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1. For the harmonic oscillator show that {θ, I} = 1 implies that I ′(H) = 1/ω . Here the an-
gle variable is tan θ = mωq/p and the proposed action I is a function of the Hamiltonian
H = (p2/2m) + (mω2x2/2) . Proceed to find action-angle variables for the SHO and discuss
the geometric meaning of the action.

2. Give a heuristic derivation of the bound state spectrum of the hydrogen atom using Bohr’s quanti-
sation condition for circular orbits using the conservation of energy E = p2/2m − α/r , angular
momentum and Laplace-Runge-Lenz vectors l = r× p and A = p× l−mαr̂ . Hint: Show the
relation A2 = 2mEl2 +m2α2 .

3. Show that the angular momentum Poisson algebra {Li, Lj} = εijkLk is non-associative.

4. Find the frequency-wave vector dispersion relation ω = ω(k) for (a) the wave equation utt =
c2uxx , (b) the linearized KdV equation ut − 6ūux + uxxx = 0 where ū is a constant velocity,
(c) the free particle 1d Schrödinger equation i~ψt = −(~2/2m)ψ′′ and (d) the 1d heat equation
ut = κuxx where κ is the constant thermal diffusivity. Discuss the physical meaning of dispersion.
Which equations describe dispersive and which non-dispersive propagation? How are the heat and
Schrödinger equations related and how is it reflected in the dispersion relation and nature of time
dependence of solutions?

5. First alternate way of showing isospectrality of Lax matrix L: Verify that the solution of the
Lax equation Lt = [L,A] with IC L(0) may be expressed as L(t) = SL(0)S−1 where S(t) is a
matrix satisfying the evolution equation Ṡ = −AS with IC S(0) = I . Use this solution to argue
why the eigenvalues of L are time independent.

6. Second alternate way of showing isospectrality of Lax matrix L: Here we assume L is hermi-
tian so that its eigenvalues λ are real: Lψ = λψ and assume ψ is normalizable (with non-zero
norm). Recall that we have shown that (L− λ)(ψt + Aψ) = λtψ . Use hermiticity of L to show
that λt = 0 .

7. Show by explicit differentiation that u(x, t) = −1
2c sech2

(
1
2

√
c(x− ct− x0)

)
for c > 0 is an

exact solution of the KdV equation ut − 6uux + uxxx = 0 . Plot the wave profile at t = 0 and
justify the name solitary wave of depression. Discuss the direction of propagation. How are the
wave depth, speed and width related? Hint: ( sechx)′ = − sechx tanhx . How can you modify
the KdV equation to get a very similar equation with a similar solution that is a solitary wave of
elevation?

8. Show that the KdV equation ut − 6uux + uxxx = 0 is invariant under the scale transformation

x→ µx, t→ µ3t and u→ µ−2u (1)

for any real constant µ 6= 0 .

9. Assuming decaying boundary conditions |u| → 0 as |x| → ∞ , show that
∫∞
−∞ u dx is conserved

under KdV evolution. What is the conserved current?
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10. Use the KdV equation and integration by parts to show that
∫
u2dx is a conserved quantity for the

KdV equation with decaying boundary conditions. This quantity may be interpreted as momentum.

11. Show by differentiating in time and using the KdV equation, that
∫∞
−∞(u3 + 1

2u
2
x)dx is conserved,

again subject to decaying BCs. This quantity may be interpreted as energy.

12. Lax Pair for 1st order linear wave equation. We take L = −∂2 + u to be the Schrödinger
operator and A1 to be a 1st order differential operator. L and A1 are differential operators with
coefficients that could depend on u(x, t) , possibly nonlinearly. They act on an auxiliary linear
vector space of functions ψ(x, t) . When we say Lt we mean the derivative of L before it acts on
ψ , so even if ψ depends on time, Lt = ut . To be anti-symmetric, take A1 = c∂ + h.c. where
c(x, t) is an arbitrary function (to be fixed by requiring that the Lax equation is is consistent). (i)
Show that A1 = [c, ∂]+ = cx + 2c∂ . (ii) Show that

[L,A1] = [−∂2 + u, c′ + 2c∂] = −c′′′ − 4c′′∂ − 4c′∂2 − 2cu′. (2)

(iii) Argue why c must be a constant and thereby show that the Lax equation Lt = [L,A] is equiv-
alent to the 1st order linear wave equation ut + 2cux = 0 describing unidirectional propagation.
(iv) For c > 0 does it describe right or left-moving waves?

