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1 Introduction to mechanics of deformable media

Continuum mechanics begins by dealing with the nonrelativistic classical dynam-
ics of continuous deformable media. Examples are oscillations of stretched strings,
heat conduction in rods, elastic motion of solids (rods/beams), motion of fluids1 (air,
water) and plasmas (ionized gases), in roughly increasing order of complexity. All
of these systems involve a very large number of molecules (or degrees of freedom)
and we will treat them as continuous mass/charge distributions with an infinite num-
ber of degrees of freedom. Thus, unlike particle mechanics, continuum mechanics

1Collectively, sand grains sometimes flow like a fluid, though individual grains display properties nor-
mally associated with a solid.
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deals with fields. Examples of fields include the height of a stretched string, temper-
ature, elastic displacement, mass density, velocity, pressure, internal energy, specific
entropy, charge density, current density, electric and magnetic fields. While a classical
point particle is somewhere at any given time, a classical field is everywhere at any
given instant! Thus, continuum mechanics is a collection of (primarily nonrelativistic,
classical) field theories. Electromagnetism and gravitation are other examples of field
theories, though they often involve relativistic and/or quantum effects.

Due to the larger number of degrees of freedom, the dynamics of deformable bod-
ies is generally more complicated than that of point particles or rigid bodies. In fact,
we can imagine a rigid body becoming deformable by relaxing the constraints that fix
the distances between its constituents.

There are two principal formalisms for treating mechanics of continuous media,
the so-called Lagrangian and Eulerian descriptions. The former is closer to our treat-
ment of systems of particles: we follow the motion of each molecule or fluid element
(to be defined in Sect. 3) or bit of string. For example, if a fluid element occupied the
location a at t = 0, then we seek the trajectory r(a, t) of this fluid element, which
should be determined by Lagrange’s equations (ironically, this treatment was orig-
inally attempted by Euler). The Lagrangian description is particularly useful if we
have some way of keeping track of which material element is where. This is usually
not possible in a flowing liquid or gas, but is possible in a vibrating string since the bits
of string are ordered and may be labeled by their location along the string or by their
horizontal coordinate x for small vertical vibrations of a string that does not ‘bend
over’. For an elastic solid, the corresponding variable is the local displacement field
s(r, t) or ξ(r, t) which represents the departure from the equilibrium location of the
element that was originally at r. In a fluid like air or water, it is difficult to follow the
motion of individual fluid elements due to the tendency to mix.

So Euler developed the so-called Eulerian description, which attempts to under-
stand the dynamics of quantities (Eulerian variables) such as density ρ(r, t), pressure
p(r, t), velocity v(r, t) and temperature T (r, t) in a fluid at a specified observation
point r at time t. However, it must be emphasized that the laws of mechanics (New-
ton’s laws) apply to material particles or fluid elements, not to points of observation,
so one must reformulate the equations of motion so that they apply to the Eulerian
variables. The equations of motion in continuum mechanics are invariably expressed
as partial differential equations for fields (such as the density of a fluid or height of
a string at a given location and time). Thus, we are dealing with the classical dy-
namics of fields. We will now discuss the flow of fluids, primarily from an Eulerian
perspective.

2 Introduction to fluid mechanics

Fluid flows are all around us: the air through our nostrils, tea stirred in a cup,
water down a river and charged particles in the ionosphere. The flow of fluids can
be fascinating to watch. It is also an interesting branch of physics to which many of
the best scientists from the early days of Leonardo da Vinci, Isaac Newton, Daniel
Bernoulli and Leonhard Euler have contributed. Fluid dynamics finds application in
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numerous areas: flight of airplanes and birds, weather prediction, blood flow in the
heart and blood vessels, waves on the beach, ocean currents and tsunamis, flows in the
molten metallic core of the Earth, controlled nuclear fusion in a tokamak, jet engines
in rockets, motion of charged particles in the solar corona and astrophysical jets, ac-
cretion disks around active galactic nuclei, formation of clouds, melting of glaciers,
climate change, sea level rise, traffic flow, building pumps and dams, etc. Fluid flows
can range from regular and predictable (laminar) to seemingly disorganized and un-
predictable (turbulent) while displaying remarkable patterns.

We believe2 we know the macroscopic physical laws governing fluid motion. In
the absence of dissipation, they are the local conservation laws of mass, momentum
and energy along with a thermodynamic equation of state. The resulting equation
for the flow velocity in ‘ideal’ (dissipationless) flow goes back to the work of Eu-
ler (1757). In the presence of dissipation (viscosity, thermal conductivity, etc.), lo-
cal conservation of mass continues to hold although the ideal momentum and energy
equations are modified (in the simplest possible way) using empirical macroscopic
laws of Newton and Fourier governing diffusion of momentum and heat to arrive at
the equations for viscous flow. The corresponding equation for the flow velocity was
introduced by Claude-Louis Navier (1822) and George Gabriel Stokes (1845). It is
important to bear in mind that these equations of macroscopic fluid mechanics were
postulated based on empirical observations, macroscopic conservation laws and the
principles of minimality and simplicity rather than by a direct application of New-
ton’s second law to individual molecules. In fact, these equations were proposed well
before the molecular structure of matter was established. What is more, although
we now know the laws of molecular dynamics accurately, it has not been possible to
rigorously deduce the equations of fluid mechanics from them3. In this framework,
the equations of fluid mechanics have to be validated by comparing their predictions4

with macroscopic experimental measurements and observations. Fortunately, in many
cases where such comparisons have been possible, there is evidence in favor of the
fluid equations. However, there are situations where one needs to modify them (e.g., to
account for a nonlinear stress-strain relation or the polymeric structure of constituent
molecules) or abandon them (e.g., when one is interested in phenomena on molecular
length scales).

2Unlike in the application of Newton’s laws to a pair of point particles or a rigid body, there are signif-
icant approximations, imprecise notions of averaging and plausible assumptions involved in arriving at the
equations governing macroscopic fluid motion.

3Well after their formulation, some of these macroscopic fluid equations (especially for dilute gases, but
not for liquids) have been shown (by L Boltzmann, S Chapman, D Enskog and others) to follow from the
molecular kinetic theory of gases through a coarse-graining procedure based on some plausible assumptions
and approximations. In this chapter, we will introduce the equations of fluid mechanics from a macroscopic
viewpoint and make no attempt to derive them from kinetic theory.

4As in the rest of continuum mechanics, the evolution equations of fluid dynamics are partial differential
equations. However, these equations are nonlinear and despite much progress since the time of Euler, Navier
and Stokes, it is still a challenge to calculate (even with the best of computers) many features of commonly
occurring flows.
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3 Fluid element, local thermal equilibrium and dynamical fields

In a fluid description, we do not follow the microscopic positions and velocities
of individual molecules. We focus instead on macroscopic fluid variables such as
velocity, pressure, density, energy and temperature that we assign to a fluid element by
averaging over it. By a fluid element (sometimes called a material element), we mean a
sufficiently large collection of molecules so that concepts such as ‘volume occupied’
make sense and yet small in extent compared to the macroscopic length scales of
phenomena we wish to describe. Thus, quantities such as the density and velocity
will be assumed not to vary appreciably over a fluid element. For example, we could
divide a bucket with about 1023 molecules into 103 fluid elements, each containing
1020 molecules. Thus, we model a fluid as a continuum system with an infinite number
of degrees of freedom5. The fluid description applies to phenomena on length scales
large compared to the typical mean free path between collisions of molecules. On
shorter length scales, the fluid description breaks down6, though Boltzmann’s kinetic
theory of molecules applies.

A flowing fluid is generally not in global thermal equilibrium. What this means is
that it may not be possible to assign a common temperature to all parts of a fluid, and
heat could be transported between parts of a fluid. Nevertheless, collisions between
molecules typically establish local thermodynamic equilibrium so that we may assign
a local absolute temperature T , pressure p and density ρ to fluid elements, satisfying
an equation of state (such as that of an ideal gas7 p = ρRT/µ). Sometimes, it is con-
venient to replace some of these thermodynamic state variables with specific entropy
s (entropy S per unit mass) or specific internal energy ε (energy per unit mass) or spe-
cific volume v = 1/ρ. Each of these quantities could vary from one fluid element to
another and also with time. From an Eulerian standpoint, at each location r in a fluid
at time t, we have the dynamical fields of density ρ(r, t), pressure p(r, t), specific
entropy s(r, t), temperature T (r, t), etc. In addition to these scalar fields, we have the
velocity vector field v(r, t) that is instantaneously tangent to the flow at each point r.

4 Fluid statics: aero- or hydrostatics

Before considering fluid flows in more detail, we briefly remark upon the special
situation that prevails when the fluid is not in motion in the frame considered. This is
usually called hydrostatics or sometimes aerostatics (if one wishes to emphasize that
the density is inhomogeneous). In fluid static equilibrium, each fluid element is at rest
due to a balance between surface and body forces. Surface forces are those that act
on the element across its boundary due to material just outside the surface. The most

5To specify the pattern of a flow we must, among other things, specify the fluid velocity at each of the
infinitely many points in the container.

6In going from a molecular description to a fluid description, we replace sums over individual molecules
by integrals over the region occupied by the fluid, with fluid elements roughly playing the role of infinitesi-
mal integration elements. A system with a very large but finite number of molecular degrees of freedom is
approximated by a continuum system with infinitely many degrees of freedom.

7Here R = 8.314 Joules per Kelvin per mole is the universal gas constant and µ the molar mass, 12
grams per mole for Carbon-12
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common body force is gravity, which acts over the whole volume of the fluid element.
To obtain the equations of hydrostatic equilibrium, we consider a small fluid element
of mass δm = ρ δV occupying a volume δV . The external body force such as gravity
acting on the fluid element is fδV where f is the body force per unit volume (f = ρg
for gravity, where g is the acceleration vector due to gravity). In addition, we have the
surface force due to the pressure exerted on the fluid element by the fluid surrounding
the element. To calculate this, assume the fluid element is an infinitesimal cuboid with
sides of length dx, dy and dz.

p(x)
p(x + dx)

x x + dx

dy
dz

x

y
z

Pressure due to fluid to left and right of an element

𝛿Fx= [p(x) - p(x+dx)] dy dz

Figure 1: Horizontal force on a fluid element due to material to the left and right.

As shown in Fig. 1, the net pressure force in the x̂ direction is the product of the
area dydz and pressure difference between the left and right faces: δFx ≈ − ∂p

∂xdx ×
dydz. The negative sign is because pressure tends to compress the element and the
net force is leftward if p on the right face is larger than on the left face. Thus, the total
pressure force on the fluid element is

δFpressure = δFxx̂+ δFy ŷ + δFz ẑ = −(∇p) δV. (1)

For the element to be in static equilibrium, we must have

f −∇p = 0 or ∇p = ρg. (2)

where f and g are the body forces per unit volume and mass respectively. This is one
equation for two unknown functions, the pressure and density. It is usually supple-
mented by an ‘equation of state’ relating pressure to density. For an incompressible
liquid, ρ can often be assumed to be a constant. For an ideal gas at a fixed temper-
ature T , the equation of state is p = ρRT/µ where µ is the molar mass and R the
universal gas constant. This is usually written as Boyle’s law (p/po) = (ρ/ρo) where
po is the pressure at a reference density ρo. If the pressure and density variations are
at constant entropy (reversible adiabatic process) rather than constant temperature, the
corresponding formula is (p/po) = (ρ/ρo)

γ where the adiabatic index γ = Cp/Cv is
the ratio of heat capacities at constant pressure and volume. �

Example: Atmospheric pressure. For example, let us find the density and pressure
as a function of height z in the atmosphere, assuming it is in aerostatic equilibrium
and treating the temperature and acceleration due to gravity as independent of height.
The force balance equation reduces to

∂p

∂z
= −gρ(z) or

dp

p
= −gρo

po
⇒ p(z) = p(0)e−ρogz/po . (3)
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Thus, the pressure and density decrease exponentially with height if we ignore the
temperature and gravity variations. Prob. ?? treats this aerostatic situation with the
isentropic equation of state p ∝ ργ , which is more realistic. �

A frequently encountered circumstance is one where the body force field per unit
mass is the (negative) gradient of a potential g = −∇ϕ. Such a force is called
conservative. Then ∇p = −ρ∇ϕ. If, moreover, the density is a constant, we have
∇(pρ +ϕ) = 0. So p/ρ+ϕ must be a constant. In particular, an equipotential surface
must also be a surface of constant pressure (an isobar). For example, the free surface
of a liquid is an isobar (pressure equal to atmospheric pressure), and hence must also
be an equipotential surface within these approximations.

z 𝛚

-g z

^
r

^
𝛚 r r  2

Atmospheric 
pressure 
p

Uniformly 
rotating
liquid

Free
surface

Figure 2: Parabolic free surface of a uniformly rotating liquid.

Example: Free surface of rotating liquid. Let us apply (2) to determine the shape of
the free surface of a liquid that is rotated at a constant angular velocity ωẑ in a bucket
(cf. Fig. 2). After some time, the surface of the liquid is found to reach an equilibrium
shape. In a corotating frame, the body forces per unit mass are gravity −gẑ and the
centrifugal force rω2r̂ where we use cylindrical coordinates r, θ, z. Thus, the body
force per unit mass is the negative gradient of the effective potential ϕ = gz− 1

2r
2ω2.

Once the liquid settles into equilibrium, p/ρ+ gz − 1
2ω

2r2 is a constant. On the free
surface, the pressure is constant, equal to atmospheric pressure. So the equation for
the free surface gz − 1

2ω
2r2 = constant, describes a paraboloid obtained by rotating

the parabola gz − 1
2ω

2x2 = constant, about the z axis. �

5 Flow visualization: streamlines, pathlines and streaklines

In fluid mechanics, when we speak of the velocity of a flow, we are referring not to
the random thermal motions of individual molecules, but to the velocity of the overall
flow. The latter is smoother since an average over molecules in each fluid element has
been performed to arrive at the flow velocity field.

