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Water, water, everywhere . . . (S T Coleridge, Rime of the Ancient Mariner)

Whether we do physics, chemistry, biology, computation, mathematics,
engineering or the humanities, we are likely to encounter fluids and be
fascinated and challenged by their flows.

Fluid flows are all around us: the air through our nostrils, tea stirred in a
cup, eddies and turbulent flow in a river, plasmas in the ionosphere etc.

From the standpoint of classical mechanics, a fluid is a continuum
system with an essentially infinite number of degrees of freedom. A
point particle has 3 translational degrees of freedom, a stone has three
translational and 3 rotational degrees of freedom. On the other hand, to
specify the state of a fluid, we must specify the velocity at each point!

We believe that the basic physical laws governing fluid motion are those
of mass conservation, Newton’s laws and those of thermodynamics.
The challenge lies in deducing the observed, often complex, patterns of
flow from the known partial differential equations, boundary and initial
conditions. This often requires a mix of physical insight, experimental
data, mathematical techniques and computational methods.
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Water water every where . . .

Some of the best scientists have worked on fluid mechanics: I Newton,
D Bernoulli, L Euler, J L Lagrange, Lord Kelvin, H Helmholtz, C L
Navier, G G Stokes, N Y Zhukovsky, M W Kutta, O Reynolds, L Prandtl,
von Karman, G I Taylor, J Leray, L F Richardson, A N Kolmogorov, L
Onsager, R P Feynman, L D Landau, S Chandrasekhar, O
Ladyzhenskaya, etc.

Fluid dynamics finds application in numerous areas: flight of airplanes
and birds, weather prediction, blood flow in the heart and blood vessels,
waves on the beach, ocean currents and tsunamis, controlled nuclear
fusion in a tokamak, jet engines in rockets, motion of charged particles
in the solar corona and astrophysical jets, convection, formation of
clouds, melting of glaciers, climate change, sea level rise, traffic flow etc.

Fluid flows can be regular (laminar) or chaotic (turbulent).
Understanding turbulence is one of the great challenges of science.

Fluid dynamics is among the 7 Clay Millenium Prize problems worth a
million dollars. The other physics problem is from particle physics.

5/60



Continuum, Fluid element, Local thermal equilibrium

In fluid mechanics we are not interested in microscopic positions and
velocities of individual molecules. Focus instead on macroscopic fluid
variables like velocity, pressure, density, energy and temperature that
we can assign to a fluid element by averaging over it.

By a fluid element, we mean a sufficiently large collection of molecules
so that concepts such as ‘volume occupied’ make sense and yet small
by macroscopic standards so that the velocity, density, pressure etc. are
roughly constant over its extent. E.g.: divide a container with 1023

molecules into 10000 cells, each containing 1019 molecules.

A flowing fluid is not in global thermal equilibrium. Collisions establish
local thermodynamic equilibrium so that we can assign a local
T ,p,ρ,E, . . . to fluid elements, satisfying the laws of thermodynamics.

Fluid description applies to phenomena on length-scale� mean free
path. On shorter length-scales, fluid description breaks down, but
kinetic theory of molecules (Boltzmann transport equation) applies.
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Eulerian and Lagrangian viewpoints

In the Eulerian description, we are interested in the time development of
fluid variables at a given point of observation ~r = (x,y,z). Interesting if
we want to know how density changes, say, above my head. However,
different fluid particles will arrive at the point ~r as time elapses.

It is also of interest to know how the corresponding fluid variables
evolve, not at a fixed location but for a fixed fluid element, as in a
Lagrangian description.

This is especially important since Newton’s second law applies directly
to fluid particles, not to the point of observation!

So we ask how a variable changes along the flow, so that the observer
is always attached to the same fluid element.
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Leonhard Euler and Joseph Louis Lagrange

Leonhard Euler (left) and Joseph Louis Lagrange (right).
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Material derivative measures rate of change along flow

Change in density of a fluid element in time dt as it moves from r to
r + dr is

dρ = ρ(r + dr, t + dt)−ρ(r, t) ≈
∂ρ

∂t
dt + dr · ∇ρ. (1)

Divide by dt, let dt→ 0 and use v = dr
dt to get instantaneous rate of

change of density of a fluid element located at r at time t:
Dρ
Dt
≡
∂ρ

∂t
+ v · ∇ρ. (2)

Dρ/Dt measures rate of change of density of a fluid element as it moves
around. Material derivative of any quantity (scalar or vector) s in a flow
field v is defined as Ds

Dt = ∂ts + v · ∇s.

Material derivative of velocity Dv
Dt = ∂tv + v · ∇v gives the instantaneous

acceleration of a fluid element with velocity v located at r at time t.

As a 1st order differential operator it satisfies Leibnitz’ product rule
D(fg)

Dt
= f

Dg
Dt

+ g
Df
Dt

and
D(ρv)

Dt
= ρ

Dv
Dt

+ v
Dρ
Dt
. (3)
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Continuity equation and incompressibility

Rate of increase of mass in a fixed vol V is equal to the influx of mass.
Now, ρv · n̂ dS is the mass of fluid leaving a volume V through a surface
element dS per unit time. Here n̂ is the outward pointing normal. Thus,

d
dt

∫
V
ρdr = −

∫
∂V
ρv · n̂ dS = −

∫
V
∇ · (ρv)dr ⇒

∫
V

[
ρt +∇ · (ρv)

]
dr = 0.