13. Lax pair for KdV: Verify that L = −∂2x + u(x, t) and A = 4∂3x − 6u∂x − 3ux + A0(t)I is a
Lax pair for the KdV equation for any function A0(t) of time alone. In other words, check that
Lt = [L,A] is equivalent to ut − 6uux + uxxx = 0 .

14. Riccati form of Schrodinger equation: Show that the boosted Miura transformation between
u and v : u − λ = vx + v2 (the Riccati equation) becomes a relation between u and ψ (the
Schrödinger eigenvalue problem) (−∂2 + u)ψ = λψ upon making the Cole-Hopf logarithmic
derivative substitution v = ψx/ψ . This observation has nothing to do with KdV and predates
KdV.

15. mKdV to KdV: Show that if you start with the KdV equation ut − 6uux + uxxx = 0 and make a
Miura transform u = vx + v2 , then v satisfies the 4th order equation(

2v +
∂

∂x

)
(vt − 6v2vx + v3x) = 0. (3)

Conclude that if v satisfies the mKdV (modified KdV) equation vt − 6v2vx + vxxx = 0 , then u
satisfies the KdV equation.

16. Lagrangian for KdV: Show that the Euler-Lagrange equation for the Lagrangian density

L =
1

2
φxφt −H =

1

2
φxφt − φ3x −

1

2
φ2xx. (4)

is the KdV equation φxt−6φxφxx+φxxxx = 0 written in terms of the velocity potential φ where
φx = u . Hint: Recall that the EL equation is

∂L
∂φ

= ∂t
∂L
∂φt

+ ∂x
∂L
∂φx
− ∂xx

∂L
∂φxx

. (5)
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17. GGKM evolution equations for discrete spectrum of bound states: The bound state wavefunc-
tions φn(x) in the potential u(x) (which goes to zero at ±∞) are eigenfunctions of L = −∂2+u ,
Lφn(x) = −κ2nφn(x) with eigenvalue λ = −κ2n < 0 . They are normalized to possess the asymp-
totic form

φn(x)→

{
eκnx for x→ −∞
bne
−κnx for x→∞.

(6)

Use the KdV Lax pair L,A with A = 4∂3 − 3[u, ∂]+ to obtain the evolution equations

κ̇n(t) = 0 and ḃn(t) = 8κ3nbn(t) (7)

Proceed by comparing the asymptotic behaviors as x→ ±∞ and using the fact that φ̇n +Aφn is
also an eigenfunction of L with the same eigenvalue as φn .

18. Direct scattering problem for attractive 1d Dirac delta potential. Consider the 1d Schrodinger
eigenvalue problem (−∂2 + u)φ = λφ for an attractive delta function potential u(x) = −gδ(x)
with g > 0 . (a) Get the continuity and discontinuity conditions on the eigenfunctions. (b) Show
that there is one bound state with wavefunction

φ1(x) = e−g|x|/2 with λ1 = −κ21 where κ1 =
g

2
. (8)

Find the corresponding unit norm wave function φ̃n and from its asymptotic behavior φn →
cne
−κ1x show that c1 =

√
g/2 .

(c) Consider scattering state wave functions with λ = k2 written as

φk(x) =

{
t(k)e−ikx for x < 0

e−ikx + r(k)eikx for x > 0,
(9)

Find the reflection and transmission amplitudes. Argue that 1 + r = t and that

r(k) = − g

g + 2ik
and t(k) =

2ik

g + 2ik
, so that a =

1

t
= 1 +

g

2ik
and b =

r

t
=
ig

2k
.

(10)
(d) Discuss the analytic structure of r, t, a, b on the complex k plane and relate it to the bound
state spectrum.

19. Inverse scattering for 1d Dirac delta via GLM equation. Recall that the potential u(x) may be
determined from the scattering data by solving the Gelfand-Levitan-Marchenko equation

F (x) =
N∑
n=1

c2ne
−κnx +

∫ ∞
−∞

r(k)eikx
dk

2π
. (11)

with u(x) = −2 d
dxK(x, x) . We will illustrate the use of the GLM equation to recover the delta

function potential from its scattering and bound state data. (a) Use complex contour integration to
show that

F (x) =
g

2
e−

gx
2 − g

2π

∫ ∞
−∞

eikx

g + 2ik
dk =

g

2
e−

gx
2 − g

2π
πe−

gx
2 Θ(x > 0) =

g

2
e−

gx
2 Θ(x < 0). (12)
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(b) Show that the GLM equation for the kernel K becomes