If the velocity vector field at every point of observation is independent of time,
we say the velocity field is steady, v(r, t) = v(r). More generally, we will say that
a fluid flow is steady if the velocity, density, pressure, temperature, specific entropy,
etc., are independent of time at every point of observation. To aid in the visualization
of a flow we define the concepts of streamlines, streaklines and pathlines. All three
coincide for a steady flow, though not in general. For steady flow, they are the ‘field
lines’ or integral curves of the velocity vector field, i.e., curves that are everywhere
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tangent to v(r) (see Fig. 3a). They are the trajectories of test particles moving in the
steady flow, i.e., solutions of the ODEs and initial conditions

dr

ds
= v(r(s)) and r(so) = ro. (4)

Here, s is the parameter along the integral curve, it is the time that parametrizes the
trajectory of the test particle moving in the steady flow. If we write these in Cartesian
components r(s) = (x(s), y(s), z(s)) and v(r) = (vx(r), vy(r), vz(r)), then the
ODEs for field lines become

dx

ds
= vx,

dy

ds
= vy and

dz

ds
= vz or

dx

vx
=
dy

vy
=
dz

vz
= ds. (5)

Streamlines. More generally, consider a possibly nonsteady flow. Streamlines at the
observation time to are defined as the integral curves of the velocity field v(r, to).
The streamline through any point of observation P with position vector r(P ) at a
given time to is tangent to the velocity vector v(r(P ), to). At a given instant of time,
streamlines cannot intersect. Since the flow may not be steady, the streamlines will
in general change with time. Streamlines of the velocity field are analogous to the
field lines of a (generally time-dependent) electric or magnetic field. In particular, for
a divergence-free (∇ · v = 0) flow, streamlines cannot emerge or spread out from a
point or region, just as magnetic field lines cannot. A flow that is spatio-temporally
regular is called laminar. An example is the slow, steady flow of water through a pipe,
where streamlines are parallel as in Fig. 3a.

Streamline tangent to 
instantaneous velocity vectors

Streamlines for steady 
flow through a pipe

v(r1,t)
v(r2,t)r2

r1

I think the figure is fine. I 
have added a file with 3 
figures side by side. This is 
the first one. Yes, pathlines is 
2nd. Yes, the streakline is 
somewhat random, but it has 
some structure. It needs to 
be roughly vertical initially 
and then start oscillating and 
then more complicated. I 
want at least one self 
intersection. It does not have 
to be exactly as I have drawn 
it. You could try a first 
approximation before 
improving it. Ok, and it is not 
urgent if you have other 
course work today. All right, 
have fun with it.

(a)

v(p,t2)
p

Particle A

Particle B
t0

t1
t2

t0

t1
t2

Pathlines in steady flow

Pathline in unsteady flow

t4

t3

t2

t1t0

t5

(b)

P

Streakline from a lamp

(c)
Figure 3: (a) Streamlines encode the instantaneous flow pattern. (b) Pathline of a
speck of sawdust as it is carried by a flow. (c) Caricature of a streakline in the air
above a lamp’s burning wick at the point P . The burning wick introduces particles of
soot into the air, which are carried by the air flow. The curve along which the soot lies
at a given time is the instantaneous streakline. A burning incense stick also produces
a streakline if we ignore the slow movement of the point of injection (reduction in
length of the stick as it burns).

Streamlines have information on the current flow. For example, we could draw the
streamlines of the monsoon winds over the Indian peninsula at the onset of the South-
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West monsoon on June 5, 2012. These streamlines changed with time and partly
reversed direction during the ‘receding’ North-East monsoon in November 2012.

Pathlines are the trajectories of individual fluid particles. For example, if we intro-
duced a small speck of saw dust8 (which reflects light) into the fluid and took a movie
of its trajectory, we would get its pathline (see Fig. 3b). At any point P along a path-
line, it is tangent to the velocity vector at P at the time the particle passed through P .
Pathlines can intersect themselves or even retrace themselves, for instance if a fluid
particle goes round and round in a container. Two pathlines can intersect if the point
of intersection corresponds to a different time on each of the two trajectories. For
example, two different dust particles may pass through the same point in a room on
two different days.

Streaklines. Suppose a small quantity of dye is continuously injected into a fluid
flow at a fixed point of injection P . The dye is so chosen that the dye particles do
not diffuse in the fluid. Rather, a dye particle tends to stick to the first fluid particle
it encounters and flows along with it. So the dye released at time t sticks to the
fluid particle that passes through P at time t and is then carried by that particle. The
resulting highlighted curve is the streakline through P as illustrated in Fig. 3c. So at
a given time of observation tobs, a streakline is the locus of all current locations of
particles that passed through P at some time t ≤ tobs in the past. Unlike streamlines,
streaklines provide information on the history of the flow. Streaklines for a given flow
are governed by three quantities: the point of injection P , the time of observation tobs

and the time when the injection of dye began ti. Such a streakline always begins at P
and extends to a point determined by ti when injection began. In practice, streaklines
get blurred by diffusion of the dye in the fluid, however they are reasonably sharp for
a time short compared to the diffusion time scale. A streakline cannot self-intersect.

6 Material derivative

In the Eulerian description of fluid motion, we are interested in the time devel-
opment of various fluid dynamical variables such as velocity, pressure, density and
temperature at a given point of observation r = (x, y, z) in the container. This is
reasonable if we are interested in predicting the weather changes at the point of obser-
vation over the course of time. For instance, the change in density at a fixed location
is ∂ρ(r)

∂t . However, different fluid particles will arrive at the point r as time passes. It
is also of interest to know how the corresponding dynamical variables evolve, not at a
fixed location but for a fixed small fluid element, as in a Lagrangian description. This
is especially important since the dynamical laws of mechanics apply directly to the
fluid particles, not to the point of observation. So, we may ask how a variable changes
along the flow, so that the observer is always attached to a fixed fluid element (or ‘ma-
terial element’) and travels along its pathline. For instance, the change in density of a

8Leonardo da Vinci (1452-1519) suspended fine sawdust in water and observed the motion of the saw
dust as it was carried by the flow. By contrast, pollen grains were used by Robert Brown (1827) to indirectly
reveal the random thermal motion of molecules under a microscope.
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fluid element in a small time dt as it moves from location r to r + dr is

dρ = ρ(r + dr, t+ dt)− ρ(r, t) ≈ dr ·∇ρ+
∂ρ

∂t
dt. (6)

We divide by dt, take the limit dt → 0 and observe that v = dr
dt is the velocity of the

fluid at the point r at time t. Thus, the instantaneous rate of change of density of a
fluid element that is located at r at time t is

Dρ

Dt
≡ dρ

dt
=
∂ρ

∂t
+ v ·∇ρ = (∂t + vx∂x + vy∂y + vz∂z) ρ. (7)

D
Dt = d

dt ≡
∂
∂t + v · ∇ is called the material9 (also total, substantial, convective)

derivative. It can be used to express the rate of change of a physical quantity (velocity,
pressure, temperature, etc.) associated to a fixed fluid element, i.e., along the flow
specified by the velocity field v. This formula for the material derivative bears a
resemblance to the rigid body formula relating the time derivatives of a vector relative
to the lab and corotating frames:

(
dA
dt

)
lab

=
(
dA
dt

)
rot

+ Ω×A. A quantity f (could
be a scalar or a vector) is said to be conserved along the flow or dragged by the flow
if its material derivative vanishes Df

Dt = 0.
Since D

Dt is a first order partial differential operator, Leibniz’s product rule of
differentiation holds for scalar functions f, g: D(fg)

Dt = f DgDt + Df
Dt g. Similarly, for a

scalar f and vector field w, we check that the Leibniz rule holds

D(fw)

Dt
=
Df

Dt
w + f

Dw

Dt
. (8)

7 Compressibility, incompressibility and divergence of velocity field

We define a flow to be incompressible if the volume occupied by any fixed fluid
element10 (not necessarily small) remains constant in time although its shape may
change. This is approximately true for water flowing in a hose pipe. Generally, liq-
uids tend to be incompressible, they offer a large opposing force to attempts to change
volume. Gases are more compressible, and high speed flows in gases tend to be com-
pressible. However, the same material (like air) under different conditions may behave
differently, depending on the speed of the flow in comparison to the speed of sound,
as we will explain later in this section.

To clarify the idea of incompressibility, we ask how the volume V of a region Ω
occupied by a fluid changes with time11, i.e., we seek an expression for dVdt . Suppose
Ω is bounded by a surface S = ∂Ω with outward area element dS and outward unit

9The adjectives material or substantial are meant to convey that D/Dt is a rate of change computed
while moving with the material or substance.

10By a fixed fluid element we mean a fixed collection of molecules. One can think of them as being
surrounded by an imaginary impermeable membrane that instantaneously assumes the shape of the region
they occupy.

11Here, dV
dt

is not the material derivative in the strict sense of Sect. 6, since V is not a local field.
However, it is similar in spirit as it is the rate of change of volume following the flow.
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n̂

v

dS(t)

dS(t+dt)

     ^v . n dt

v dt

              ^ dV = v . n dt dS  

Volume swept by surface element  dS

Figure 4: Surface element dS = n̂ dS is carried by a flow v over a time dt sweeping
out a volume dV = v · n̂ dt dS. The figure shows a side view of the volume.

normal n̂ such that dS = n̂ dS. In a small time dt, the region Ω changes by a
movement of its bounding surface12 in the direction of v. At a point r on ∂Ω, the
surface element dS moves out a perpendicular distance v · n̂ dt where v is the fluid
velocity at the point r (see Fig. 4). Thus, the change in volume dV (dS) due to the
area element dS moving out a bit is v · n̂ dt dS. To include the contributions of all
area elements, we integrate over the entire bounding surface to arrive at

dV

dt
=

∫
S

v · n̂ dS =

∫
Ω

∇ · v dr. (9)

The last equality uses Gauss’ divergence theorem to transform the surface integral into
a volume integral. Since this is true for a fluid parcel of any volume (above molecular
sizes), let us specialize to a small fluid element Ω (so that ∇ · v is roughly constant
over its extent) at location r having volume δV . Then,

dδV

dt
=
D δV

Dt
≈ (∇ · v) (δV ) or ∇ · v = lim

V→0

1

V

dV

dt
= lim
V→0

d log V

dt
. (10)

So the divergence of the velocity field is the fractional rate of change of volume of a
small fluid element.

A flow is incompressible if each fluid element maintains its volume during the
flow, i.e., dVdt = 0 for all V (above molecular scales). It follows that a flow is incom-
pressible iff the velocity field is divergence-free: ∇ · v = 0.

Examples. A simple example of an incompressible flow is one where the density of
the fluid is the same everywhere and at all times. In fact, if the density ρ is a constant,
then the volume of an element is a fixed multiple (1/ρ) of its mass. However, the
mass of a material element is conserved, so its volume must remain constant. A
more general example of an incompressible flow is one where the density of a given
fluid element is constant in time, though different fluid elements may have different
densities. This happens for horizontal flows in the atmosphere, where the density is

12We neglect the infinitesimal change in the area dS of the surface element due to the flow. The change
in volume due to such a change is of second order in infinitesimals. The surface area of a material element
can change even in incompressible flow.
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stratified by height though the flow is horizontal. Note that the same fluid (e.g., air)
under different conditions may exhibit incompressible and compressible flows. The
study of compressible flows is usually termed gas dynamics or aerodynamics, while
the study of incompressible flows is often termed hydrodynamics.

Compressibility and bulk modulus. Incompressibility means the volume of a fluid
element does not change irrespective of the pressure applied across its surface. A
measure of the compressibility13 of a flow is the compressibility κ = − 1

V
∂V
∂p . The

negative sign ensures that κ ≥ 0, since pressure tends to decrease volume in most
materials. Thus, κ→ 0 in an incompressible flow.

The reciprocal of compressibility is called the bulk modulus K. Since the mass of
a fluid element is conserved, incompressibility may be taken to mean that the density
does not change with applied pressure. Indeed, since ρ ∝ 1/V , we may write the
compressibility14 also as κ = 1

ρ
∂ρ
∂p . �

Relation to speed of sound. Intuitively, a sound wave is a wave of compression and
expansion. As we will learn in Sect. 12, a sound wave propagates changes in density
and travels at the speed cs where c2s =

(
∂p
∂ρ

)
s

(for flow with constant specific entropy
s). Evidently, cs grows as the compressibility κ decreases. Solids tend to be less
compressible than gases. As a consequence, sound propagates faster in steel than in
air and we can hear an approaching train on a railway track earlier than it is heard
through the air. If the flow velocity |v| is small compared to the speed of sound cs,
then the flow can usually be approximated as incompressible15. In fact, we may regard
a strictly incompressible flow as one where the speed of sound is infinite. Crudely, any
attempt by the flow to alter the density of a fluid element is immediately wiped out
since sound travels much faster than the flow and irons out the change. �

Incompressibility in 2d: stream function. The condition for a vector field on the x-y
plane to be incompressible can be solved in terms of a scalar stream function ψ(x, y).
Indeed, suppose v = (u(x, y), v(x, y), 0), then ∇ · v = 0 becomes the condition
ux + vy = 0, where subscripts denote partial derivatives. Now, if

u = ψy and v = −ψx, (11)

then the incompressibility condition is identically satisfied. In 3d vector notation,
we can regard ψ(x, y)ẑ as a vector potential for the incompressible velocity field:
v = ∇ × (ψẑ), which is then automatically divergence-free. This is similar to how
the solenoidal magnetic field is expressed in terms of a vector potential B = ∇×A
in electrodynamics. �

13Intuitively, compressibility measures how much the volume of a fluid element decreases in response to
a unit increase in applied pressure. To obtain a nontrivial limit as V → 0, we divide by the volume V of
the fluid element to arrive at the local (intensive) variable κ.

14In evaluating this partial derivative using the thermodynamic equation of state (see Sect. 10), a third
variable such as temperature or entropy is held fixed. So one has slightly different notions of compressibility
depending on what is held fixed.