As V is arbitrary, we get continuity equation for local mass conservation:

∂tρ+∇ · (ρv) = 0 or ∂tρ+ v · ∇ρ+ρ∇ ·v = 0. (4)

In terms of material derivative, Dρ
Dt +ρ∇ ·v = 0.

Flow is incompressible if Dρ
Dt = 0: density of a fluid element is constant.

Since mass of a fluid element is constant, incompressible flow
preserves volume of fluid element.

Alternatively imcompressible means ∇ ·v = 0, i.e., v is divergence-free
or solenoidal. ∇·v = limV ,δt→0

1
δt
δV
V measures fractional rate of change of

volume of a small fluid element.
Most important incompressible flow is constant ρ in space and time.
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Sound speed, Mach number

Incompressibility is a property of the flow and not just the fluid! For
instance, air can support both compressible and incompressible flows.

Flow may be approximated as incompressible in regions where flow

speed is small compared to local sound speed cs =

√
∂p
∂ρ ∼

√
γp/ρ for

adiabatic flow of an ideal gas with γ = cp/cv.

Compressibility β =
∂ρ
∂p measures increase in density with pressure.

Incompressible fluid has β = 0, so c2 = 1/β =∞. An approximately
incompressible flow is one with very large sound speed (cs� |v|).

Common flows in water are incompressible. So study of incompressible
flow is called hydrodynamics. High speed flows in air/gases tend to be
compressible. Compressible flow is called aerodynamics/ gas dynamics.

Incompressible hydrodynamics may be derived from compressible gas
dynamic equations in the limit of small Mach number M = |v|/cs� 1.

At high Mach numbers M� 1 we have super-sonic flow and
phenomena like shocks.
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Newton’s 2nd law for fluid element: Inviscid Euler equation

Consider a fluid element of volume δV. Mass × acceleration is ρ(δV) Dv
Dt .

Force on fluid element includes ‘body force’ like gravity derived from a
potential φ. E.g. F = −ρ(δV)∇φ where −∇φ is acceleration due to gravity.

Also have surface force on a volume element, due to pressure exerted
on it by neighbouring elements

Fsurface = −

∫
∂V

p n̂ dS = −

∫
V
∇pdV; if V = δV then Fsurf ≈ −∇p(δV).

Newton’s 2nd law then gives the celebrated (inviscid) Euler equation
∂v
∂t

+ v · ∇v = −
∇p
ρ
−∇φ; v · ∇v→ ‘advection term’ (5)

Continuity & Euler eqns. are first order in time derivatives: to solve initial
value problem, must specify ρ(r, t = 0) and v(r, t = 0).

Boundary conditions: Euler equation is 1st order in space derivatives;
impose BC on v, not ∂iv. On solid boundaries normal component of
velocity vanishes v · n̂ = 0. As |r| → ∞, typically v→ 0 and ρ→ ρ0.
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Isaac Newton

Isaac Newton
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Barotropic flow and specific enthalpy

Euler & continuity are 4 eqns for 5 unknowns ρ,v,p. Need another eqn.

In local thermodynamic equilibrium, pressure may be expressed as a
function of density and entropy. For isentropic flow it reduces to a
barotropic relation p = p(ρ). It eliminates p and closes the system of
equations. E.g. p ∝ ργ adiabatic flow of ideal gas; p ∝ ρ for isothermal.

In barotropic flow, ∇p/ρ can be written as the gradient of an ‘enthalpy’

h(ρ) =

∫ ρ

ρ0

p′(ρ̃)
ρ̃

dρ̃ ⇒ ∇h = h′(ρ)∇ρ =
p′(ρ)
ρ
∇ρ =

∇p
ρ
. (6)

For example, h =
γ
γ−1

p
ρ for adiabatic flow of an ideal gas.

Reason for the name enthalpy: 1st law of thermodynamics
dU = TdS−pdV becomes dH = TdS + Vdp for enthalpy H = U + pV. For
an isentropic process dS = 0, so dH = Vdp.

Dividing by mass of fluid M we get d(H/M) = (V/M)dp. Defining
enthalpy per unit mass h = H/M and density ρ = M/V gives dh = dp/ρ.
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Barotropic flow and conserved energy

In barotropic flow p = p(ρ) and ∇p/ρ is gradient of enthalpy ∇h. So the
Euler equation becomes

∂tv + v · ∇v = −∇h. (7)

Using the vector identity v · ∇v = ∇( 1
2 v2) + (∇×v)×v, we get

∂tv + (∇×v)×v = −∇

(
h +

1
2

v2
)

where ∇h =
1
ρ
∇p. (8)

Barotropic flow has a conserved energy: kinetic + compressional

E =

∫ [
1
2
ρv2 + U(ρ)

]
d3r, where U′(ρ) = h(ρ). (9)

For adiabatic flow of ideal gas, h =
γ
γ−1

p
ρ and U = p/(γ−1). In the case

of a monatomic ideal gas γ = 5/3 and compressional energy takes the
familiar form (3/2)pV = (3/2)NkT.

More generally, the Euler and continuity equations are supplemented by
an equation of state and energy equation (1st law of thermodynamics).
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Flow visualization: Stream-, Streak- and Path-lines

If v(r, t) = v(r) is time-independent everywhere, the flow is steady.