K(x, z) +
g

2
e−

g
2
(x+z)Θ(x+ z < 0) +

∫ ∞
x

K(x, y)
g

2
e

g
2
(y+z)Θ(y + z < 0)dy = 0. (13)

(c) For x+ z > 0 show that both step functions vanish and that K(x, z) = 0 . (d) For x+ z < 0
show that the GLM equation becomes

K(x, z) +
g

2
e−

g
2
(x+z) +

∫ −z
x

K(x, y)
g

2
e−

g
2
(y+z)dy = 0. (14)

(e) Show that the solution is given by K(x, z) = −g/2 for x + z < 0 so that K(x, z) =
−(g/2)Θ(x + z < 0) (there are general theorems that guarantee that the solution is unique). (f)
Find the potential u(x) , and compare with the attractive delta potential we began with.

20. Phase shift in scattering of KdV solitary waves: Staring with the initial profile u(x, 0) =
−6 sech2 x , it is possible to use the IST to determine u(x, t) at all times −∞ < t <∞ :

u(x, t) = −12
[3 + 4 cosh(2x− 8t) + cosh(4x− 64t)]

{3 cosh(x− 28t) + cosh(3x− 36t)}2
. (15)

At early and late times, one can show that u(x, t) has the asymptotic forms

u(x, t) ∼ −8sech2(2ξ ∓ 1

2
log 3)− 2sech2(η ± 1

2
log 3) as t→ ±∞. (16)

Here ξ = x − 16t and η = x − 4t . Discuss the asymptotic nature of this solution of KdV with
appropriate figures: how many solitons scatter, what are their speeds and shapes (tall/wide etc) and
what are the phase shifts in the scattering.

21. Recursion relation for KdV conserved densities. Use the Gardner transform ρx + ρ2 − 2ikρ =
u(x, t) and Laurent-like asymptotic expansion ρ =

∑∞
1 ρn/(2ik)n to derive the recursion relation

ρn+1 = ∂xρn +

n−1∑
p=1

ρpρn−p (17)

and the ‘initial’ condition ρ1 = −u .

22. First few conserved densities ρn for KdV: Use the above recursion relation to show that

ρ1 = u, ρ2 = −ux, ρ3 = u2 − uxx, ρ4 = (2(u2)− uxx)x,
ρ5 = −u4x + 2(u2)xx + u2x + 2uuxx − 2u3. (18)

Show that
∫∞
−∞ ρ3 dx and

∫∞
−∞ ρ5 dx lead to the conserved momentum and energy of KdV.

23. Show that ρ2n are exact differentials (‘total derivatives’). Proceed by splitting ρ = ρR + iρI .
(a) Use the Gardner transform ρx+ρ2−2ikρ = u to derive the equation ρR(2ρI−2k) = −∂xρI .
(b) Show that ρR is an exact differential. (c) Use the Laurent expansion ρ =

∑∞
1 ρn/(2ik)n and

the reality of ρn (see the next problem) to show that ρ2n are exact differentials. Thus
∫
ρ2n dx = 0

do not give non-trivial conserved quantities.
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24. Reality of conserved densities ρn for KdV: Recall that the conserved density ρ(x, k) is related
to the real KdV field u via the Gardner transform

ρx + ρ2 − 2ikρ = u(x, t) (19)

which is a 1-parameter family of Riccati-type equations (labelled by k ). We expanded ρ in a
JWKB-like Laurent series

ρ =
∞∑
n=1

ρn
(2ik)n

. (20)

Argue now that ρn are real. Hint: Compare the equations satisfied by ρ(x, k) and ρ∗(x,−k) ,
argue that they must both vanish as x → ∞ and use uniqueness of solutions of the Gardner
transform equation.

25. KdV conserved charges Hn are in involution. We claim that Hn = ((−1)n+1/2)
∫∞
−∞ ρ2n+1dx

Poisson commute (with respect to both Poisson brackets). Here we will show it for the Gardner
bracket, the same argument works for the Magri bracket. This would in essence make KdV an
infinite dimensional Liouville integrable system. For this, we will use the bi-Hamiltonian structure
of the KdV hierarchy:

∂tnu(x) = {u,Hn+1}1 = {u,Hn}2 (21)

where

{u(x), u(y)}1 = ∂xδ(x− y) and {u(x), u(y)}2 =
(
−∂3x + 2[∂x, u]+

)
δ(x− y) (22)

are the Gardner and Magri brackets. (a) Use the Leibnitz rule to show that the Gardner bracket of
any two functionals of u can be written as

{F [u], G[u]}1 =

∫
dxdy

δF

δu(x)

δG

δu(y)
{u(x), u(y)}1 = −

∫ (
∂x

δF

δu(x)

)
δG

δu(x)
dx =

∫
δF

δu(x)
∂x

δG

δu(x)
dx.