15The Mach number M = |v|/cs (which could depend on location and time) is a way of quantifying
this. The Mach number is zero in incompressible flow. Flow in regions where M < 1 is called subsonic
while it is supersonic where M > 1.
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To sum up, we introduced the idea of incompressibility via the divergence of v
and then discussed the physical meaning of compressibility in terms of the density ρ.
Pleasantly, the divergence-free condition ∇ · v = 0 may be expressed in terms of the
material derivative of ρ via the continuity equation, as we will see in Sect. 8.

8 Local conservation of mass: continuity equation

The total mass of fluid in a given fluid element remains constant in time, since
material does not enter or leave the element. Consider a small fluid element of volume
δV in the vicinity of the point r where the fluid density is ρ(r) at time t. Then the
mass of the fluid element is δm = ρ δV . The material derivative of δm must vanish.
Using the Leibniz rule (8) and (10) we get for any small δV ,

0 =
D δm

Dt
=
D(ρ δV )

Dt
=
Dρ

Dt
δV + ρ

D δV

Dt
=

(
Dρ

Dt
+ ρ∇ · v

)
δV. (12)

Thus, we arrive at the continuity equation expressing conservation of mass

Dρ

Dt
+ ρ∇ · v = 0. (13)

We immediately see that if the density is constant along the flow (DρDt = 0), then
the flow is divergence-free (∇ · v = 0) and incompressible. Expanding the material
derivative, we get

∂ρ

∂t
+ v ·∇ρ+ ρ∇ · v = 0. (14)

In particular, if ρ = ρ0 is constant in both time and space, then the flow must be
incompressible. On the other hand, if the flow is incompressible, i.e., ∇ · v = 0, then
the density must be constant along the flow, DρDt = ∂ρ

∂t + (v ·∇)ρ = 0. We say the
density is advected or transported by an incompressible flow.

Combining the last two terms in (14), the continuity equation can be written in
local conservation form:

∂ρ

∂t
+ ∇ · (ρv) = 0. (15)

We say that ρ is the locally conserved mass density and ρv is the corresponding mass
current density. The continuity equation says that the rate of change of density at a
point is balanced by the divergence of the mass current density. We may also write
(15) in integral form, by integrating over a region Ω that is fixed in space (does not
move with the flow) and applying Gauss’ divergence theorem:∫

Ω

∂ρ

∂t
dr +

∫
Ω

∇ · (ρv) dr = 0 or
d

dt

∫
Ω

ρ dr +

∫
S=∂Ω

ρv · dS = 0. (16)

The 1st term is the rate of increase of mass inside a fixed volume Ω. The 2nd gives the
outward flux of mass across the boundary S. So mass is neither created nor destroyed:
it can only move around continuously, hence the name ‘continuity’ equation. If Ω is
the entire flow domain, then the first term is the rate of increase of mass of the fluid as
a whole, which must vanish provided the mass flux across the boundary is zero.
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9 Euler equation for inviscid flow

An inviscid (sometimes called ideal) fluid flow is one where no resistance is of-
fered to changes in shape that are not accompanied by a change in volume. We will
elaborate on this shortly. In particular, ideal fluids assume the shape of the container;
they lack a rigidity of form. This means that in an ideal flow, the force acting on a
material element (anywhere in the fluid) across its surface, due to the material outside,
is everywhere normal to the surface. Tangential surface forces tend to shear the ele-
ment and change its shape without affecting its volume. On the other hand, normal
surface forces tend to compress or expand16 the element and thereby change its vol-
ume. The inward directed normal surface force per unit area is called pressure p. So in
an inviscid flow, tangential or shearing stresses vanish irrespective of the location and
orientation of the surface. In viscous flows, tangential forces typically arise between
layers of fluid in relative motion. Thus, tangential forces are absent in hydrostatics.

Stress tensor17. In general, forces need not be either normal or tangential to sur-
faces18 in the fluid, and they could vary in magnitude and direction with location. The
stress tensor is a quantity that encodes the force per unit area acting across an element
of surface. Let n̂ δS be a small surface element of area δS, with unit normal n̂, cen-
tered at r. Let F (n̂ δS, r) be the force that acts across the surface, its magnitude must
be proportional to the area δS. Precisely, it is the force on the material on the side to
which n̂ points, due to the material on the other side, as shown in Fig. 5. In general,
F and n̂ point in different directions and are related by a linear transformation, the
transformation of stress. If we choose to write all vectors in some basis, e.g., resolve
them according to Cartesian components, then this linear relation may be written as

Fi(n̂ δS, r) =
∑

j
Tij(r)nj δS. (17)

The 3×3 matrix Tij(r) is called the stress tensor field. It depends only on the location
r and not on the surface or n̂. By choosing a surface whose normal n̂ points in the
jth direction, we see that Tij is then the ith component of the force acting on the
material towards the jth direction of a surface of unit area whose normal points in
the jth direction. Alternatively, suppose δS is a small surface with normal n̂, then∑
j Tijnj(δS) is the ith component of the force acting on the material on the side to

which the normal n̂ points.

Example: stress tensor in hydrostatics and inviscid flow. By definition, hydrostatic
pressure acts normal to any surface. So consider a small cuboid with axes along
Cartesian axes. It follows that Tij = 0 for i 6= j, as there are no tangential stresses.
Moreover, T33 = p since the force across the top surface (whose normal points along
ẑ) due to the fluid below, is pẑ. We get the same answer by considering the bottom
surface. Proceeding in this way, Tij = pδij . This formula for the stress tensor due to

16Normal surface forces that tend to expand an element are called tensile stresses, as is the case in an
elastic rod that is being stretched. Tensile stresses correspond to a negative pressure.

17Here, we introduce the stress tensor in general, not necessarily for inviscid flow.
18These may be external or, more frequently, hypothetical internal surfaces in the fluid.
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Figure 5: Components of the force due to fluid A on fluid B across a small surface
with unit normal n̂ which here points along ŷ. T32 is the third component of the force
on the material located on the second direction of the surface.

hydrostatic pressure is independent of basis: multiples of the identity matrix have the
same components in any basis.

More generally, the absence of tangential stresses in an inviscid flow irrespective
of orientation of surfaces implies that the stress tensor is diagonal in every basis, and
must therefore be proportional to the identity: Tij = pδij . �

Euler equation. To derive the equation of motion for an inviscid flow, consider a
small fluid element of mass δm = ρ δV occupying a volume δV and having instanta-
neous velocity v. Let us write Newton’s 2nd law for this fluid element. The change in
its velocity in a time dt as it is displaced from r to r + dr is

dv = v(r + dr, t+ dt)− v(r, t) ≈ ∂v

∂t
dt+ (dr ·∇)v. (18)

Dividing by dt, letting dt→ 0 and noting that dr/dt = v, we obtain its acceleration:
Dv/Dt ≡ ∂v/∂t+ (v ·∇)v. The material derivative Dv/Dt differs from the partial
derivative by the quadratically nonlinear ‘advection’ term (v ·∇)v. By Newton’s 2nd

law, the force acting on the element must equal ρ δV Dv
Dt .

We consider two sorts of forces acting on the fluid element. There can be an
external force field such as gravity (called a body force) acting on the fluid. It may be
expressed as fδV where f(r) is the body force per unit volume (e.g., f = ρg where
g is the acceleration due to gravity). In addition, we have the surface force due to the
pressure exerted on the element by the fluid surrounding the element. To calculate
this, assume the fluid element is a cuboid with sides dx, dy, dz. The net pressure force
in the x̂ direction is the product of the area dy dz and pressure differential between
the two faces: δFx = − ∂p

∂xdx × dy dz. The − sign arises because if p is greater on
the right face of the element compared to the left face, then the net force would be
leftward. Thus, the total surface force19 on the fluid element is δF = −(∇p)δV .

19More generally, the force due to pressure across the surface ∂(δV ) of the element is

δFsurface = −
∫
∂(δV )

pn̂ dS = −
∫
δV

∇p dV ≈ −∇p δV. (19)
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Thus, Newton’s 2nd law for the fluid element reads

ρ δV
Dv

Dt
= −(∇p) δV + f δV. (20)

Dividing by δV , we get Euler’s celebrated equation of motion20 for an inviscid fluid.
It must be considered in conjunction with the continuity equation (13)

∂v

∂t
+ v ·∇v = −1

ρ
∇p+

f

ρ
and

Dρ

Dt
+ ρ∇ · v = 0. (22)

Notice that the Euler equation is quadratically nonlinear in v due to the v ·∇v advec-
tion term. This makes it difficult to solve but also allows it to describe a wide variety
of ideal flows.

A vector identity allows us to write the advection term in terms of the vorticity
w = ∇× v and a gradient term:

∂v

∂t
+w × v = −1

ρ
∇p− 1

2
∇v2 +

f

ρ
(23)

Here w × v is called the vortex force per unit mass or Lamb vector. We will have
more to say about vorticity in Sect. 13.

The Euler and continuity equations are first order in time derivatives of v and
ρ. So we need to specify the initial values ρ(r, 0) and v(r, 0), to be able to evolve
them forward in time21. However, these are still only four evolution equations for five
unknown functions (density, pressure and three components of the velocity field). In
particular, we have not specified how the pressure evolves in time. We will address
this question for adiabatic flow in Sect. 10. Here, we deal with the slightly simpler
case of incompressible constant density flow.

Pressure for constant density flow. If ρ(r, t) = ρ̄ is a constant in space and time,
then the continuity equation (14) implies ∇ · v = 0. Taking the divergence of the
Euler equation (22) (in the absence of external body forces), the time derivative term
is eliminated leaving us with a nondynamical ‘constraint’ equation

∇2p = −ρ̄∇ · (v ·∇v). (24)

We have used a corollary of Gauss’ divergence theorem to convert the surface integral to a volume integral
and taken ∇p to be constant over the small volume δV . The minus sign is because n̂ is the outward-
pointing normal.

20The Euler equation can be written in terms of the stress tensor Tij = pδij

∂tvi + vj∂jvi = −
1

ρ
∂jTij +

1

ρ
fi in Cartesian components. (21)

The equation may be generalized to viscous flows by including tangential stresses in Tij (see Sect. 19).
Here, repeated indices are summed and no distinction is made between upper and lower indices.

21In addition, we need to impose suitable boundary conditions. The Euler and continuity equations are
first order in space derivatives, and we may impose conditions on the boundary values of v and ρ. On fixed
impenetrable boundaries, the normal component v·n̂ must vanish. In the absence of viscosity, the tangential
component of v is unconstrained on boundaries. In unbounded regions, we typically have decaying BCs:
v → 0 and ρ→ ρ0 as |r| → ∞.
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If we view the RHS as a source, this is Poisson’s equation22 for p. It can be solved with
suitable boundary conditions, say using Green’s function for the Laplace operator. For
decaying BCs, we have

p(r, t) =
ρ̄

4π

∫ ∇ · (v ·∇v)(r′)

|r − r′|
dr′. (25)

Thus, for constant density, we have been able to eliminate the pressure from the Euler
equation, which becomes an evolution equation for v alone. We say that in constant
density flow, the pressure is not dynamical. It does not obey an independent evolution
equation but is determined by the instantaneous velocity distribution. See Prob. ?? for
the case of incompressible flow with variable density. �

10 Ideal adiabatic flow: entropy advection and equation of state

As pointed out below Eq. (22), the Euler and continuity equations (22) are gen-
erally an underdetermined system: they do not tell us how the pressure evolves. To
understand how the pressure evolves, we need to broaden our physical perspective.
Recall from Sect. 3 that a fluid can usually be considered to be in local thermal equi-
librium. This means there is a local temperature field T (r, t) that, along with the
pressure and density, satisfies an equation of state (p = ρkbT/m for an ideal gas with
molecular mass m.). To find the remaining dynamical equation, it is fruitful to ask
how the conjugate variable to T , i.e., the entropy evolves. For a dissipationless flow,
it is physically reasonable to suppose that the entropy of a fluid element remains con-
stant in time, just as its mass does. In other words, there is no entropy production or
heat exchanged between fluid elements. Such a flow is called adiabatic.

Dynamics of specific entropy. Now consider a small fluid element of volume δV and
let s denote the specific entropy field (entropy per unit mass). Then the entropy of the
fluid element is ρ s δV . If this is conserved as the element moves around, then its
material derivative must vanish.

Using the Leibniz rule and (10), we get

D(ρsδV )

Dt
= ρs(∇ · v)δV + δV

D(ρs)

Dt
= 0 or ∂t(ρs) + ∇ · (ρsv) = 0. (26)

In other words, the entropy per unit volume ρs is locally conserved23 with the cor-
responding entropy current given by ρsv. Using the continuity equation (14), the
adiabaticity of the flow implies that s is advected by v:

∂ts+ v ·∇s = 0. (27)
22 In electrostatics, when the electric field is expressed in terms of an electrostatic potential (E = −∇φ),

Gauss’ law ∇ ·E = ρ/ε0 leads to Poisson’s equation ∇2φ = −ρ/ε0, where ρ(r) is the electric charge
density. The solution involves the Coulomb potential, which is essentially the Green function of the Laplace

operator: φ = 1
4πε0

∫ ρ(r′)
|r−r′|dr

′.
23Integrating over the flow domain and assuming the entropy flux across the boundary vanishes, we arrive

at the global conservation of entropy d
dt

∫
ρ s dr = 0.
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This is our third evolution equation. The pressure is then determined by the equation
of state, which may be regarded as a relation among s, p and ρ. For instance, for an
ideal gas with constant specific heat ratio γ = cp/cv , the equation of state is

s = cv log

(
p/p̄

(ρ/ρ̄)γ

)
(28)

for some reference values p̄ and ρ̄ (see Prob. ??).

Internal energy or pressure equation. We may also combine this equation of state
(28), the entropy advection equation (27) and the continuity equation (14) to derive an
evolution equation for pressure (see Prob. ??):(

p

γ − 1

)
t

+ p∇ · v + ∇ ·
(

pv

γ − 1

)
= 0. (29)

This is called the internal energy equation since p/(γ − 1) will be interpreted as the
internal energy density of an ideal gas (see Sect. 15).