Stream, streak and pathlines coincide for
steady flow. They are the integral curves
(field lines) of v, everywhere tangent to v:

dr
ds

= v(r(s)) or
dx
vx

=
dy
vy

=
dz
vz

; r(so) = ro.

In unsteady flow, streamlines at time t0 encode the instantaneous
velocity pattern. Streamlines at a given time do not intersect.

Path-lines are trajectories of individual
fluid ‘particles’ (e.g. speck of dust stuck
to fluid). At a point P on a path-line, it is
tangent to v(P) at the time the particle
passed through P. Pathlines can
(self)intersect at t1 , t2.
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Streak-lines
Streak-line: Dye is continuously injected into a
flow at a fixed point P. Dye particle sticks to the
first fluid particle it encounters and flows with it.
Resulting high-lighted curve is the streak-line
through P. So at a given time of observation tobs,
a streak-line is the locus of all current locations
of particles that passed through P at some time
t ≤ tobs in the past.
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Steady Bernoulli principle

Euler’s equation for barotropic flow subject to a conservative body force
potential Φ (e.g. Φ = gz for gravity at height z) is

∂v
∂t

+ (∇×v)×v = −∇B where B =
1
2

v2 + h +Φ (10)

For steady flow ∂tv = 0. Dotting with v we find the Bernoulli specific
energy B is constant along streamlines: v · ∇B = 0.

For incompressible (constant density) flow, enthalpy h = p/ρ. Thus along
a streamline 1

2 v2 + p/ρ+ gz is constant. For roughly horizontal flow,
pressure is lower where velocity is higher.

E.g. Pressure drops as flow
speeds up at constrictions in
a pipe. Try to separate two
sheets of paper by blowing
air between them!
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Daniel Bernoulli

Daniel Bernoulli
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Vorticity and circulation

Vorticity w = ∇×v is a measure of local
rotation/angular momentum in a flow. A flow
without vorticity is called irrotational.

Eddies and vortices are manifestations of
vorticity in a flow. [w] = 1/T, a frequecy.

Given a closed contour C in a fluid, the
circulation around the contour Γ(C) =

∮
C v ·dl

measures how much v ‘goes round’ C. By
Stokes’ theorem, it equals the flux of vorticity
across a surface that spans C.

Γ(C) =

∮
C

v ·dl =

∫
S
(∇×v) ·dS =

∫
S

w ·dS where ∂S = C.

Enstrophy
∫

w2 dr measures global vorticity. It is conserved in ideal 2d
flows, but not in 3d: it can grow due to ‘vortex stretching’ (see below).
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Examples of flow with vorticity w = ∇×v
Shear flow with horizontal streamlines is an
example of flow with vorticity:
v(x,y,z) = (U(y),0,0). Vorticity
w = ∇×v = −U′(y)ẑ.

A bucket of fluid rigidly rotating at small angular
velocity Ωẑ has v(r, θ,z) = Ωẑ× r = Ωrθ̂. The
corresponding vorticity w = ∇×v = 1

r ∂r(rvθ)ẑ is
constant over the bucket, w = 2Ωẑ.

The planar azimuthal velocity profile v(r, θ) = c
r θ̂

has circular streamlines. It has no vorticity
w = 1

r ∂r(r c
r )ẑ = 0 except at r = 0: w = 2πcδ2(r)ẑ.

The constant 2πc comes from requiring the flux
of w to equal the circulation of v around any
contour enclosing the origin∮

v ·dl =

∮
(c/r)r dθ = 2πc.
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Evolution of vorticity and Kelvin’s theorem

Taking the curl of the Euler equation ∂tv + (∇×v)×v = −∇
(
h + 1

2 v2
)

allows us to eliminate the pressure term in barotropic flow to get

∂tw +∇× (w×v) = 0. (11)

This may be interpreted as saying that vorticity is ‘frozen’ into v.

The flux of w through a surface moving with the flow is constant in time:
d
dt

∫
St

w ·dS = 0 or by Stokes’ theorem
d
dt

∮
Ct

v ·dl =
dΓ

dt
= 0. (12)

Here Ct is a closed material contour moving with the flow and St is a
surface moving with the flow that spans Ct.

The proof uses the Leibnitz rule for material derivatives Dt ≡ ∂t + v · ∇
d
dt

∮
Ct

v ·dl =

∮
Ct

Dtv ·dl +

∮
Ct

v ·Dtdl. (13)

Using the Euler equation Dtv = −∇h and Dtdl = dv we get

d
dt

∮
Ct

v ·dl =

∮
Ct

d
(

1
2

v2−h
)

= 0. (14)
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Kelvin & Helmholtz theorems on vorticity
d
dt

∮
Ct

v ·dl = 0 is Kelvin’s theorem: circulation around a material contour
is constant in time. In particular, in the absence of viscosity, eddies and
vortices cannot develop in an initially irrotational flow (i.e. w = 0 at t = 0).

Vortex tubes are cylindrical surfaces everywhere
tangent to w. So on a vortex tube, w ·dS = 0.

The circulation Γ around a vortex tube is independent
of the choice of encircling contour. Consider part of a
vortex tube S between two encircling contours C1 and
C2 spanned by surfaces S1 and S2.

Applying Stokes’ theorem to the closed surface Q = S1∪S∪S2 we get∫
Q

w ·dS =

∫
∂Q

v ·dl = 0 as ∂Q is empty,

⇒

∫
S1

w ·dS−
∫

S2

w ·dS = 0 or Γ(C1) = Γ(C2) since w ·dS = 0 on S.