(23)
Similarly, integrating by parts one has for the Magri bracket

{F [u], G[u]}2 =

∫
δF

δu(x)

(
−∂3x + 2[∂x + u]+

) δG

δu(x)
dx (24)

(b) Thus, show that (21) becomes

∂x
δHn+1

δu(x)
=
(
−∂3x + 2[∂x, u]+

) δHn

δu(x)
. (25)

(c) Use this to show the ‘step-down-step-up’ formula for the conserved charges with respect to the
Gardner bracket

{Hp, Hq}1 = {Hp−1, Hq+1}1. (26)

(d) By repeated use of the step-down-step-up formula, show that {Hp, Hq} = 0 . Hints: (i) First
try a special case like p = 1, q = 2 . (ii) Then take (without loss of generality) p > q and suppose
p− q is even. (iii) then consider the case p− q odd.

26. Zero curvature representation for NLSE: Show that the nonlinear Schrödinger equation for the
complex scalar field ψ , iψt = −ψxx + 2κ|ψ|2ψ , which describes a 1d gas of bosons in a mean
field approximation, admits a zero curvature representation Ut− Vx + [U, V ] = 0 if U and V are
chosen as the 2× 2 matrices

U =
√
κ(ψ∗σ+ + ψσ−) + λ

σ3
2i

and
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V = iκ|ψ|2σ3 − i
√
κ (ψ∗xσ+ − ψxσ−)− λ

√
κ(ψ∗σ+ + ψσ−)− λ2σ3

2i
. (27)

Here σ± = (1/2)(σ1 ± iσ2) are built from the Pauli matrices σ1 and σ2 . It is often convenient to
write U and V as

U = U0 + λU1 and V = V0 + λV1 + λ2V2 where
U0 =

√
κ(ψ∗σ+ + ψσ−) = −V1, U1 =

σ3
2i

= −V2,
V0 = iκ|ψ|2σ3 − i

√
κ (ψ∗xσ+ − ψxσ−) . (28)

and organise the calculation in powers of λ . Write out U and V as 2 × 2 matrices and proceed.
Recall that

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, and σ3 =

(
1 0
0 −1

)
. (29)

27. Check that NLSE follows from the Hamiltonian and canonical Poisson brackets

H =

∫ (
|ψx|2 + κ|ψ|4

)
dx and {ψ(x), ψ∗(y)} = −iδ(x− y). (30)

28. Path ordered exponential. Consider the linear system of ODEs for the transition matrix T (y, x) :

∂yT (y, x) = U(y)T (y, x) with T (x, x) = I. (31)

For each x and y , T is a matrix and so is U(y) . The difficulty in solving this equation lies in the
fact that U is not a constant matrix and worse, the matrices U(y) may not commute at distinct
values of y . If they did, then the solution is just an ordinary exponential. (a) Convert this system of
ODEs into an integral equation (what do you integrate with respect to and from where to where?).
Show that you get

T (y, x) = I +

∫ y

x
U(z)T (z, x) dz. (32)

(b) By repeated use (‘Picard iteration’) of this formula obtain a series representaion for the transi-
tion matrix

T (y, x) =

∞∑
n=0

∫
· · ·
∫
x<zn<···<z1<y

dz1 · · · dzn U(z1)U(z2) · · ·U(zn). (33)

(c) Now, define path ordering denoted by the symbol P via

P(U(z1)U(z2)) =

{
U(z1)U(z2) if z1 ≥ z2
U(z2)U(z1) if z2 ≥ z1,

(34)

Essentially the earlier locations are placed to the right. Argue that
∫
z1>z2

dz1dz2U(z1)U(z2) =∫
z2>z1

dz1dz2U(z2)U(z1) , and thereby show that∫ y

x
dz1

∫ z1

x
dz2U(z1)U(z2) =

1

2

∫ y

x
dz1

∫ y

x
dz2 P(U(z1)U(z2)). (35)

Essentially, the integral over a triangle has been expressed as half the integral over a square. Pro-
ceeding this way, one can write the above series in a manner reminiscent of the exponential series

∫ y

x

dz1

∫ z1

x

dz2 · · ·
∫ zn−1

x

dzn U(z1)U(z2) · · ·U(zn) =
1

n!