Homentropic and barotropic flow. Homentropic flow is a situation where the en-
tropy advection equation (27) can be eliminated. Here, the specific entropy s = s0

is independent of both space and time and (27) is identically satisfied. Moreover,
the equation of state then becomes a relation between ρ and p. In general, a rela-
tion between ρ and p is called a barotropic relation. For example24, for homentropic
flow of an ideal gas with adiabatic index γ, the barotropic relation can be written as
(p/p0) = (ρ/ρ0)γ for some reference values p0 and ρ0. For barotropic flow, pres-
sure p(r, t) is determined by the instantaneous density ρ(r, t) and we do not need to
supplement the continuity and Euler equations by a third evolution equation.

Remark. Note that for γ = 1, the barotropic relation for homentropic flow of an ideal gas
becomes p = (p0/ρ0)ρ where p0/ρ0 is a constant. Comparing with the ideal gas law p =

(kbT/m)ρ, we infer that the temperature in such a flow, T = mp0/kbρ0, is spatially constant
and independent of time. Thus, such a flow must be isothermal. However, not all isothermal
flows arise this way. A gas with γ = cp/cv 6= 1 can display an isothermal flow. �

An important consequence of a barotropic relation expressing ρ = ρ(p) is that the
pressure term on the RHS of the Euler equation (23) can be expressed as a gradient:

∇p

ρ
= ∇h where h(p) =

∫ p

p0

dp′

ρ(p′)
so ∇h = h′(p)∇p =

1

ρ
∇p. (30)

For barotropic (homentropic) flow of an ideal gas,

∇p

ρ
= γ

p0

ρ0

(
ρ

ρ0

)γ−1 ∇ρ

ρ
=

γ

γ − 1
∇
(
p

ρ

)
⇒ h =

γ

γ − 1

(
p

ρ

)
. (31)

24Another example of barotropic flow is the isothermal inviscid compressible flow of an ideal gas.
The barotropic relation is p = ρkbT/m where T is the constant temperature and m the mass of
a molecule. In this case, the role of specific enthalpy is played by the specific Gibbs free energy
g(ρ) = (kbT/m) log(ρ/ρ0) which is determined up to a constant by ∇g = (∇p)/ρ.
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Here, h(ρ) is called the specific enthalpy or enthalpy per unit mass25. If, in addition,
the body force per unit mass can be expressed as a gradient, f/ρ = −∇ϕ [i.e., body
force is conservative], then the RHS of Euler’s equation (22) becomes a gradient:

Dv

Dt
= ∂tv + v ·∇v = −∇(h+ ϕ). (32)

What is more, using the identity (??) to write the advection term in terms of the vortex
force, the Euler equation becomes

∂tv +w × v = −∇(σ + ϕ) where σ = h+
1

2
v2. (33)

Here, σ is called the stagnation enthalpy, it reduces to the enthalpy at a stagnation
point (i.e., one where v = 0).

11 Bernoulli’s equation

Bernoulli’s principle for steady flow. Recall from Sect. 5, that a fluid flow is steady
if v, ρ, p, etc., are not explicitly dependent on time. In its simplest form, Bernoulli’s
principle concerns a drop in pressure along a streamline in places where a steady
constant density flow speeds up. Euler’s equation (33) for a steady homentropic flow
with specific enthalpy h(ρ) and body force potential ϕ is

v ×w = ∇
(

1

2
v2 + h+ ϕ

)
where w = ∇× v. (34)

For example, ϕ = gz for the gravitational body force, where z is the vertical height
and g the magnitude of the acceleration due to gravity. The left member is orthog-
onal to v, so upon taking the dot product with the velocity field, we get Bernoulli’s
equation:

v ·∇B = 0 where B =
1

2
v2 + h+ ϕ. (35)

Thus, the component of the gradient of the Bernoulli specific energy B along the ve-
locity vector field is zero. If r(s) is a streamline26, then Bernoulli’s equation becomes

dr

ds
·∇B = 0 or

dB(r(s))

ds
= 0. (36)

So in steady flow, B = 1
2v

2 + h + ϕ is constant along streamlines. Note that B will,
in general, take different values for different streamlines. Now recall that the enthalpy
per unit mass is h = ε+ p

ρ where ε is the internal energy per unit mass, p the pressure

25The first law of thermodynamics dU = TdS−pdV , when written in terms of enthalpyH = U +pV
instead of internal energy U , becomes dH = TdS + V dp. For an isentropic process dS = 0, so dh =
dp/ρ. Here V = M/ρ is the volume, M the mass of fluid, h = H/M the enthalpy per unit mass, T
absolute temperature and S the entropy.

26A streamline r(s) is an integral curve of the velocity vector field: dr
ds

= v(r(s)). Here, s is a
parameter along the streamline.
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and ρ the density. Thus, for steady homentropic inviscid flow subject to a conservative
body force, Bernoulli’s equation says that along streamlines,

B =
1

2
v2 + ε+

p

ρ
+ ϕ is conserved. (37)

If the flow is incompressible, then ρ is constant along the flow and, in particular, along
streamlines of the steady flow. Suppose the internal energy density of the fluid is also
constant along the flow. Then we find that 1

2ρv
2+p+ρϕ is constant along streamlines.

If in addition, the body force potential ϕ does not vary along the streamline (as for
horizontal streamlines in a vertical gravitational field), then 1

2ρv
2 +p is constant along

streamlines. In other words, in regions of high pressure along a streamline, the fluid
speed must be low and vice-versa. Such a situation is approximately encountered
in laminar flow through a cylindrical pipe of varying cross section. On account of
mass conservation, the water speeds up in regions where there is a constriction in the
pipe. At such constrictions, the pressure drops, as can be demonstrated by comparing
the pressure with atmospheric pressure (a lower pressure supports a shorter vertical
column of water against atmospheric pressure).

Bernoulli equation for unsteady flow. There is a version of the Bernoulli equation
(35) that applies to unsteady flows, though in the restricted context of barotropic po-
tential flow (v = ∇φ). Potential flow is irrotational w = ∇ × v = 0, so the vortex
force vanishes and the Euler equation (33) for barotropic flow subject to a body force
derived from a potential (f/ρ = −∇ϕ) becomes

∂v

∂t
= −∇h−∇

(
1

2
v2

)
−∇ϕ or ∇

(
h+

∂φ

∂t
+

1

2
v2 + ϕ

)
= 0. (38)

The quantity in parentheses must be independent of location but could depend on time.
Thus, we arrive at the unsteady Bernoulli equation for barotropic potential flow:

∂φ

∂t
+ h+

1

2
(∇φ)2 + ϕ = B(t). (39)

The simplest case is that of constant density, were h = p/ρ. Unlike Bernoulli’s
equation (35) for steady flow, (39) holds throughout the fluid and is not associated with
streamlines. The unsteady Bernoulli equation may also be interpreted as an evolution
equation for the velocity potential φ. It can also be used to eliminate the pressure p in
favor of the velocity potential when computing the force due to pressure27 on a body
immersed in a fluid.

12 Sound waves in homentropic flow

By sound waves, we usually mean small oscillations of the density, pressure and
velocity fields around a ‘background’ flow. They arise in compressible flows, where

27If S is a surface with fluid to one side of it, then the force on the surface due to fluid pressure is given
by

∫
S p n̂ dA where dA is the area element and n̂ is the unit normal pointing away from the fluid.
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regions of compression and rarefaction can form and propagate. It is these pressure
variations that our ears receive and help us perceive as sound. For simplicity, we shall
consider sound waves in the background of a motionless homogeneous fluid.

Notice first that in the absence of body forces, a fluid at rest (v = 0) with constant
pressure and density (p = p0, ρ = ρ0) is a static solution to the continuity and Euler
equations (22):

∂tρ+ ∇ · (ρv) = 0 and ρ(∂tv + v ·∇v) = −∇p. (40)

Now suppose the still fluid suffers a disturbance resulting in small variations

v = 0 + v1(r, t), p = p0 + p1(r, t) and ρ = ρ0 + ρ1(r, t). (41)

The perturbations v1(r, t), p1(r, t) and ρ1(r, t) must be such that v, p and ρ satisfy
the continuity and Euler equations with v1, p1, ρ1 treated to linear order. However,
we need to supplement (40) with another equation, as we currently have only four
equations for five unknowns: ρ, p and the 3 components of v. Following Laplace,
we will consider the physically realistic case of sound waves in adiabatic flow of
an ideal gas28. As discussed in (27), specific entropy is advected by adiabatic flow:
∂ts + v · ∇s = 0. A steady uniform specific entropy s = s0 is clearly a valid
background solution. Putting s = s0 + s1(r, t) and linearizing around the static
homogeneous background, we get

∂ts1 + v1 ·∇s1 ≈ ∂ts1 = 0. (42)

The simplest solution is the one with vanishing entropy perturbation s1(r, t) ≡ 0, cor-
responding to homentropic flow s(r, t) ≡ s0. In particular, the specific entropy of ev-
ery fluid element is the same and remains that way at all times. Now, for homentropic
flow, the thermodynamic equation of state relating p, ρ and s reduces to a barotropic
relation between pressure and density p = p(ρ, s0) [such as p/p0 = (ρ/ρ0)γ for adi-
abatic flow of an ideal gas]. Inserting (41) in the barotropic relation and using the
leading Taylor approximation, we get

p = p0 +

(
∂p

∂ρ

)
ρ0,s0

ρ1 + · · · ⇒ p1 ≈
(
∂p

∂ρ

)
ρ0,s0

ρ1. (43)

Thus, the small pressure and density variations are proportional. The constant of
proportionality29 is denoted (celeritas means velocity in Latin)

c2s =

(
∂p

∂ρ

)
ρ0,s0

=
Ks

ρ0
(44)

and has dimensions of the square of a speed. We will show that cs (called the adiabatic
sound speed) is the speed at which sound waves propagate. To do so, we derive an

28In his Principia, Newton computed the speed of sound in air assuming the flow to be isothermal. This
was found not to be a particularly good approximation, since there are temperature fluctuations in a sound
wave. Laplace’s assumption of adiabatic flow led to a value closer to experimental measurements.

29Here, Ks is the isentropic bulk modulus (see Sect. 7), a measure of stiffness of the medium.
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equation for sound waves by linearizing the continuity and Euler equations around a
motionless fluid. Ignoring products of small quantities v1, p1 and ρ1, the continuity
and Euler equations

∂t(ρ0 + ρ1) + ∇ · ((ρ0 + ρ1)v1) = 0 and
(ρ0 + ρ1)(∂tv1 + v1 ·∇v1) = −∇(p0 + p1) (45)

become
∂tρ1 + ρ0∇ · v1 = 0 and ρ0∂tv1 = −∇p1. (46)

Putting p1 = c2sρ1 and taking a divergence, the linearized Euler equation becomes

ρ0∂t(∇ · v1) = −c2s∇2ρ1. (47)

Eliminating ∇ · v1 = −ρ−1
0 ∂tρ1 using the continuity equation, we get

∂2
t ρ1 = c2s∇2ρ1, (48)

which we recognize as the 3d d’Alembert wave equation for density variations. We
deduce that cs may be interpreted as the speed at which sound waves propagate.
The corresponding equations for pressure and velocity perturbations are the subject
of Prob. ??.

As we might physically expect from Sect. 7, for incompressible flow (ρ = ρ0, ρ1 =
0), the sound speed c2s = p1

ρ1
= δp

δρ → ∞ as the density variations are vanishingly
small even for large pressure variations. Thus, sound waves travel much faster than
the fluid in the incompressible limit and the Mach number M = |v|/cs tends to zero.

13 Vorticity and its evolution

Vorticity w = ∇ × v is the curl of the velocity field30. Unlike v, which is a
polar vector (reverses sign under the reflection r → −r),w is a pseudovector or axial
vector (no change in sign under reflections). Since the divergence of a curl vanishes,
vorticity is solenoidal: ∇ · w = 0. Vorticity has dimensions of (1/time) and is a
measure of local rotation in a flow. A flow without vorticity is called irrotational31.
For example, a bucket of fluid rigidly rotating at small angular velocity Ω = Ωẑ has
the azimuthal velocity field v(r, θ, z) = Ω × r = Ω(xŷ − yx̂) = Ωrθ̂ in cylindrical
coordinates (see Fig. 6a). The corresponding vorticity w = ∇ × v = 1

r∂r(rvθ)ẑ
is vertically upwards and constant over the bucket. In fact, as pointed out by Stokes,
w = Ω(∂xx+∂yy)ẑ = 2Ωẑ has a magnitude of twice the angular speed Ω. Eddies or
vortices are manifestations of vorticity in a flow. They are ubiquitous32 in flows and
can come in various sizes: in a wash basin, in the sea and in the atmosphere.

30In general, the vorticity field need not be orthogonal to velocity. The flow helicity density K = v ·w
is a local measure of the extent to which v and w fail to be orthogonal (see Prob. ??). Flow helicity density
is a pseudoscalar, it changes sign under reflections.

31 Potential flow, i.e., where v = ∇φ is the gradient of a scalar velocity potential is irrotational. Locally,
an irrotational velocity field must be a gradient.

32There are many names for vortex-like structures: swirls, whirlpools, whorls, cyclones, hurricanes,
typhoons, tornadoes, maelstroms, etc. Leonardo da Vinci was fascinated by vortices. Many of his sketches
contain detailed illustrations of eddies in fluids. He even noticed similarities between the train of vortices
in the wake behind a flat plate and braided hair!
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Given a closed contour C in a fluid, the circulation Γ(C) =
∮
C
v · dl measures

how much v ‘goes round’ C. For a simple closed contour C, Stokes’ theorem implies
that the circulation is the flux of vorticity across any surface S in the fluid that spans
C (i.e., whose boundary ∂S is C):

Γ(C) =

∮
C

v · dl =

∫
S

(∇× v) · dS =

∫
S

w · dS where ∂S = C. (49)

Enstrophy. The square of the L2 norm of vorticity
∫
w2 dr is called enstrophy. It

is a global measure of vorticity. We will see that it is conserved in incompressible
barotropic 2d flows, but not in 3d, where it can grow due to ‘vortex stretching’.