As a result, a vortex tube cannot abruptly end, it must close on itself to
form a ring (e.g. a smoke ring) or end on a boundary.
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Helmholtz’s theorem: inviscid flow preserves vortex tubes

Suppose we have a vortex tube at initial time
t0. Let the material on the tube be carried by
flow till time t1. We must show that the new
tube is a vortex tube, i.e., that vorticity is
everywhere tangent to it, or w ·dS = 0.

Consider a contractible closed curve C(t0) lying on the initial vortex
tube, the flow maps it to a contractible closed curve C(t1) lying on the
new tube. By Kelvin’s theorem, Γ(C(t0)) = 0 = Γ(C(t1)). Now suppose S
is the surface on the new vortex tube enclosed by C(t1), ∂S = C(t1), then

0 = Γ(C(t1)) =

∫
S

w ·dS.

This is true for any contractible closed curve C(t1) on the new tube.
Considering an infinitesimal closed curve, we conclude that w ·dS = 0 at
every point of the new tube, i.e., it must be a vortex tube.
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Vortex rings and vortex stretching

Smoke rings are examples of vortex tubes. Dolphins blow vortex rings in
water and chase them.

Kelvin’s theorem implies that the strength Γ of a vortex tube is
independent of time.

Fluid flow tends to stretch and bend vortex tubes.

Since Γ =
∫

w ·dS is independent of time for a vortex tube, if the cross
section of a vortex tube decreases, the vorticity must increase.

This typically leads to growth of enstrophy
∫

w2dr.
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Lord Kelvin and Hermann von Helmholtz

Lord Kelvin (left) and Hermann von Helmholtz (right).
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Irrotational incompressible inviscid flow around cylinder

When flow is irrotational (w = ∇×v = 0) we may write
v = −∇φ. Velocity potential φ is like the electrostatic
potential in E = −∇φ which guarantees ∇×E = 0.

Incompressibility ∇ ·v = 0⇒ φ satisfies Laplace’s equation ∇2φ = 0.

We impose impenetrable boundary conditions: normal component of
velocity vanishes on solid surfaces: ∂φ

∂n̂ = 0 on boundary (Neumann BC).

For flow with asymptotic velocity −Ux̂ past a fixed ∞ cylinder of radius a,
translation invariance along z-axis makes this a 2d problem in r, θ plane.
The BCs are ∂φ

∂r = 0 at r = a and φ→ Ur cosθ as r→∞ (so v→−Ux̂).

Separating variables, gen. soln. to ∇2φ = (1/r)∂r(r∂rφ)+ (1/r2)∂2
θφ = 0 is

φ = (A0 + B0 lnr) +

∞∑
n=1

(
Anrn +

Bn

rn

)
(Cn cosnθ+ Dn sinnθ). (15)

Imposing BC at ∞ we get A0 = B0 = An = Cn = Dn = 0 except for A1 = U
and C1 = 1. The BC at r = a gives B1 = Ua2. Thus φ = U cosθ

(
r + a2

r

)
.

The corresponding velocity field is v = −∇φ = −Ux̂ + U a2

r2 (cosθ r̂ + sinθ θ̂).
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Potential flow and the added mass effect
Velocity field for potential flow (v = −∇φ) past a
cylinder is v = −Ux̂ + U a2

r2 (cosθ r̂ + sinθ θ̂).
Now consider problem of a cylinder moving with
velocity Ux̂ through a fluid asymptotically at rest.
By a Galilean transformation, the velocity field around the cylinder is
v′ = v + Ux̂ = U a2

r′2 (cosθ′ r̂′+ sinθ′ θ̂′) where r′, θ′ are relative to the
center of the cylinder.
This example can be used to illustrate the added mass effect. The force
required to accelerate a body (of mass M at U̇) through potential flow
exceeds MU̇, since part of the force applied goes to accelerate the fluid.
Indeed the flow KE 1

2ρ
! ∞

a (v′)2r′dr′dθ′ = 1
2ρ
!

U2a4

r′3 dr′dθ′ = 1
2ρπa2U2

≡ 1
2 M′U2 is quadratic in U just like the KE of cylinder itself. Thus the

total KE of cylinder + fluid is Ktotal = 1
2 (M + M′)U2.

The associated power to be supplied is K̇total = F ·U. So a force
F = (M +M′)U̇ is required to accelerate the body at U̇. Body behaves as
if it has an effective mass M + M′. M′ is its added or virtual mass. Ships
must carry more fuel than expected after accounting for viscosity.
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Sound waves in compressible flow

Sound waves are excitations of the ρ or p fields. Arise in compressible
flows, where regions of compression and rarefaction can form.
Notice first that a fluid at rest (v = 0) with constant pressure and density
(p = p0, ρ = ρ0) is a static solution to the continuity and Euler equations

∂tρ+∇ · (ρv) = 0 and ρ(∂tv + v · ∇v) = −∇p. (16)

Now suppose the stationary fluid suffers a small disturbance resulting in
small variations δv, δp and δρ in velocity, pressure and density

v = 0 + v1(r, t), ρ = ρ0 +ρ1(r, t) and p = p0 + p1(r, t). (17)

What can the perturbations v1(r, t),p1(r, t) and ρ1(r, t) be? They must be
such that v,p and ρ satisfy the continuity and Euler equations with
v1,p1,ρ1 treated to linear order (as they are assumed small).

