first begins to appear in the annular boundary
layer near the inlet. Small chaotic patches develop and merge until turbulent
‘slugs’ are interspersed with laminar flow regions.

For 2000 . R . 10,000, the boundary layer is stable to small
perturbations. But finite amplitude perturbations in the boundary layer are
unstable and tend to grow along the pipe to form fully turbulent flow.
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Lift on an airfoil
Consider an infinite airfoil of uniform cross section
(axis along z). Airflow around it can be treated as
2-dimensional, i.e. on x,y plane.

Airfoil starts from rest moves left with zero initial
circulation. Ignoring ν∇2v, Kelvin’s theorem
precludes any circulation developing around wing.
Streamlines of potential flow have a singularity as
shown in Fig 1.

Viscosity at rearmost point due to large ∇2v
regularizes flow pattern as shown in Fig.2.

In fact, circulation Γ develops around airfoil (Fig.
3). In frame of wing, we have an infinite airfoil with
circulation Γ placed perpendicularly in a rightward
velocity field v∞x̂.
Situation is analogous to infinite wire carrying current I placed
perpendicularly in a B field!
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Circulation around and airfoil

Current j in B field feels Lorentz force/Vol. j×B
where j = ∇×B/µ0 by Ampere’s law. Analogue of
Lorentz force is vorticity force in Euler equation

ρ∂tv+ρw×v =−ρ∇σ +ρν∇
2v

B↔ ρv, j↔ w, µ0↔ ρ , I↔ Γ. Current carrying
wire feels transverse force BI/length. Expect airfoil
to feel force ρv∞Γ/length upwards (ŷ).

Outside the boundary layer flow can be approximated as ideal irrotational
flow which can be represented by a complex velocity g = u− iv. Since g is
analytic outside the airfoil, we can expand it in a Laurent series,
g = v∞ + a−1

z + a−2
z2 + · · · .

Circulation around a closed streamline enclosing airfoil just outside
boundary layer is Γ =

∮
v ·dl =

∮
gdz =

∮
(udx+ vdy)+ i(udy− vdx) since

(udy− vdx) = 0 along a streamline. Thus by Cauchy’s residue theorem,
Γ = 2πia−1.
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Kutta-Zhukowski lift formula for incompressible flow
Force exerted by flow on airfoil is F =

∮
pn̂dl

where p is the air pressure along the boundary and
n̂ is the inward normal. By Bernoulli’s theorem,∮

pn̂dl =−1
2 ρ
∮

v2 n̂dl.

If the line element dl along the streamline makes an angle θ with x̂ then
(dx,dy) = (dlcosθ ,dlsinθ) and the inward normal n̂ = (−sinθ ,cosθ).
Thus, Fx =

1
2 ρ
∮

v2 sinθ dl = 1
2 ρ
∮

v2 dy and
Fy =−1

2 ρ
∮

v2 cosθ dl =−1
2 ρ
∮

v2 dx.

The complex force Z = Fy + iFx =−ρ

2
∮

v2(dx− idy) may be expressed in
terms of the circulation Γ using the complex velocity g. As udy− vdx = 0,

Z = −ρ

2

∮ [
v2(dx− idy)+2i(udy− vdx)(u− iv)

]
=

ρ

2

∮
(v2−u2−2iuv)(dx+ idy)

Z = −ρ

2

∮
g2dz =−ρ

2

∮ [
v2

∞ +(2v∞a−1)/z+ · · ·
]

dz =−(ρ/2)[2πi(2v∞a−1)] =−ρv∞Γ.

by Cauchy’s theorem. So Fx = 0 and Fy =−ρv∞Γ.
Fy > 0 and generates lift if the counter-clockwise
circulation Γ is negative, which is the case if speed
above airfoil is more than below.
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Nikolay Yegorovich Zhukovsky and Martin Wilhelm Kutta

Nikolay Yegorovich Zhukovsky (left) and Martin Wilhelm Kutta (right).
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Shocks in compressible flow (Video of bullet shocks)

A shock is usually a surface of small thickness across which v,p,ρ change
significantly: shock front modelled as a surface of discontinuity.

Shock moves faster than sound. Roughly, if shock propagates sub-sonically,
it could emit sound waves ahead of the shock eliminating the discontinuity.

Sudden localized explosions like supernovae or bombs often produce
spherical shocks called blast waves. Nature of spherical blast wave from
atom bomb was worked out by Sedov and Taylor in the 1940s.

Suppose shock moves to the right in lab frame. In shock frame, shock front
is at rest and material to the right rushes towards it at v1 > cs. Material from
undisturbed pre-shock medium in front of shock (ρ1) moves behind the
shock to the post-shock medium to the left and gets compressed to ρ2 > ρ1.

Fluxes of mass, momentum and energy are equal pre- and post-shock,
relating ρ1,v1,p1 to ρ2,v2,p2 leading to Rankine-Hugoniot ‘jump’ conditions.

Viscous term ν∇2v is often important in the shock layer since v changes
rapidly. Leads to heating of the gas in shock layer and entropy production.
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Existence & Regularity: Clay Millenium Problem

Either prove the existence and regularity of solutions to incompressible NS
subject to smooth initial data [in R3 or in a cube with periodic BCs] OR show
that a smooth solution could cease to exist after a finite time.

J Leray (1934) proved that weak solutions to Navier-Stokes exist, but need
not be unique and could not rule out singularities.

Hausdorff dim of set of space-time points where singularities can occur in
NS cannot exceed one. So hypothetical singularities are rare!

O Ladyzhenskaya (1969) showed existence and regularity of classical
solutions to NS regularized with hyperviscosity −µ(−∇2)αv with α ≥ 2. J-L
Lions (1969) extended it to α ≥ 5/4.

A proof of existence/uniqueness/smoothness of solutions to NS or a
demonstration of finite time blow-up is mathematically important.

Physically, it is know that for large enough R, most laminar flows are
unstable, they become turbulent and seem irregular. Methods to
calculate/predict features of turbulent flows would also be very valuable.
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Jean Leray, Olga Ladyzhenskaya and Jacques Louis Lions

Jean Leray (left), Olga Ladyzhenskaya (middle) and Jacques Louis Lions (right).

Ladyzhenskaya Google doodle on her birth anniversary March 7, 2019.
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Prominent Indian fluid dynamicists

Subrahmanyan Chandrasekhar (left) and Satish Dhawan (right).
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Prominent Indian fluid dynamicists

Vishnu Madav Ghatage, Roddam Narasimha (left) and Katepalli Sreenivasan (right).
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von Karman vortex street in the clouds

von Karman vortex street in the clouds above Yakushima Island

Thank you!
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