Example: shear flow. Shears are large scissors used, for instance, to trim the wool
of sheep. The blades of the scissors are said to slide over each other in a ‘shearing’
motion. By analogy, a flow is a shear flow if layers if fluid slide over each other at
different speeds. The shear flow v(x, y, z) = (u(y), 0, 0) with horizontal streamlines
illustrated in Fig. 6b is an example of a flow with vorticity. Here, horizontal layers
of fluid move at different speeds depending on their height y, leading to the vorticity
w = ∇ × v = −u′(y)ẑ. When there is a velocity differential between two layers of
fluid, one can imagine that a little windmill placed there would start spinning. In fact,
eddies can be produced as the interface ‘curls up’. �
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Figure 6: Velocity vector field for (a) rigidly rotating bucket of fluid v = Ωrθ̂ for
Ω = 1, (b) shear flow v(x, y) = (u(y), 0) for u(y) = y2 and (c) point-like vortex
v = (α/r)θ̂ for α = 1.

Example: point-like vortex. For α > 0, the planar azimuthal velocity field v(r, θ) =
α
r θ̂ shown in Fig. 6c has counterclockwise circular streamlines. It has no vorticity
w = 1

r∂r(r
α
r )ẑ = 0 except at r = 0: w = 2παδ2(r)ẑ. Thus, the vorticity is

concentrated at the origin. The constant 2πα comes from requiring the flux of w to
equal the circulation of v around any contour enclosing the origin∮

v · dl =

∮
(α/r)r dθ = 2πα. (50)

If we include the vertical z direction, this point vortex becomes a ‘line’ vortex, with
vorticity concentrated along the z axis.
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More generally, vortices can take the shape of tubes and rings (see Sect. 14).
Smoke rings are examples of vortex tubes. Dolphins blow vortex rings in water and
chase them. Kelvin and Helmholtz discovered many interesting properties of vor-
tex tubes. Inviscid fluid flow tends to stretch and bend vortex tubes while carrying
them along. They survive in the absence of viscosity but dissipate due to friction (see
Sect. 19). �

Vorticity evolution. Let us obtain the equation for vorticity by taking the curl of the
Euler equation. It is simplest to do this for barotropic (e.g., homentropic) flow of a
fluid subject to a conservative body force. Thus, we suppose that ∇p/ρ = ∇h and
that the body force per unit mass is f/ρ = −∇ϕ, so that (33) becomes

∂tv +w × v = −∇
(
h+ ϕ+ (1/2)v2

)
. (51)

Taking a curl, the RHS vanishes and we get the vorticity evolution equation

∂w

∂t
+ ∇× (w × v) = 0. (52)

In this form, both the pressure and density have been eliminated from the Euler equa-
tion! This comes at the cost of making it second order in spatial derivatives of v.
Using ∇ ·w = 0 and the vector identity

∇× (w × v) = ((∇ · v) + v ·∇)w − ((∇ ·w) +w ·∇)v, (53)

the evolution equation for vorticity becomes

Dw

Dt
− (w ·∇)v + (∇ · v)w = 0. (54)

Notice that if the flow is incompressible (∇ ·v = 0), the last term vanishes and we get
Dw
Dt = (w ·∇)v. One consequence of this equation is that vorticity is frozen into an

inviscid barotropic flow, as we will see in Sect. 14. Heuristically, what this means is
that vortices (more precisely vortex tubes or rings) are dragged along by the flow field
v.

Advection of vorticity in 2d incompressible barotropic flow. Vorticity behaves in a
particularly simple manner in 2d incompressible barotropic flows. Consider flow on a
portion of the x-y plane, so that v = (u, v, 0) while the vorticity points verticallyw =
∇× v = w ẑ where33 w = vx − uy . It follows that (w ·∇)v = 0 and (54) becomes
Dw
Dt = 0. Thus, vorticity is advected by a planar incompressible barotropic flow. In

particular, the vorticity of a fluid element is constant as the element moves around.
Using incompressibility (∇ ·v = 0), this can be expressed as a local conservation law
for w:

Dw

Dt
= 0 ⇒ ∂w

∂t
+ v ·∇w = 0 ⇒ ∂w

∂t
+ ∇ · (wv) = 0. (55)

33The (negative) Laplacian of the stream function ψ (11) is the vorticity component w in 2d incompress-
ible flow. In fact, w = vx − uy = −(ψxx + ψyy) = −∇2ψ.
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Multiplying by w, we get a local conservation law for w2 as well:

1

2

∂w2

∂t
+ ∇ ·

(
1

2
w2v

)
= 0. (56)

In fact, proceeding this way, one may show (see Prob. ??) that wn is locally conserved
with the current wnv for n = 1, 2, 3, . . .. Integrating over the plane and assuming v
vanishes on boundaries and sufficiently fast at infinity, we get conservation laws for
the moments of vorticity

d

dt

∫
wn dx dy = 0 for n = 1, 2, 3, . . . . (57)

Enstrophy is defined as the integral of the square of vorticity. Thus, enstrophy and its
higher cousins34 are invariants for 2d incompressible barotropic flows.

14 Vortex tubes: Kelvin and Helmholtz theorems

In three dimensions, vorticity is frozen (54) into inviscid barotropic flow. One
manifestation of this is Kelvin’s theorem on conservation of circulation.
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Figure 7: (a) Circulation around a closed contour. (b) Integral curves of vorticity.
Strength of a vortex tube is independent of choice of encircling closed contour. C1

andC2 wind once around the tube, they are noncontractible. (c) A vortex tube remains
a vortex tube under inviscid barotropic flow. The curveC is a contractible closed curve
lying on the surface of the tube, it does not wind around the tube. dS is an area element
on the surface of the vortex tube.

Vorticity is the curl of the velocity field just as the magnetic field is the curl of
a vector potential A. Like the magnetic flux across an oriented surface S, we may
consider the flux Γ of vorticity across a surface S in a fluid. By Stokes’ theorem,

Γ =

∫
S

w · dS =

∫
S

(∇× v) · ds =

∮
C

v · dr (58)

34In fact, subject to suitable behavior at the boundary, the integral of any function of vorticity (that can
be approximated by polynomials) is conserved.
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is the circulation (49) or line integral of v around the directed closed curve C = ∂S
that bounds S (see Fig. 7a).

Kelvin’s law: conservation of circulation around a material loop. Suppose Ct at
time t is a closed material contour. Then Γ(Ct) is conserved as Ct is transported by an
inviscid (possibly compressible) barotropic flow subject to conservative body forces.
Let us show that the time derivative35 of Γ vanishes:

dΓ

dt
=

∮
Ct

Dv

Dt
· dr +

∮
Ct

v · Ddr
Dt

. (59)

Since Ct moves with the flow, we used material derivatives and the product rule that
it satisfies. The velocity v(r, t) is that of a moving material element and we must
also account for the motion of the material element dr itself. For barotropic flow with
conservative body forces, Euler’s equation (33) says that Dv

Dt = −∇(h + ϕ). On
the other hand, the material derivative of a material line element is its fluid velocity
element: DdrDt = dv and v · dv = 1

2d(v2) = 1
2∇v

2 · dr. Thus, by Stokes’ theorem,

dΓ

dt
=

∮
Ct

∇
(
−h− ϕ+

1

2
v2

)
· dr = 0 (60)

as it is the line integral of a gradient around a closed curve. It follows that the circula-
tion around a closed fluid contour is constant in time.

Alternatively, the flux of vorticity across any surface that moves with the fluid is
constant in the absence of viscosity, provided the sum of pressure and body forces per
unit mass may be expressed as a gradient. Loosely, in the absence of viscosity, eddies
and vortices cannot develop in a barotropic flow that was initially irrotational.

Vortex tube. A vortex line is an integral curve of the vorticity fieldw at a given instant
of time. Given any closed curve C in the fluid, consider the vortex lines through
C. They form a surface, called a vortex tube, as shown in Fig. 7. The vorticity is
everywhere tangent to a vortex tube. A vortex tube of infinitesimal cross section is
called a vortex filament. We now describe Helmholtz’s theorem on vortex tubes,
which states that inviscid barotropic flow carries vortex tubes to vortex tubes of the
same strength.

Strength of a vortex tube. At an initial time t0, a vortex tube can be assigned a
strength, the circulation Γ(C) around a closed curve C that winds around the tube
once. To be meaningful, this strength should be independent of the choice of closed
loop C. This is indeed true. Suppose C1 and C2 are two curves winding around the
vortex tube once each. For simplicity, we assume that they do not intersect36. Let S1

and S2 be any two surfaces with ∂S1 = C1, ∂S2 = C2 (see Fig. 7b). We assume
35dΓ/dt refers to the rate of change in the circulation around a material contour, as it is carried around

by the flow. Γ(Ct) depends on a whole contour and is not a function of one position like the field v(r, t).
Bearing this in mind, one could equally well use the notation DΓ/Dt for dΓ/dt.

36If C2 is a closed curve that winds once around the vortex tube and intersects C1, then we may still
conclude that Γ(C1) = Γ(C2) by choosing a third contour C3 which does not intersect either C1 or C2

and use the argument that follows to show Γ(C1) = Γ(C2) = Γ(C3)
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that S1,2 are chosen not to intersect. Consider the portion of the vortex tube between
S1 and S2. Its interior is a solid cylindrical region R with closed surface ∂R = Σ =
S ∪ S1 ∪ S2 where S is the tubular surface of the vortex tube. The flux of vorticity
across Σ must vanish by the divergence theorem:

∫
Σ
w · dS =

∫
R
∇ · (∇ × v)dr.

Thus, assigning suitable orientations,

0 =
�
��
��

∫
S

w · dS +

∫
S1

w · dS +

∫
S2

w · dS =

∮
C1

v · dl−
∮
C2

v · dl. (61)

The integral over S vanishes since vorticity is tangential to a vortex tube. Thus,
Γ(C1) = Γ(C2): the circulation around a vortex tube is independent of the choice
of encircling contour. As a consequence, a vortex tube cannot abruptly end in the
fluid, it must close on itself to form a vortex ring or end on a boundary.

Vortex tubes evolve into vortex tubes. Inviscid isentropic flow takes a vortex tube
to another vortex tube. This is a manifestation of the freezing-in of vorticity into the
velocity field. To show this, we consider a vortex tube at t0 and follow its surface as it
moves with the flow up to a final time t1 > t0. We wish to show that the new tube is
a vortex tube, i.e., that the vorticity is everywhere tangent to it. To this end, consider
a contractible37 closed curve C(t0) lying on the initial vortex tube, the flow maps it to
a new contractible closed curve C(t1) lying on the final tube, as shown in Fig. 7c. By
Kelvin’s theorem, Γ(C(t0)) = 0 = Γ(C(t1)). Now, suppose S is the portion of the
new tubular surface enclosed by C(t1), i.e., ∂S = C(t1). Then

0 = Γ(C(t1)) =

∫
S

w · dS. (62)

By suitably repositioning and shrinking C(t0), this is true for an infinitesimal closed
curve C(t1) around any point on the new tube. Thus, we conclude thatw · dS = 0 at
every point of the new tube. In other words, the vorticity is everywhere tangent to the
new tube, which must therefore be a vortex tube.

Strength of a vortex tube is time-independent. Suppose C(t) is a closed material
contour winding once round a vortex tube as it evolves in time. By Kelvin’s theorem,
strength of the vortex tube Γ(C(t)) is independent of time.

15 Local conservation laws for an inviscid flow

We have already encountered two local conservation laws: that for mass, the con-
tinuity equation ∂tρ+ ∇ · (ρv) = 0 (15) and that for entropy in ideal adiabatic flow,
∂t(ρs) + ∇ · (ρsv) = 0 (26). Integrating over the flow domain and assuming the
corresponding fluxes across the boundary vanish, we get the conservation of the total
mass and entropy of the fluid. There are four more such local (and corresponding
global) conservation laws: for energy, linear momentum, angular momentum and he-
licity which we discuss below.

37‘Contractible’ means the closed curve can be continuously shrunk to a point while remaining on the
surface of the tube.
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Conservation of linear momentum. By analogy with particle mechanics, we would
expect the linear momentum of a fluid to be given by the vectorP =

∫
ρv dr. We will

show that with suitable BCs, P is constant in time and that the momentum density ρv
is locally conserved. In fact, it satisfies the momentum equation:

∂t(ρvi) + ∂jΠij = 0 where Πij = pδij + ρvivj . (63)

This equation is obtained by combining the continuity (15) and Euler (22) equations
in the absence of external forces. Indeed, one finds that

∂t(ρvi) = −vi∂j(ρvj)− ρvj∂jvi − ∂ip = −∂ip− ∂j(ρvivj) = −∂jΠij . (64)

It holds independent of how pressure evolves and is thus valid both for adiabatic as
well as incompressible flow. The symmetric 2nd rank momentum current tensor Πij =
Tij + ρvivj is related to the stress tensor of Sect. 9. Its divergence appears in (63).
Integrating over the flow domain Ω, we get the conservation of momentum:

dPi
dt

= −
∫

Ω

∂jΠijdr = −
∫
∂Ω

ΠijnjdS = 0. (65)

Here, nj are the components of the unit normal on the boundary surface ∂Ω. We
used the divergence theorem to convert the volume integral into a surface integral and
assumed that the flux of momentum across the boundary vanishes (this is the case, for
instance, with decaying BCs in Ω = R3 or with periodic BCs in a cuboid).

Conservation of angular momentum. It is natural to define the angular momentum
density (relative to r = 0) as L = r × ρv, where ρv is the momentum density. In
components, Li = ρεijkxjpk. It satisfies the local conservation law

∂tLi + ∂lΛil = 0 where Λil = εijkxjΠkl (66)

is the angular momentum current tensor, which is built from the momentum tensor Π.
This is checked by evaluating ∂tLi using (63).