It is found empirically that the small pressure and density variations are
proportional i.e., p1 = c2ρ1. We will derive the simplest equation for
sound waves by linearizing the continuity and Euler eqns around the
static solution. It will be possible to interpret c as the speed of sound.
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Sound waves in static fluid with constant p0, ρ0

Ignoring products of small quantities v1,p1 and ρ1, the continuity
equation ∂t(ρ0 +ρ1) +∇ · ((ρ0 +ρ1)v1) = 0 becomes ∂tρ1 +ρ0∇ ·v1 = 0.

Similarly, the Euler equation (ρ0 +ρ1)(∂tv1 + v1 · ∇v1) = −∇(p0 + p1)
becomes ρ0∂tv1 = −∇p1 upon ignoring products of small quantities.

Now we assume pressure variations are linear in density variations
(p1 = c2ρ1) and take a divergence to get ρ0∂t(∇ ·v1) = −c2∇2ρ1.

Eliminating ∇ ·v1 using continuity eqn we get the wave equation for
density variations ∂2

t ρ1 = c2∇2ρ1.

Why is c called the sound speed? Notice that any function of ξ = x− ct
solves the 1D wave equation: ∂2

t ρ1 = c2∂2
xρ1 for ρ1(x, t) = f (x− ct)

∂tρ1 = −cf ′, ∂2
t ρ1 = c2f ′′ while ∂xρ1 = f ′ and ∂2

xρ1 = f ′′. (18)

f (x− ct) is a traveling wave that retains its shape as it travels at speed c
to the right. Plot f (x− ct) vs x at t = 0 and t = 1 for f (ξ) = e−ξ

2
and c = 1.

For incompressible flow (ρ = ρ0,ρ1 = 0) c2 =
p1
ρ1

=
δp
δρ →∞ as the density

variation is vanishingly small even for large pressure variations.
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Heat diffusion equation

Empirically it is found that the heat flux between bodies grows with the
temperature difference. Fourier’s law of heat diffusion states that the
heat flux density vector (energy crossing unit area per unit time) is
proportional to the negative gradient in temperature

q = −k∇T where k = thermal conductivity. (19)

Consider gas in a fixed volume V. The increase in internal energy
U =

∫
V ρcvTdr must be due to the influx of heat across its surface S.∫

V
∂t(ρcvT)dr = −

∫
S

q · n̂ dS =

∫
S

k∇T · n̂ dS = k
∫

V
∇ ·∇T dr. (20)

cv = specific heat/mass (at constant volume, no work) and ρ = density.

V is arbitrary, so integrands must be equal. Heat equation follows:
∂T
∂t

= α∇2T where α =
k
ρcv

is thermal diffusivity. (21)

Heat diffusion is dissipative, temperature differences even out and heat
flow stops at equilibrium temperature. It is not time-reversal invariant.
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Including viscosity: Navier-Stokes equation

Heat equation ∂tT = α∇2T describes diffusion from hot→ cold regions.

(Shear) viscosity causes diffusion of velocity from a fast layer to a
neighbouring slow layer of fluid. The viscous stress is ∝ velocity
gradient. If a fluid is stirred and left, viscosity brings it to rest.

By analogy with heat diffusion, velocity diffusion is described by ν∇2v.

Kinematic viscosity ν has dimensions of diffusivity (areal velocity L2/T).

Postulate the Navier-Stokes equation for viscous incompressible flow:

vt + v · ∇v = −
1
ρ
∇p + ν∇2v (NS). (22)

NS has not been derived from molecular dynamics except for dilute
gases. It is the simplest equation consistent with physical requirements
and symmetries. It’s validity is restricted by experiment.

NS is second order in space derivatives unlike the inviscid Euler eqn.
Experimentally relevant boundary condition is impenetrability v · n̂ = 0
and ‘no-slip’ v|| = 0 on fixed solid surfaces.
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Claude Louis Navier, Saint Venant and George Stokes

Claude Louis Navier (left), Saint Venant (middle) and George Gabriel Stokes (right).
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Reynolds number R and similarity principle

Incompressible flows with same R have similar (rescaled) flow patterns.

Suppose U and L are a typical speed and length associated to a flow
(e.g. asymptotic flow speed U past a sphere of size L). Define

dim. less variables r′ =
r
L
, ∇′ = L∇ t′ =

U
L

t, v′ =
v
U
, w′ =

wL
U
.

Then incompressible NS vorticity eqn in non-dimensional variables is
∂w′

∂t′
+∇′× (w′×v′) =

ν

LU
∇′2w′. We define

1
R

=
ν

LU
. (23)

ν enters only through R. If 2 flows expressed in scaled variables have
same R and BCs, then flow patterns are similar. Flow around aircraft is
simulated in wind tunnel using a scaled down aircraft with same R.

R is a measure of ratio of inertial to viscous forces
Finertial

Fviscous
=
|v · ∇v|
|ν∇2v|

∼
U2/L
νU/L2 ∼

LU
ν

= R. (24)

When R is small (e.g. in slow creeping flow), viscous forces dominate
inertial forces and vice versa. 34/60
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Laminar viscous flow through a pipe: Poiseuille flow
Consider slow (R� 1) steady logitudinal incompressible
flow between two ends of a long cylindrical pipe of length
l, radius a, generated by pressure drop ∆p down the pipe.
Assume pressure drops linearly along axis of cylinder (chosen along ẑ)
and that velocity v = vz(r)ẑ depends only on the radial distance form
axis. Continuity equation ∇ ·v = 0 is identically satisfied. Ignoring time
derivatives and non-linear advection, the z-component of the NS
equation vt + v · ∇v = −∇p/ρ+ ν∇2v in cylindrical coordinates becomes:

−∆p
ρl

=
ν

r
d
dr

(
r

dvz

dr

)
where ν = kinematic viscosity. (25)

This is a 2nd order ODE requiring 2 BCs. We impose no-slip [vz = 0] on
the boundary r = a and smoothness on the axis

[dvz
dr = 0 at r = 0

]
.