∫ y

x

· · ·
∫ y

x

dz1dz2 · · · dznP(U(z1)U(z2) · · ·U(zn))

(36)
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so that

T (y, x) =
∞∑
0

1

n!

∫ y

x
· · ·
∫ y

x
dz1dz2 · · · dznP(U(z1)U(z2) · · ·U(zn)) =: P exp

[∫ y

x
U(z)dz

]
.

(37)
This series is called the path-ordered exponential and denoted P exp . The last expression is just a
short form and is defined by the series.

29. Recall the permutation operator acting on a 3-fold tensor product: P12(u⊗ v⊗w) = v⊗u⊗w
etc. There are essentially 3 permutation operators P12, P23, P31 on V ⊗ V ⊗ V . (a) What about
P21, P13, P32 ? (b) Show that any one can be written in terms of the other two in two different
ways: E.g.

P13 = P23P12P23 = P12P23P12. (38)

30. Here we will verify that the NLSE classical r -matrix satisfies the classical Yang-Baxter equa-
tion. We define

rij(λi − λj) =
κPij

2(λi − λj)
(39)

Introducing rij ≡ rij(λi − λj) with λ1 = λ, λ2 = λ′ and λ3 = λ′′ , the CYBE takes the compact
form

CYBE = [r12, r23] + [r23, r31] + [r31, r12] = 0. (40)

Use the properties of the permutation operators to check that the CYBE is indeed satisfied.

31. Bäcklund transformation for sine-Gordon and its kink soliton: (a) In d’Alembert’s (‘light
cone’) coordinates t, x = x ± t , show that the wave operator ∂2t − ∂2x ∝ ∂t∂x upto a numerical
factor. (b) In light-cone coordinates, the relativistic sine-Gordon field equation in appropriate units
is uxt = sinu . Consider the Bäcklund relations

1

2
(u+ v)x = a sin((u− v)/2) and

1

2
(u− v)t =

1

a
sin((u+ v)/2). (41)

for a non-zero constant a . Use these relations to show that

1

2
(u+ v)xt = cos

u− v
2

sin
u+ v

2
and

1

2
(u− v)tx = cos

u+ v

2
sin

u− v
2

. (42)

(c) Use sin(a+ b) = sin a cos b+ cos a sin b to show that u and v must satisfy the SG equation.
Thus (41) may be regarded as an auto-Bäcklund transformation for SG. (d) Exploit this transfor-
mation to generate a non-trivial solution to SG starting from the trivial solution v ≡ 0 . Itegrate
the Backlund relations in this case to get

2ax = 2 log | tan
u

4
|+ f(t) and

2t

a
= 2 log | tan

u

4
|+ g(x) (43)

where f and g are arbitrary functions of integration. This leads to the solution

u = 4 arctan
(
κeax+t/a

)
(44)

where κ is a constant of integration. This solution is called the sine-Gordon kink for a > 0 and
the anti-kink for a < 0 . Plot it to find out why. (e) Discuss in the context of the vacua of the SG
field (what is the Lagrangian for the SG field equations).
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32. Painlevé II from similarity reduction of KdV: Based on the previously discussed scaling symme-
try of KdV, we observe that the combinations t2/3u and xt−1/3 are scale-invariant. This suggests
that we look for scaling solutions of KdV where u(x, t) = −(3t)−2/3f(η) where the scaling vari-
able η = x(3t)−1/3 . Show that this leads to the 3rd order ODE f ′′′+ (6f − η)f ′− 2f = 0 . Show
that this ODE reduces to Painleve II (w′′ = 2w3 + zw + α) by making the Miura transform-like
substitution f = λw′ − w2 .

33. Zero curvature representation for ASDYM: If we introduce the coordinates z, z̃, w, w̃ and met-
ric ds2 = 2(dz̃dz − dw̃dw) on 4d (complexified) space, then the anti-self-duality condition be-
comes

Fwz = 0, Fww̃ = Fzz̃ and Fw̃z̃ = 0. (45)

Here Fzw = [Dz, Dw] = ∂zAw − ∂wAz + [Az, Aw] etc. Find a zero curvature representation
for these by proposing a pair of covariant derivatives L and M such that the condition for the
corresponding curvature to vanish R = [L,M ] = 0 for all values of the spectral parameter
λ is equivalent to the ASDYM equations. Proceed by taking L and M to be suitable linear
combinations of the covariant derivatives Dw , Dz , Dz̃, Dw̃ with suitable powers of λ .s
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