It is valid irrespective of how pressure evolves (incompressible, barotropic, adi-
abatic, etc.) but assumes there are no external or viscous forces. The total angular
momentum L =

∫
Ldr is conserved with suitable BCs, such as decaying BCs in an

infinite domain. Moreover, in an infinite domain, L is independent of the choice of
origin since r is a dummy variable of integration. On the other hand, in axisymmetric
domains such as a circular cylinder or torus, the component of angular momentum
along the symmetry axis is conserved provided there is no flux of angular momentum
across the boundary.

Conservation of energy. By analogy with the kinetic energy 1
2mv

2 of a particle we
expect a fluid flow to have a kinetic energy

∫
1
2ρv

2 dr. In addition, we might expect
a potential energy which could variously be thought of as an internal energy or com-
pressional energy or thermal energy. From the equipartition principle in the kinetic
theory of a gas at temperature T , each (translational, rotational, vibrational) degree
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of freedom of a molecule has an associated energy 1
2kbT , where kb is Boltzmann’s

constant. So if there are N molecules of the gas with f degrees of freedom each, the
internal energy is (f/2)NkbT . For example, a monatomic gas has f = 3 translational
degrees of freedom, so that its internal energy takes the familiar form (3/2)NkbT .
More generally, a gas with specific heat ratio γ has in effect f = 2/(γ− 1) degrees of
freedom38. Furthermore, if we trade the temperature for pressure using the ideal gas
equation of state pV = NkbT we find that the internal energy of a homogeneous ideal
gas at equilibrium in a volume V is pV/(γ− 1). A flowing fluid may be regarded as a
collection of small volumes dr each in local thermal equilibrium with pressure p(r).
Thus, the internal or potential energy density of an ideal gas is U = p/(γ−1). Adding
the kinetic and potential energies, we guess that the total energy of a fluid composed
of an ideal gas with specific heat ratio γ is

E =

∫ [
1

2
ρv2 +

p

γ − 1

]
dr =

∫
E dr (67)

where E is the energy density.
To confirm our guess, we now show that E satisfies a local conservation law. To

do so, we combine the inviscid adiabatic evolution equations for ρ, v (22) and p (29)
in the absence of external forces

ρt = −∇ · (ρv), vt = −v ·∇v − ∇p

ρ
,

pt
γ − 1

= −p∇ · v − ∇ · (pv)

γ − 1
, (68)

to evaluate the time derivative of the internal energy density

Et = −v
2

2
∇ · (ρv)− ρv · (v ·∇)v − v ·∇p− p∇ · v − ∇ · (pv)

γ − 1
. (69)

Using the Leibniz rule ∇ · (gu) = ∇g · u + g∇ · u for any function g and vector
field u, the first 2 terms may be combined as a divergence, as can the last 3. Thus, in
the absence of external forces, we get the local conservation law

∂E
∂t

+ ∇ ·
(
v2

2
ρv +

γ

γ − 1
pv

)
= 0. (70)

The quantity in parentheses is the energy current vector. This formula holds for adi-
abatic flow as well as the special case of homentropic barotropic flow where p is a
function of ρ. Integrating (70) over the flow domain, it follows that the total energy

38Consider N molecules of an ideal gas satisfying the equation of state pV = NkbT . The caloric
condition from the Joule-Thomson porous plug experiment says that the internal energy of such a gas is
independent of volume occupied and depends only on the temperature, U = U(T,�V ). Thus dU = CvdT
whereCv(T ) is called the heat capacity at constant volume. Putting these in the first law of thermodynamics
(δQ = dU + pdV ), we get δQ = (Cv + Nkb)dT − V dp. Now, the heat capacity at constant pressure
is Cp = (δQ/δT )p. Thus, Cp − Cv = Nkb. What is more, from equipartition, U = (f/2)NkbT
so Cv = (f/2)Nkb where f is the number of degrees of freedom (translational, rotational and possibly
vibrational) of the molecule: Cv = (3/2)Nkb for monatomic, (5/2)Nkb for diatomic and 3Nkb for
noncollinear polyatomic (without vibrations). Thus, we find that γ = Cp/Cv = 1+Nkb/Cv = 1+2/f .

28



(67) is conserved if the flux of the energy current across the boundary vanishes. This
happens, for instance, with decaying boundary conditions (v → 0, ρ→ ρ0 sufficiently
fast as |r| → ∞) or periodic boundary conditions in a cuboid.

Barotropic energy density. In homentropic flow, we have the barotropic relation p =
p0(ρ/ρ0)γ corresponding to the specific enthalpy h(ρ) = (γ/(γ−1))p/ρ (31). In this
case, the potential energy density U = p/(γ−1) becomes U(ρ) = p0(ρ/ρ0)γ/(γ−1).
We notice that U(ρ) is an antiderivative of the specific enthalpy: U ′(ρ) = h(ρ). This
relation holds more generally for any barotropic relation between p and ρ.

Energy in incompressible limit. In the incompressible case (∇·v = 0), we continue
to have local and global conservation laws for energy, though there is no compres-
sional potential energy. In this case, the time derivative of the kinetic energy density
may be expressed as a divergence using the Euler equation vt + v ·∇v = −∇p/ρ
and continuity equation ρt + v ·∇ρ = 0:(

1

2
ρv2

)
t

= −1

2
v2v ·∇ρ− ρv(v ·∇)v − v ·∇p. (71)

As before, the first two terms combine to give the divergence of− 1
2ρv

2v while the last
one is the divergence of −pv since ∇ · v = 0. Thus, we obtain the local conservation
law for energy in incompressible hydrodynamics:

∂t

(
1

2
ρv2

)
+ ∇ ·

{(
p+

1

2
ρv2

)
v

}
. (72)

We may obtain this equation by letting γ → ∞ in (70). This is reasonable, since
γ = ∞ corresponds to zero internal degrees of freedom f = 2/(γ − 1) = 0, which
means the gas molecules have no internal/random thermal/compressional energy; all
the energy comes from the large-scale motion of the gas via the velocity field.

Flow helicity and its conservation. Flow helicity is defined as K =
∫
v · w dr.

Helicity density K = v · w is proportional to the component of vorticity in the
direction of velocity39. Though w = ∇ × v, it is not necessarily orthogonal to v.
A fluid flow has helicity, for instance, if streamlines are shaped like helices. The
examples of rotational planar flows in Sect. 13 have zero helicity. However, it is not
difficult to come up with helical flows. The toy example v = (z, x, y) is one with
nonvanishing K = v · w. We will show that helicity is an integral invariant for
inviscid homentropic (barotropic) flow subject to conservative body forces. In fact,
v ·w satisfies a local conservation law:

∂(v ·w)

∂t
+ ∇ · ((σ + ϕ)w + (w × v)× v) = 0. (73)

To show this, we note that the Euler equation (33) vt +w× v = −∇(σ+ϕ) and the
vorticity evolution equation (52) give

w · vt = −w ·∇(σ + ϕ) and v ·wt = −v ·∇× (w × v). (74)
39The significance of helicity was pointed out relatively recently, by H K Moffat in 1969 [?]. A similar

concept arises in particle physics, where helicity is the component of spin along the momentum of a particle.

29



This implies

∂t(v ·w) = −w ·∇(σ + ϕ)− v ·∇× (w × v). (75)

We want to write the RHS as a divergence. The first term is a divergence since w is
solenoidal: w ·∇(σ + ϕ) = ∇ · ((σ + ϕ)w). For the second term we use the vector
identity (∇ · (A×B) = B ·∇×A−A ·∇×B) to write:

∇ · ((w × v)× v) = v ·∇× (w × v)−(((((
((((w × v) · (∇× v). (76)

Combining these, we obtain the local conservation law (73). Integrating over the flow
domain, flow helicity is conserved (dK/dt = 0) provided the flux of the helicity
current across the boundary vanishes.

16 Hamiltonian and Poisson brackets for inviscid flow

Having established the conservation of energy in adiabatic, barotropic and incom-
pressible flow in Sect. 15, it is natural to seek a Hamiltonian formulation of fluid
mechanics where the energy plays the role of the Hamiltonian. To do this, we need
appropriate Poisson brackets that will lead to the equations of motion. It turns out
that the relevant PBs among fluid variables (ρ,v, s, p) is noncanonical: there is no
separation of physical variables into position-type and momentum-type variables40.
Such brackets were first proposed by Lev Landau (1941) while attempting a quantum
theory of superfluid Helium II [?]. Ironically, Landau’s quantum mechanical commu-
tation relations preceded the corresponding classical PBs, which were made precise
and generalized to charged fluids (magnetohydrodynamics) by Morrison and Greene
in 1980 [?]. Landau arrived at his brackets by treating a fluid as a collection of par-
ticles whose positions and momenta satisfied canonical commutation relations. We
shall not reproduce Landau’s derivation but go straight to the resulting PBs.

Barotropic flow Poisson brackets. For compressible barotropic flow, the nonzero
equal-time PBs (up to antisymmetry) among the velocity and density variables are:

{v(x), ρ(y)} = ∇yδ(x− y) and {vi(x), vj(y)} =
εijkwk
ρ

δ(x− y). (77)

These noncanonical PBs are extended by postulating linearity and the Leibniz rule (see
Phys. Plasmas 23, 022308 (2016) for the Jacobi identity). Being associated with po-
sitions and momenta of distinct particles, variables at distinct locations commute. At
the same location, the PB can diverge due to the Dirac δ function. While the {vi, vj}
PB being proportional to εijkwk/ρ ensures antisymmetry and the correct dimensions,
that between v and ρ is a ‘constant’ vector, the gradient of δ(x− y) is not dependent
on dynamical variables. The appearance of the Dirac δ function may look foreboding,
but it is the natural generalization of the Kronecker delta ({xi, pj} = δij) to the fields
of continuum mechanics. What is more, in practice, one or other of the spatial vari-
ables x,y is integrated after multiplying by some fields, so one may use the defining

40Clebsch potentials furnish canonical variables for a fluid, see Sect. 17.
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property
∫
δ(x− y)f(y)dy = f(x) to work with them. For instance, let us see how

these PBs along with the Hamiltonian for barotropic flow

H =

∫ [
1

2
ρv2 + U(ρ)

]
dr where U ′(ρ) = h(ρ) (78)

lead to the continuity equation (15). Here h(ρ) is the specific enthalpy. Since density
commutes with itself, we have

∂tρ(x) = {ρ(x), H} =
∫
ρ(y)

2
{ρ(x), v(y)2}dy =

∫
ρ(y)vi(y){ρ(x),vi(y)}dy

=

∫
ρ(y)vi(y)∂yiδ(x− y)dy = −

∫
∇y · (ρ(y)v(y))δ(x− y)dy

= −∇x · (ρ(x)v(x)). (79)

We integrated by parts in the penultimate step to obtain (15). We begin to see how
these novel PBs conspire to do their job. A similar calculation leads to the Euler
equation (32) in the absence of external body forces.

Recall that the position-momentum PBs {xi, pj} = δij may be expressed as PBs
between general observables {f(x, p), g(x, p)} =

∑
i(
∂f
∂xi

∂g
∂pi
− ∂f
∂pi

∂g
∂xi

). In a similar
vein, (77) may be written as a PB between functionals of ρ and v:

{F,G} =

∫ [
w

ρ
·
(
δF

δv
× δG

δv

)
− δF

δv
·∇Gρ +

δG

δv
·∇Fρ

]
dr. (80)

Here, subscripts Fρ = δF
δρ denote functional derivatives. In Prob. ??, we verify that

taking F = v(x) and G = ρ(y) or G = v(y), we recover (77).

17 Clebsch variables and Lagrangian for ideal flow

As we learned in Sect. 16, the Poisson brackets among velocity, density, pressure
and specific entropy are not canonical. Thus, we are led to ask whether one can
find canonically conjugate fluid variables41. It turns out that these are furnished by
variables that go back to the work of Alfred Clebsch (1859).

Velocity potential as conjugate to density. To begin with, we notice that the ρ-v
equal-time PB {ρ(x),v(y)} = ∇yδ(x− y) (77) can be made to look canonical if v
happens to be the gradient of a velocity potential (v(y) = ∇yφ(y)) and we postulate
that

{ρ(x), φ(y)} = δ(x− y), {ρ(x), ρ(y)} = 0 = {φ(x), φ(y)}. (81)

These canonical PBs would then imply that velocity components commute:

{vi(x), vj(y)} = {∂xiφ(x), ∂yjφ(y)} = ∂xi∂yj{φ(x), φ(y)} = 0. (82)

Pleasantly, this agrees with (77), since vorticity vanishes for potential flow.

41By this we mean a collection of fields qi(r), pj(r), half of which are like position variables and the
other half like momentum variables satisfying the PBs {qi(r), pj(r

′)} = δijδ(r − r′).
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Clebsch variables for barotropic flow. Evidently, to deal with flows with vorticity,
we need to generalize the formula v = ∇φ. Such a generalization was found by
Clebsch in 1859. Let us first consider the case of homentropic or barotropic flow so
that we need not concern ourselves with a dynamical entropy. Clebsch found a way of
parametrizing such a velocity field in terms of three ‘potentials’ φ, λ and µ:

v = ∇φ+ (λ/ρ)∇µ. (83)

Unlike the Helmholtz decomposition of a vector field as the sum of curl-free and
divergence-free parts, the Clebsch representation expresses v as a sum of curl-free
and helicity-free summands (see Prob. ??). In a sense, we have traded the three com-
ponents of v for the three Clebsch potentials42. It is also reasonable to have a total
of four fields ρ, φ, λ and µ, so that they can be split evenly into ‘position-type’ and
‘momentum-type’ variables. Later in this section, we will interpret the Clebsch po-
tentials as Lagrange multipliers. The vorticity is given by

w = ∇× v = ∇(λ/ρ)×∇µ. (84)

Now, we postulate the canonical43 equal-time PBs among Clebsch variables:

{ρ(r), φ(r′)} = {λ(r), µ(r′)} = δ(r − r′). (85)

Up to antisymmetry, the remaining PBs vanish (e.g., {λ(x), λ(y)} = {µ(x), φ(y)} =
0). Using these, we evaluate

{ρ(x),v(y)} = {ρ(x),∇yφ(y) +
λ

ρ
∇yµ(y)} = ∇y{ρ(x), φ(y)} = ∇yδ(x−y),

(86)
which is as desired. The velocity-velocity PB also agrees with (77):

{vi(x), vj(y)} =
1

ρ

(
∂i

(
λ

ρ

)
∂jµ− ∂j

(
λ

ρ

)
∂iµ

)
δ(x− y) =

1

ρ
εijkwkδ(x− y).