Integrating and imposing BCs we get a parabolic velocity profile:∫ r

0
d
(
r′

dvz

dr′

)
=
−∆p
ρlν

∫ r

0
r′dr′ ⇒

dvz

dr
=
−∆p
ρlν

r
2
⇒ vz(r) =

∆p
4ρνl

(
a2− r2

)
.

Mass flowing through pipe/time: Q =
∫
ρv ·dS =

∫ a
0 ρvz 2πrdr =

π∆p
8νl a4.
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Stokes flow: drag on a sphere in steady creeping flow

Stokes studied incompressible (constant ρ) flow around a sphere of
radius a moving through a viscous fluid with velocity U

v′t + v′ · ∇′v′ = −
1
ρ
∇′p +

1
R
∇
′2v,

1
R

=
ν

aU
(26)

For steady flow ∂tv′ = 0. For creeping flow (R� 1) we may ignore
advection term and take a curl to eliminate pressure to get

∇
′2w′ = 0. (27)

By integrating the stress over the surface Stokes found the drag force

Fi = −

∫
σijnjdS ⇒ Fdrag = −6πρνaU. (28)

Upto 6π factor, this follows from dimensional analysis! Magnitude of drag
force is FD = 12

R
× 1

2πa2U2. 12/R is the drag coefficient for stokes flow.
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Drag on a sphere at higher Reynolds number R = Ua
ν

At higher speeds (R� 1), naively expect viscous term to be negligible.
However, experimental flow is far from ideal (inviscid) flow!
At higher R, flow becomes unsteady, vortices
develop downstream and eventually a turbulent
wake is generated.
Dimensional analysis implies drag force on a
sphere is expressible as FD = 1

2 CD(R) πa2 ρU2,

where CD = CD(R) is the dimensionless drag
coefficient, determined by NS equation.
F can only depend on ρ,U,a, ν. To get mass
dimension correctly, F ∝ ρUbνcad. Dimensional

analysis⇒ b = d and c = 2−d, so F ∝ ρ
(

Ua
ν

)d
ν2.

Thus, F = C′D(R) (ρa2 U2)/R2 = 1
2 CD(R) πa2 ρU2.

Comparing with Stokes’ formula for creeping
flow F = 6πaρνU we get CD ∼ 12/R as R→ 0.
Significant experimental deviations from Stokes’ law: enhancement of
drag at higher 1 ≤ R ≤ 105, then drag drops with increasing U!

38/60



Drag crisis clarified by Prandtl’s boundary layers

In inviscid flow (Euler equation) tangential velocity on solid surfaces is
unconstrained, can be large.

For viscous NS flow, no slip BC implies tangential v = 0 on solid
surfaces.

Even for low viscosity, there is a thin boundary
layer where tangential velocity drops rapidly to
zero. In the boundary layer, cannot ignore ν∇2v.

Though upstream flow is irrotational, vortices are generated in the
boundary layer due to viscosity. These vortices are carried downstream
in a (turbulent) wake.

Larger vortices break into smaller ones and so on, due to inertial forces.
Small vortices (at the Taylor microscale) dissipate energy due to
viscosity increasing the drag for moderate R.
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2D Incompressible flows: stream function

In 2D incompressible flow the velocity components are expressible as
derivatives of a stream function: v = (u,v) = (−ψy,ψx). Incompressibility
condition ∇ ·v = −ψyx +ψxy = 0 is identically satisfied.

Streamlines defined by dx
ds = u(x(s),y(s)) and

dy
ds = v(x(s),y(s)) or dx

u =
dy
v = ds are level

curves of ψ. For, along a streamline
dψ = (∂xψ)dx + (∂yψ)dy = vdx−udy = 0.

If in addition, flow is irrotational
(w = ∇×v = 0), then v admits a velocity
potential v = −∇φ so that (u,v) = (−φx,−φy).

So φ & ψ satisfy the Cauchy Riemann equations: φx = ψy, φy = −ψx and
the complex velocity potential f = φ+ iψ is analytic! φ and ψ are
harmonic: ∇2φ = 0⇒ incompressible and w = ∇2ψẑ = 0⇒ irrotational.

The level curves of ψ and φ are orthogonal : ∇φ ·∇ψ = −(u,v) · (v,−u) = 0.

Complex velocity g = u− iv is the derivative −f ′(z) of complex potential.
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Lift on an airfoil

Consider an infinite airfoil of uniform cross
section (axis along z). Airflow around it can be
treated as 2-dimensional, i.e. on x,y plane.

Airfoil starts from rest moves left with zero initial
circulation. Ignoring ν∇2v, Kelvin’s theorem
precludes any circulation developing around
wing. Streamlines of potential flow have a
singularity as shown in Fig 1.

Viscosity at rearmost point due to large ∇2v
regularizes flow pattern as shown in Fig.2.

