Fluid Dynamics, Autumn 2024, CMI Assignment 9

Due by the beginning of the class on Monday, Nov 4, 2024 helicity, buoyancy force

- 1. $\langle \mathbf{4} \rangle$ Divergence of a cross product. Establish the vector identity $\nabla \cdot (\mathbf{a} \times \mathbf{b}) = \mathbf{b} \cdot (\nabla \times \mathbf{a}) \mathbf{a} \cdot (\nabla \times \mathbf{b})$ for vector fields \mathbf{a} and \mathbf{b} . It is used in deriving a local conservation law for helicity in barotropic flow.
- 2. $\langle \mathbf{2} + \mathbf{2} + \mathbf{5} \rangle$ Find the vorticity and helicity density $\boldsymbol{v} \cdot \boldsymbol{w}$ of (a) a planar velocity field of the form $\boldsymbol{v} = (u(x, y), v(x, y), 0)$ and (b) $\boldsymbol{v} = (z, x, y)$ in Cartesian coordinates. (c) For the field in (b) solve the equations for streamlines and express (x(s), y(s), z(s)) in terms of three constants of integration.
- 3. $\langle \mathbf{3} + \mathbf{4} \rangle$ Suppose a body having the shape of a cuboid of (horizontal) surface area A and height h is fully submerged in a fluid of constant density ρ at rest and subject to Earth's downward acceleration due to gravity $-g\hat{z}$ where \hat{z} points upwards. (a) Find the force due to fluid pressure on the cuboid. (b) Explain with a diagram how you would evaluate this force if the body had a more general shape and occupied a volume V_b . Propose a formula for the force due to pressure in this case.