(87)
The arguments of the functions multiplying δ(x− y) can be taken as x or y. Thus, the
Clebsch variables furnish canonical (or Darboux) coordinates for barotropic flow.

Hamiltonian. The Hamiltonian in terms of Clebsch variables is

H =

∫
H dr =

∫ [
ρ

2

(
∇φ+

(λ∇µ)

ρ

)2

+ ρ ε(ρ)

]
dr. (88)

Here, U = ρε is the potential energy density and ε(ρ) the specific internal energy.
Hamilton’s equations ∂tf = {f,H} for f = ρ,v then reproduce the continuity and
Euler equations as in Sect. 16.

42 However, the Clebsch potentials are not uniquely determined by v and ρ. To begin with, we may
add constants to φ and µ without altering v. In fact, there are more ‘gauge transformations’ one can make
without affecting v.

43The division of λ by ρ in (83) is to ensure that λ and µ may be taken to be canonically conjugate.

32



Lagrangian and equations of motion. The advantage of having Clebsch variables is
that they can be used to give a Lagrangian formulation for the equations of inviscid
flow. Since the equations of motion are first order in time derivatives, the relevant
Bateman-Thellung Lagrangian density L1 = ρtφ + λtµ + αts − H is linear (rather
than quadratic) in generalized velocities

L1 = ρtφ+ λtµ+ αts−
ρ

2

(
∇φ+

(λ∇µ+ α∇s)

ρ

)2

− ρ ε(ρ). (89)

L1 depends on the 4 fields f = ρ, φ, λ, µ and their space or time derivatives. The
Euler-Lagrange (EL) equation for a field f is given by

∂

∂t

∂L1

∂ft
=
∂L1

∂f
−∇ · ∂L1

∂∇f
. (90)

For example, the EL equation for λ implies that µ is advected44: Dµ
Dt = 0. On the

other hand, L1 is independent of φt while ∂L1/∂φ = ρt and ∂L1/∂∇φ = −ρv.
Thus, the EL equation for φ is the continuity equation ∂tρ+∇ ·(ρv) = 0. Proceeding
as above, the EL equation for µ says that λ is locally conserved: λt + ∇ · (λv) = 0.
The EL equation for ρ is quite interesting. We have ∂L1/∂ρt = φ and

∂L1

∂ρ
= −1

2
v2 − ρ

2
2v ·

(
− 1

ρ2
(λ∇µ)

)
− ε− ρ∂ε

∂ρ

= −1

2
v2 + v · (v −∇φ)− ε− p

ρ
, (91)

upon using p = ρ2∂ε/∂ρ. Thus, we get a sort of time-dependent Bernoulli equation:

φt −
v2

2
+ v ·∇φ+ ε(ρ) +

p

ρ
= 0. (92)

Taking its gradient and combining with the other equations, one obtains the Euler
equation for v (22), see Prob. ??.

18 Obtaining the heat equation from Fourier’s law

Suppose we have a body with some initial (absolute) temperature45 distribution
T (r, t = 0). We wish to know how this temperature distribution evolves with time.
Empirically, it is found that the heat flux between bodies or parts of a body grows with
the temperature difference. Fourier’s law of heat diffusion states that the heat flux
density vector (with units of energy per unit time crossing unit area normal to the heat
flux vector) is proportional to the negative gradient in temperature

q = −k∇T where k is the thermal conductivity. (93)
44This means that µ of a fluid element is the same as at t = 0
45Absolute temperature is defined through the 2nd law of thermodynamics. The Kelvin scale is a scale

of absolute temperature.
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For a perfect thermal insulator, k would be zero. If dS = n̂dS is a small area (vector),
then the heat flux across it (energy crossing it per unit time) is given by q · dS.

Consider gas in a fixed volume V . The increase in internal energy

U =

∫
V

ρcvT (r, t) dr, (94)

where T is the absolute temperature, must be due to the influx of heat across its surface
∂V . This is a consequence of the first law of thermodynamics, if we assume no work
is done on the gas46 and that there are no sources/sinks of energy inside the gas. Thus∫

V

∂t(ρcvT )dr = −
∫
∂V

q · n̂ dS =

∫
∂V

k∇T · n̂ dS = k

∫
V

∇ ·∇T dr. (95)

We used Gauss’ divergence theorem to convert the surface integral to a volume integral
taking n̂ to be the outward pointing normal to the surface. Here, cv is the specific heat
per unit mass at constant volume (since no work is done) and ρ is the density of the
gas. Since the volume V is arbitrary, the integrands must be equal and Fourier’s heat
diffusion equation follows:

∂T

∂t
= α∇2T where α =

k

ρcv
is called the thermal diffusivity. (96)

The diffusivityα ≥ 0 has dimensions of area per unit time47. Since the heat equation is
linear and only involves derivatives of temperature, we are free to rescale the absolute
temperature or add a constant to it. Consequently, the heat equation applies even if we
use the Centigrade or Fahrenheit scales in place of an absolute temperature scale such
as the Kelvin scale.

19 Navier-Stokes equation for incompressible viscous flow

If viscous dissipative effects are included, the Euler equation (22) for inviscid flow
is modified. The simplest case is that of incompressible flow, where (22) is augmented
by a viscous term ∝∇2v to obtain the Navier-Stokes (NS) equation48:

ρ
∂v

∂t
+ ρv ·∇v = −∇p+ f + µ∇2v with ∇ · v = 0. (98)

46The first law of thermodynamics for a gas states that ∆U = ∆Q+ ∆W . Here, ∆U is the increase in
internal energy of the gas, and it is a sum of the heat added ∆Q and the work ∆W done on the gas. If no
work is done and there are no sources of heat in the interior, then ∆U must be due to the heat transferred
across the boundary.

47The diffusion equation can be used to describe the diffusion of heat, material/molecules, momentum,
velocity, vorticity, etc. In each case, where an analog of Fourier’s law holds, there is an analog of the
thermal conductivity k, but it has a dimension depending on context. By contrast, diffusivities such as α
always have dimensions of an areal speed and can be compared to know the relative rates of diffusion.

48Using a vector identity, the advection term in NS may be written in terms of the Lamb vector:

∂tv + w × v = −
1

ρ
∇p−

1

2
∇v2 +

f

ρ
+ ν∇2v. (97)
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Here, f is the body force per unit volume and µ is called the dynamic viscosity,
which has been assumed constant49. One also introduces the kinematic viscosity ν =
µ/ρ with dimensions of a diffusivity [areal speed (L2/T )]. If density variations are
insignificant, then ν may also be taken to be a constant, as we shall do wherever
convenient. The word shear50 viscosity is often used for ν since, as we shall soon see,
it is the coefficient of friction between layers of fluid that slide over each other.

The viscous term can be motivated through an analogy with the heat equation
∂tT = α∇2T (96) which describes diffusion of heat from hot to cold regions. Sim-
ilarly, shear viscosity causes diffusion of velocity from a fast layer to a neighboring
slow layer of fluid. By analogy with heat diffusion, velocity diffusion is described by
ν∇2v, with shear viscosity ν playing a role analogous to thermal diffusivity α. If wa-
ter in a cup is stirred and left to itself, viscosity brings it to rest, just as heat diffusion
uniformizes the temperature distribution to zero in a rod with ends held at T = 0.

The NS equation has not been derived from molecular dynamics except for dilute
gases. It is the simplest equation consistent with physical requirements and symme-
tries, that can be used to describe macroscopic viscous fluid motion. As with other
physical models, its validity is to be checked by comparing its predictions with exper-
imental measurements, which have largely confirmed its reliability.

No-slip boundary condition. The Navier-Stokes equation (98) is 2nd order in space
derivatives unlike the inviscid Euler equation (22), which is 1st order. The viscous
term is called a singular perturbation, it increases the spatial order by one and neces-
sitates an additional boundary condition (BC). In addition to the impenetrable BC on
solid boundaries51, one typically imposes the ‘no-slip’ BC which requires that the tan-
gential component of v on solid boundaries must vanish. There is empirical support
for the no-slip boundary condition: (a) running a fan does not remove the dust accu-
mulated on its blades and (b) material accumulates on the sides of drain pipes even if
the flow is quite fast.

Stress and rate of strain tensors. As we did with the Euler equation in (21), we may
write the incompressible NS equation (97) in the absence of external body forces in
terms of a stress tensor:

∂tvi + vj∂jvi = −1

ρ
∂jTij where Tij = pδij − µ(∂ivj + ∂jvi). (99)

The term ∂ivj in Tij does not contribute to the EOM through the divergence of the
stress tensor ∂jTij because the flow is incompressible (∂jvj = 0). However, we

49The dynamic viscosity µ can vary with location, especially if there are significant inhomogeneities in
temperature. If µ is nonuniform, then the ith component of the viscous term in (98) becomes ∂j(µ∂jvi),
see (99).

50The other type of viscosity is bulk or volume viscosity, which has to do with friction from compression
of the fluid. It is absent in incompressible flows.

51The impenetrable BC is v · n̂ = 0, where n̂ is the outward normal on fixed boundaries.
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include it to make Tij a symmetric tensor52. Evidently, pressure53 enters through the
isotropic part54 (part that is a multiple of the identity) while the viscous forces enter
through its nonisotropic part (traceless part: −2µ∂ivi = 0)55. This reinforces our
introduction of pressure as a normal surface force, while shear viscosity is a tangential
surface force. The (negative of the) nonisotropic part of Tij is denoted dij and is called
the deviatoric stress tensor. It is the part of the stress that can cause a fluid element to
change shape but not volume. It must be symmetric and traceless: dij = dji and dii =
0. For an incompressible viscous fluid, we have postulated that dij = µ(∂ivj + ∂jvi).

We notice that the deviatoric stress can be nonzero only if the fluid is in motion
(v 6= 0). In fact, one needs more than just a flow, one needs appropriate velocity
gradients to be nonvanishing. It is convenient at this stage to introduce the rate of strain
tensor56 eij = 1

2 (∂ivj +∂jvi), in terms of which, our postulate becomes dij = 2µeij .
This is an instance of Newton’s law for a fluid, stating that the deviatoric stress is
linearly related to (here proportional to) the rate of strain57. In fact, one could start
more generally by postulating that the deviatoric stress is linear58 in velocity gradients
dij = Aijkl∂kvl for some constant 4th rank tensor Aijkl, and use the assumption of
isotropy of the fluid59 and the symmetry of dij to show that one must have dij = 2µeij
for an incompressible flow. The tensor Aijkl, being an intrinsic property of the fluid
must be an isotropic tensor. What this means is that its components must be the same
irrespective of which Cartesian frame is used. Rotating the frame must not change the

52Taking Tij symmetric could be regarded as an attempt at being elegant without affecting the equation
of motion. However, it is helpful elsewhere. E.g., Batchelor (p.11 of An Introduction to Fluid Dynamics
(2000)) argues that the stress tensor must be symmetric for the rate of change of angular momentum of a
fluid element to equal the torque on the element due to surface forces. It also needs to be symmetric if the
fluid (say, in a gaseous star) is to be consistently coupled to (i.e., act as a source for) the gravitational field
in Einstein’s general theory of relativity.

53As in the incompressible Euler equation, the pressure may be eliminated via the constraint equation
obtained by taking the divergence of the NS equation and using ∇ · v = 0 (see (24)).

54An isotropic second rank tensor tij is one that does not define any preferred direction. Eigenvectors
of the matrix tij define preferred directions. So for a matrix to be isotropic, every vector must be an
eigenvector. This is the case if it is a multiple of the identity. Since multiples of the identity are invariant
under changes of basis, this concept is basis-independent.

55Sometimes, it is imprecisely said that pressure is the diagonal part and the viscous forces are the off-
diagonal part of the stress tensor: this is a basis-dependent statement.

56The velocity gradient ∂ivj can be written as a sum of its symmetric and antisymmetric parts ∂ivj =

eij + wij where eij = 1
2

(∂ivj + ∂jvi) is the rate of strain tensor and wij = 1
2

(∂ivj − ∂jvi) is the

vorticity tensor: wi = εijkwjk . The name rate of strain is because eij ∼ ∂
∂xi

Dxj
Dt

involves a time
derivative (rate) as well as a fractional displacement (strain).

57This is the Newtonian fluid analog of Hooke’s law for an elastic solid: stress being proportional to
strain or more precisely, the stress tensor being linearly related to the strain tensor.

58A linear relation between two vectors (e.g., Li = IijΩj ) involves a 2nd rank tensor. Similarly, a
linear relation between two second rank tensors involves a fourth rank tensor.

59A fluid is isotropic if its intrinsic properties are independent of the direction in which they are measured.
A liquid crystal with elongated molecules that are aligned using electromagnetic fields is an anisotropic
fluid, as are some states of polymers. By intrinsic properties, we mean things like the refractive index or
shear viscosity and not the shape of the container or features of a particular flow of the fluid, which may
have a specific direction. Isotropy of a fluid implies that if it admits a flow in one direction, it would admit
the same type of flow in any other direction (with suitably oriented boundaries).
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components. We are familiar with this concept for 2nd rank tensors: Aij is isotropic iff
it is a multiple of the identity Aij = λδij . The eigenvectors of a matrix define special
directions. For isotropy, all directions must be eigendirections. This is possible only
for multiples of the identity. The only isotropic tensor of rank one (vector) is the
zero vector, which points in all directions. The only isotropic tensors of rank 3 are
multiples of the Levi-Civita symbol εijk.