In fact, circulation Γ develops around airfoil (Fig.
3). In frame of wing, we have an infinite airfoil
with circulation Γ placed perpendicularly in a
rightward velocity field v∞x̂.
Situation is analogous to infinite wire carrying current I placed
perpendicularly in a B field!
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Circulation around and airfoil

Current j in B field feels Lorentz force/Vol. j×B
where j = ∇×B/µ0 by Ampere’s law. Analogue of
Lorentz force is vorticity force in Euler equation

ρ∂tv +ρw×v = −ρ∇σ+ρν∇2v

B↔ ρv, j↔ w, µ0↔ ρ, I↔ Γ. Current carrying
wire feels transverse force BI/length. Expect
airfoil to feel force ρv∞Γ/length upwards (ŷ).

Outside the boundary layer flow can be approximated as ideal
irrotational flow which can be represented by a complex velocity
g = u− iv. Since g is analytic outside the airfoil, we can expand it in a
Laurent series, g = v∞+

a−1
z +

a−2
z2 + · · · .

Circulation around a closed streamline enclosing airfoil just outside
boundary layer is Γ =

∮
v ·dl =

∮
gdz =

∮
(udx + vdy) + i(udy− vdx) since

(udy− vdx) = 0 along a streamline. Thus by Cauchy’s residue theorem,
Γ = 2πia−1.
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Kutta-Zhukowski lift formula for incompressible flow

Force exerted by flow on airfoil is F =
∮

pn̂dl
where p is the air pressure along the boundary
and n̂ is the inward normal. By Bernoulli’s
theorem,

∮
pn̂dl = −1

2ρ
∮

v2 n̂dl.
If the line element dl along the streamline makes an angle θ with x̂ then
(dx,dy) = (dlcosθ,dlsinθ) and the inward normal n̂ = (−sinθ,cosθ). Thus,
Fx = 1

2ρ
∮

v2 sinθdl = 1
2ρ

∮
v2 dy and Fy = −1

2ρ
∮

v2 cosθdl = − 1
2ρ

∮
v2 dx.

The complex force Z = Fy + iFx = −
ρ
2

∮
v2(dx− idy) may be expressed in

terms of the circulation Γ using the complex velocity g. As udy− vdx = 0,

Z = −
ρ

2

∮ [
v2(dx− idy) + 2i(udy− vdx)(u− iv)

]
=
ρ

2

∮
(v2 −u2 −2iuv)(dx + idy)

Z = −
ρ

2

∮
g2dz = −

ρ

2

∮ [
v2
∞ + (2v∞a−1)/z + · · ·

]
dz = −(ρ/2)[2πi(2v∞a−1)] = −ρv∞Γ.

by Cauchy’s theorem. So Fx = 0 and Fy = −ρv∞Γ.
Fy > 0 and generates lift if the counter-clockwise
circulation Γ is negative, which is the case if
speed above airfoil is more than below.
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Nikolay Yegorovich Zhukovsky (left) and Martin Wilhelm Kutta (right).
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Transition from laminar to turbulent flow past a cylinder
Consider flow with asymptotic velocity Ux̂ past a fixed cylinder of
diameter L and axis along ẑ. The components of velocity are (u,v,w).
At very low R ≈ .16, the symmetries of the
(steady) flow are (a) y→−y (reflection in z− x
plane), (b) time and z translation-invariance (c)
left-right symmetry w.r.t. center of cylinder
(x→−x and (u,v,w)→ (u,−v,−w)).

All these are symmetries of
Stokes flow (ignoring the
non-linear advection term).

At R ≈ 1.5 a marked left-right
asymmetry develops.

At R ≈ 5, change in topology of flow: flow separates and recirculating
standing eddies (from diffusion of vorticity) form downstream of cylinder.
At R ≈ 40, flow ceases to be steady, but is periodic in time.
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Transition to turbulence in flow past a cylinder

At R & 40, recirculating eddies are periodically
(alternatively) shed to form the celebrated von
Karman vortex street.

The z-translation invariance is spontaneously
broken when R ∼ 40−75.

At higher R ∼ 200, flow becomes chaotic with
turbulent boundary layer.

At R ∼ 1800, only about two vortices in the von
Karman vortex street are distinct before
merging into a quasi uniform turbulent wake.

At much higher R, many of the symmetries of
NS are restored in a statistical sense and
turbulence is called fully-developed.
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What is turbulence? Key features.

Slow flow or very viscous fluid flow tends to be regular & smooth
(laminar). If viscosity is low or speed sufficiently high (R large enough),
irregular/chaotic motion sets in.
Turbulence is chaos in a driven dissipative system with many degrees of
freedom. Without a driving force (say stirring), the turbulence decays.
v(r0, t) appears random in time and highly disordered in space.
Turbulent flows exhibit a wide range of length scales: from the system
size, size of obstacles, through large vortices down to the smallest ones
at the Taylor microscale (where dissipation occurs).
v(r0, t) are very different in distinct experiments
with approximately the same ICs/BCs. But the
time average v̄(r0) is the same in all realizations.
Unlike individual flow realizations, statistical properties of turbulent flow
are reproducible and determined by ICs and BCs.
As R is increased, symmetries (rotation/reflection/translation) are
broken, but can be restored in a statistical sense in fully developed
turbulence.
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Lewis Richardson, Andrei Kolmogorov and Lars Onsager

Lewis Richardson (L), Andrei Kolmogorov (C) and Lars Onsager (R).

Big whirls have little whirls that feed on their velocity,
and little whirls have lesser whirls and so on to viscosity.

– L F Richardson, Weather Prediction by Numerical Process (1922).
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Taylor experiment: flow between rotating cylinders

Oil with Al powder between concentric cylinders a ≤ r ≤ b. Inner cylinder
rotates slowly at ωa with outer cylinder fixed. Oil flows steadily with
azimuthal vφ dropping radially outward from ωara to zero at r = b.
Shear viscosity transmits vφ from inner cylinder to
successive layers of fluid. Centrifugal force tends
to push inner layers outwards, but inward
pressure due to wall and outer layers balance it.
So pure azimuthal flow is stable.
When ωa > ωcritical, flow is unstable to formation of toroidal Taylor
vortices superimposed on the circumferetial flow. Translation invariance
with z is lost. Fluid elements trace helical paths.
Above ωcritical, inward pressure and
viscous forces can no longer keep
centrifugal forces in check. The outer
layer of oil prevents the whole inner layer
from moving outward, so the flow breaks
up into horizontal Taylor bands.
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Taylor experiment: flow between rotating cylinders
If ωa is further increased, keeping ωb = 0 then
# of bands increases, they become wavy and
go round at ≈ ωa/3. Rotational symmetry is
further broken though flow remains laminar.

At sufficiently high ωa, flow becomes fully turbulent but time average
flow displays approximate Taylor vortices and cells.
There are 3 convenient dimensionless combinations in this problem:
(b−a)/a, L/a and the Taylor number Ta = ω2

aa(b−a)3/ν2.

For small annular gap and tall cylinders, Taylor number alone
determines the onset of Taylor vortices at Ta = 1.7×104.
If the outer cylinder is rotated at ωb holding inner
cylinder fixed (ωa = 0), no Taylor vortices appear even
for high ωb. Pure azimuthal flow is stable.
When outer layers rotate faster than inner ones,
centrifugal forces build up a pressure gradient that
maintains equilibrium.
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Reynolds’ expt (1883): Pipe flow transition to turbulence

Consider flow in a pipe with a simple, straight inlet. Define the Reynolds
number R = Ud/ν where pipe diameter is d and U is flow speed.

At very low R flow is laminar: steady Poiseuille flow (parabolic vel.
profile).
In general, turbulence in the pipe seems to
originate in the boundary layer near the inlet or
from imperfections in the inlet.

If R . 2000, any turbulent patches
formed near the inlet decay.

When R & 104 turbulence first begins to appear in the annular boundary
layer near the inlet. Small chaotic patches develop and merge until
turbulent ‘slugs’ are interspersed with laminar flow regions.

For 2000 . R . 10,000, the boundary layer is stable to small
perturbations. But finite amplitude perturbations in the boundary layer
are unstable and tend to grow along the pipe to form fully turbulent flow.
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Shocks in compressible flow

A shock is usually a surface of small thickness across which v,p,ρ
change significantly: modelled as a surface of discontinuity.

Shock moves faster than the speed of sound. Roughly, if shock
propagates sub-sonically, it could emit sound waves ahead of the shock
that eliminate the discontinuity. Mach number M = v1/c > 1.

Sudden localized explosions like supernovae or bombs often produce
spherical shocks called blast waves. Nature of spherical blast wave from
atom bomb was worked out by Sedov and Taylor in the 1940s.

Material from undisturbed medium in front of shock (ρ1) moves behind
the shock and gets compressed to ρ2.

Fluxes of mass, momentum and energy are equal in front of and behind
the shock. This may be used to relate ρ1,v1,p1 to ρ2,v2,p2. These lead
to the Rankine-Hugoniot ‘jump’ conditions.

Viscous term ν∇2v is often important in a shock since v changes rapidly.
Leads to heating of the gas and entropy production.
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Prominent Indian fluid dynamicists

Subrahmanyan Chandrasekhar (left) and Satish Dhawan (right).
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Prominent Indian fluid dynamicists

Roddam Narasimha (left) and Katepalli Sreenivasan (right).
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Existence & Regularity: Clay Millenium Problem

Either prove the existence and regularity of solutions to incompressible
NS subject to smooth initial data [in R3 or in a cube with periodic BCs]
OR show that a smooth solution could cease to exist after a finite time.

J Leray (1934) proved that weak solutions to NS exist, but need not be
unique and could not rule out singularities.

Hausdorff dim of set of space-time points where singularities can occur
in NS cannot exceed one. So hypothetical singularities are rare!

O Ladyzhenskaya (1969) showed existence and regularity of classical
solutions to NS regularized with hyperviscosity −µ(−∇2)αv with α ≥ 2.
J-L Lions (1969) extended it to α ≥ 5/4.

A proof of existence/uniqueness/smoothness of solutions to NS or a
demonstration of finite time blow-up is mathematically important.

Physically, it is know that for large enough R, most laminar flows are
unstable, they become turbulent and seem irregular. Methods to
calculate/predict features of turbulent flows would also be very valuable.
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Jean Leray, Olga Ladyzhenskaya and Jacques Louis
Lions

Jean Leray (left), Olga Ladyzhenskaya (middle) and Jacques Louis Lions (right).
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von Karman vortex street in the clouds

von Karman vortex street in the clouds above Yakushima Island

Thank you!
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