More general isotropic tensors may be obtained via linear combinations of prod-
ucts of the Kronecker delta and Levi-Civita symbols. In particular, we may express
the isotropic 4th rank tensor Aijkl as

Aijkl = aδijδ
k
l + bδikδ

j
l + cδilδ

j
k. (100)

Newton’s law then becomes

dij = (aδijδ
k
l + bδikδ

j
l + cδilδ

j
k)∂kvl = b∂ivj + c∂jvi. (101)

Since dij = dji should be symmetric, b = c. Thus dij = 2beij . Taking b = µ
we recover the proportionality relation between deviatoric stress and rate of strain
dij = 2µeij .

This completes our analogy between heat and velocity diffusion. Just as the heat
flux vector (93) is proportional to the temperature gradient, the deviatoric viscous
stress is proportional to the velocity gradient.

Deviatoric stress for shear flow. To get a feeling for the deviatoric stress, let us con-
sider a horizontal shear flow with v = (u(y), 0, 0). In this case, the only independent
deviatoric stress tensor component is

T12 = T21 = −d12 = −2µe12 = −µ(∂1v2 + ∂2v1) = −µu′(y). (102)

Evidently, this viscous stress arises from the relative motion of horizontal layers.

Poiseuille flow in a pipe. This is steady laminar flow of a viscous fluid with constant
density ρ through a long horizontal cylindrical pipe of length ` and uniform circular
cross section of radius a � `, with axis along the z-axis. It is induced by a pres-
sure drop ∆p between the inlet and outlet of the pipe, with effects of gravity being
insignificant. For sufficiently small60 pressure gradients and away from the inlet and
outlet, the flow is found to settle into a steady axisymmetric pattern. It is an example
of a shear flow: faster at the center of the pipe and tapering off to zero on the walls,
where it satisfies the no-slip BC. We will work in cylindrical coordinates and suppose
that the flow velocity is independent of z and is purely axial v = u(r)ẑ, while the
pressure could depend on r and z. The time derivative and advection terms vanish in
the incompressible NS equation ρ(vt+v ·∇v) = −∇p+µ∇2v as the flow is steady
and lacks a radial velocity component. Moreover, the radial component of NS implies
∂p/∂r = 0, so p = p(z). Separating variables in the z-component of NS,

µ∇2v =
µ

r
∂r(r∂ru(r))ẑ =

∂p

∂z
ẑ, (103)

60As ∆p is increased, the flow becomes unsteady and makes a transition to turbulence.
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we infer that the pressure gradient must be a constant, dp/dz = −∆p/` < 0. Upon
imposing the BC u(a) = 0, we find a parabolic radial profile for the longitudinal
velocity and an azimuthal vorticity that is counterclockwise viewed from the outlet:

u(r) =
∆p

4µ`
(a2 − r2) and w = −u′(r)φ̂ =

r∆p

2µ`
φ̂. (104)

Navier-Stokes for compressible flow. For compressible flow, there are two types of
viscous terms, essentially because there are two vectors that can be constructed from
second derivatives of velocity: the Laplacian ∇2v and the gradient of the divergence
∇(∇ ·v). For uniform dynamic shear viscosity µ and bulk viscosity ζ, the compress-
ible Navier-Stokes equation takes the form [?]

ρ
Dv

Dt
= f −∇p+ µ

(
∇2v +

1

3
∇(∇ · v)

)
+ ζ∇(∇ · v). (105)

Here p is the mechanical pressure, the isotropic part of the stress tensor. In a flowing
viscous fluid, the mechanical pressure can differ from the thermodynamic pressure
that appears in the thermodynamic equation state. �

Vorticity evolution and diffusion. The equation for evolution of vorticity may be
obtained by taking the curl of (97). For a conservative body force and constant density,
it takes a particularly simple form:

∂tw + ∇× (w × v) = ν∇2w where ∇ · v = 0. (106)

We see that each component of vorticity must satisfy the linear diffusion equation
(∂tw = ν∇2w) modified by the curl of the nonlinear vortex force. Thus, unlike in
inviscid flow studied in Sect. 13 and Sect. 14, vorticity can diffuse between regions
and is not simply frozen into the velocity field. In particular, vortex tubes can lose
their strength with time and dissipate. In viscous flows, vorticity is often generated
near boundaries (even if not initially present) and then diffuses to the bulk of the fluid.

Reynolds number and similarity principle. Suppose we consider water with uni-
form velocity Ux̂ flowing along a broad and deep channel. It meets a cylindrical
obstacle of diameter L and flows round it creating a pattern as in Fig. 8a. It turns out
that if we double the speed U and halve the diameter L, then the same flow pattern re-
sults. This is the ‘similarity’ principle named after Osborne Reynolds, who did careful
experiments with fluids flowing through a pipe in the late 1800s. More precisely, in-
compressible flows61 with the same Reynolds numberR are identical when compared
at a reference scale. Reynolds’ similarity principle is quite useful in practice: it is
exploited to study the flow around an aircraft by using a flow with the sameR around
a scaled-down version of the aircraft placed in a wind tunnel, leading to significant
cost savings.

61The flows could be steady or unsteady, laminar or turbulent.

38



To see how this arises, let us use the scales L and U (which are an appropriate
geometric length and typical flow speed) to define dimensionless (primed) variables

r′ = r/L, v′ = v/U and t′ = Ut/L. (107)

We denote by ∇′, the gradient with respect to r′. Then, the Navier-Stokes equation
(106) for incompressible constant density flow (in vorticity form) becomes

∂w′

∂t′
+ ∇′ × (w′ × v′) =

( ν

LU

)
∇′2w′ with ∇′ · v′ = 0, (108)

where w′ = ∇′ × v′. Thus, two flows with the same Reynolds number R = LU/ν
lead to the same equation, and are therefore simply rescaled versions of each other.

The Reynolds number R is a dimensionless parameter that may be interpreted as
a measure of the ratio of inertial to viscous terms in the NS equation (98):

inertial force
viscous force

=
|v ·∇v|
|ν∇2v|

≈ U2/L

νU/L2
=
LU

ν
= R. (109)

When R is small (e.g., in slow creeping flow relevant to swimming microbes (E M
Purcell, Life at low Reynolds number)), viscous forces dominate over the nonlinear
inertial forces and the flow is regular or laminar, or even steady [v(r, �t) and p(r, �t)
independent of time when there is a suitable driving force to balance dissipation]. At
lowR, one could ignore the nonlinear inertial advection term v ·∇v in NS, resulting
in the Stokes flow approximation. On the other hand, when R increases (say, as the
flow speeds up), the streamlines become convoluted, the flow becomes increasingly
irregular, seemingly unpredictable and is called turbulent.

Stokes flow past a sphere. Stokes studied steady creeping viscous constant ρ flow
with asymptotic62 velocity U around a sphere of radius a. For steady (∂tv = 0)
creeping flow (R = aU/ν � 1), (98) reduces to the linear equation

0 = −∇p+ µ∇2v with ∇ · v = 0. (110)

The dimensional parameters in the problem are U, a and µ = ρν. Thus, on dimen-
sional grounds, the magnitude of the force that the fluid exerts on the sphere must
be F ∝ µaU . A detailed calculation (see Sect. 20 of Landau & Lifshitz, Fluid me-
chanics) shows that the proportionality constant is 6π. In other words, the drag force
on a sphere moving at velocity U through a fluid asymptotically at rest is −6πaµU
in the Stokes flow approximation. More generally, even if we drop the assumptions
of steady creeping flow, dimensional analysis implies that the magnitude of the drag
force may be written as F = 1

2CD(R)πa2ρU2 for a dimensionless function CD(R),
called the drag coefficient. What the Stokes approximation shows is that CD → 12/R
as R → 0. This has been experimentally validated. In other words, the drag force is
proportional to speed at low speeds. As R is increased, there are deviations from

62By going to a frame that moves with the asymptotic velocity of the fluid, the problem may be mapped
to that of a sphere moving at −U through a fluid asymptotically at rest.
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Stokes’ formula as the flow ceases to be steady. It becomes roughly periodic in time
(but still laminar) and then becomes increasingly turbulent: vortices are generated in
a boundary layer around the sphere and are carried downstream in a turbulent wake.
This change in flow pattern with increasing R is described below in the context of
flow past a cylinder.

Flow past a cylinder: transition to turbulence63. Let us consider flow of water, en-
tering uniformly from the far left and flowing to the right with asymptotic velocity
Ux̂ as in Fig. 8a. The water meets a fixed vertical right circular cylinder of diameter
L with axis along ẑ. We shall denote the Cartesian components of the flow velocity
by v = (u, v, w). At very low R = LU/ν ≈ .16, the flow around the cylinder is
laminar (steady, i.e., time-translation invariant) and displays several symmetries, as
shown in Fig. 8a: (a) y → −y (reflections in z− x plane), (b) z translation-invariance
and (c) left-right symmetry with respect to the center of the cylinder (x → −x and
(u, v, w) → (u,−v,−w)). All these are symmetries of Stokes flow, which results
from ignoring the body force term and nonlinear advection term in NS (98). At
R ≈ 1.5, a marked left-right asymmetry develops between the upstream and down-
stream regions. At R ≈ 5, there is a change in the topology of the flow: the flow
downstream of the obstacle no longer hugs the cylindrical surface, it detaches from
the surface. This is called flow separation and is associated with the formation of
recirculating standing eddies downstream of the cylinder (see Fig. 8b). These eddies
were not present at smaller R or far upstream of the cylinder; they are generated and
diffuse from a boundary layer around the obstacle, where the effect of viscosity is
very significant. Far from the obstacle, the flow is nearly irrotational.
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Stokes flow past a cylinder
R  <1

Steady laminar flow

L

(a)

Flow 
Separation

Recirculating eddies
R   = 10

(b)

Figure 8: Flow past a cylinder. (a) Side view of Stokes flow atR . 1. (b) Top view at
R ≈ 10 showing detachment of the flow and recirculating eddies downstream of the
cylinder.

At R ≈ 40, the flow ceases to be approximately steady, but is periodic in time
at each point. At R & 40, recirculating eddies are periodically shed (alternatively
from either side of the cylinder) to form the celebrated von Kármán vortex street64

63Excellent photographs illustrating the transition to turbulence in flow past a cylinder may be found in
the book by van Dyke.

64Vortex streets also appear behind an obstacle in a river, in clouds passing around a high pressure region,
past the wings of insects and birds, etc.
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sketched in Fig. 9a. The z-translation invariance along the axis of the cylinder is
spontaneously broken when R ∼ 40 − 75. At higher R ∼ 200, the flow becomes
chaotic with a turbulent ‘boundary layer’ around the cylinder. At R ∼ 1800, only
about two vortices in the von Kármán vortex street are distinct, before merging into a
quasiuniform turbulent wake (see Fig. 9b). At much higherR, many of the symmetries
of NS are restored in a statistical sense and turbulence is called fully-developed. This
spontaneous breaking and statistical restoration of symmetries of the equations and
boundary conditions is typical of the transition from laminar flow to fully developed
turbulence.

Streaklines of vortex street

R   ≈ 105

(a)

Turbulent wake

R   ≈ 10⁶
(b)

Figure 9: Flow past a cylinder. (a) Top view of streaklines at R ≈ 105 showing al-
ternate shedding of eddies and development of vortex street consisting of two parallel
rows of staggered vortices. (b) Sketch of turbulent wake downstream of cylinder at
R ≈ 106.

By turbulence, we usually mean irregular65 behavior (chaos) in a driven dissipa-
tive system with a large number of degrees of freedom. Without a driving force (say
stirring or pumping in the water), the turbulence decays. In the absence of dissipa-
tion, we would have Hamiltonian chaos modeled, for instance, by the Euler equation.
In a turbulent flow, the velocity field v(r, t) appears random in time and highly dis-
ordered in space. Turbulent flows exhibit a wide range of length scales66: from the
system size, size of obstacles, through large vortices down to the smallest ones at the
so-called Taylor microscale where dissipation occurs. What is more, even at a fixed
location r0, the time series of velocity v(r0, t) tends to be very different in distinct
experiments with approximately the same initial and boundary conditions. Neverthe-
less, the time average v̄(r0) tends to be the same in all realizations. Unlike individual
flow realizations, statistical properties of turbulent flow are empirically reproducible.
They typically depend onR and BCs.

The study of fluid flow including the Navier-Stokes and Euler equations is a ma-
jor branch of engineering, physics and mathematics. Though simple to write down,
these equations are notoriously hard to solve in most physically interesting situations,
primarily due to the nonlinearities arising from the advection term and the resulting
coupling of a large number of degrees of freedom and length scales. For instance, we
do not yet have an effective analytical method of predicting the features of the flow

65This includes intermittency, one of whose manifestations is irregular alteration between chaos and
apparently periodic behavior.

66The range of length scales where inertial forces (∝ v ·∇v) dominate over viscous forces (∝ ν∇2v)
is called the inertial range. Dissipation typically occurs at smaller length scales.
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past a cylinder as R is varied or the values of R at which qualitative changes67 in the
flow pattern occur. However, some things have been done: von Kármán showed that
the vortex street is stable for certain ranges of parameters. Numerical simulations can
reproduce some of the observed features. As happened near the cylinder, the condi-
tions at boundaries and interfaces encode important physical effects, but can add to the
complications. Some of these effects can be understood using boundary layer theory,
an asymptotic approximation method pioneered by Ludwig Prandtl. In fact, there is a
million dollar Clay Millennium Prize attached to understanding whether the solution
to NS for smooth initial data exists and is smooth or whether the solution could hit
a singularly in finite time. The wider challenge lies in deducing the observed, often
complex patterns of flow68 from the known laws governing fluid motion. This often
requires a mix of physical insight, experimental data, mathematical techniques and
computational methods.

67Qualitative changes typically occur when the existing flow is unstable to perturbations which grow,
leading to a new flow pattern. For instance, steady shear flow can be susceptible to the Kelvin-Helmholtz
instability: the interface between two layers of fluid moving at different velocities is unstable to short wave-
length perturbations that grow, leading, for instance, to the ‘roll-up’ of a vortex sheet. Another common
instability is the Rayleigh-Taylor instability of the interface between a dense fluid and a rare fluid that lies
beneath it.

68In particular, one would like to develop a statistical understanding of turbulent flows.
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