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1 Some reference books

1. D J Griffiths, Introduction to Electrodynamics, Benjamin Cummings, Prentice-Hall of India.

2. R P Feynman, R B Leighton and M Sands, Feynman Lectures on Physics, Vol 2.

3. E M Purcell, Electricity And Magnetism (SI Units) Berkeley Physics Course, Vol. 2, Tata-McGraw
Hill.

4. E M Purcell and D J Morin, Electricity and Magnetism (3rd Ed)

5. A Sommerfeld, Electrodynamics: Lectures on Theoretical Physics

6. W Pauli, Electrodynamics, Pauli Lectures on Physics Volume 1, Dover

7. A Zangwill, Modern Electrodynamics, Cambridge Univ Press, 2013.

8. J D Jackson, Classical Electrodynamics, Wiley.

9. M Schwartz, Principles of Electrodynamics, Dover

10. L D Landau and E.M. Lifshitz, The Classical Theory of Fields: Course of Theoretical Physics, Vol.
2, Butterworth Heinemann.

11. A O Barut, Electrodynamics and Classical Theory of Fields and Particles, Dover Publications.

2 Chronology of some developments in electromagnetism

• Thales of Miletus (Greek) c600 BCE: Amber rubbed with fur could attract small
light objects.
• W Gilbert (English) 1600: Publication of De Magnete, coined the term electrical.
Hypothesised that the amber effect was due to the flow of an electrical fluid.
• C-A de Coulomb (French) 1785: electrostatic force between charged particles
• A Volta (Italian) 1799: electric battery
• H C Oersted (Danish) 1820: electric current deflects a magnetic needle
• J-B Biot and F Savart (French) 1820: Law for magnetic field due to a steady current.
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• A-M Ampere (French) 1820-26: force between current carrying wires, circuital
law, invented solenoid, electrical telegraph, Memoir on the Mathematical Theory of
Electrodynamic Phenomena, Uniquely Deduced from Experience. Maxwell called
Ampere the Newton of electricity.
•M Faraday (English) 1831: electromagnetic induction, lines of force, EM fields
• C F Gauss (German) 1835: Gauss’ law relating flux of the electric field across a
closed surface to the charge enclosed. It turns out a version of this law had already
appeared in the work of J-L Lagrange (French) in 1773.
• G Kirchhoff (German) 1845: laws of electrical circuits
• J C Maxwell (Scottish) c1865: displacement current, Maxwell equations, EM waves.
•H Hertz (German) c1886-89: experimentally demonstrated production, transmission
and detection of transverse EM (radio) waves validating Maxwell’s theory.
•O Heaviside (English) 1884-1902: developed vector calculus, reformulated Maxwell’s
equations using vector calculus, transmission line theory for electrical telegraph, skin
effect, EM fields around a moving charge, magnetic force on moving charged particle,
Cerenkov effect
• H A Lorentz (Dutch) 1880-1920: Lorentz force on a charge in an EM field, Lorentz-
Fitzgerald contraction, time dilation, covariance of Maxwell’s equations in different
frames under Lorentz transformations (earlier work by Larmour and full form due to
Poincare).
• A Einstein (German) 1905: Special relativity from electrodynamics of moving bod-
ies.

3 Introductory remarks

In the second half of the 19th century, electrodynamics was developed in the in-
tellectual milieu of other continuum mechanical theories such as elasticity and fluid
dynamics. By analogy with these, it was supposed that the EM fields existed in a
medium dubbed the ether (like the displacement field in an elastic solid). Like sound
waves, it was supposed that EM waves and light were propagating waves in ether. It
was thought that Maxwell’s equations were valid in the frame of the ether. Maxwell,
Boltzmann and many others tried to explain the properties of light in terms of those
of the ether medium. However, ether had to have very peculiar properties. For exam-
ple, (a) to allow light to travel very fast, it had to be minimally deformable [i.e., very
stiff/rigid, since sound travels faster in a solid than in a gas] but (b) it had to be very
rare (not dense) to have evaded detection through its effect on the motion of celestial
or terrestrial bodies. With time, models (including so-called ether engines) became
very complicated. Moreover, motion relative to the ether was not detected, nor was
the expected ether drag on the motion of bodies. The ether concept was eventually
abandoned (especially with the work of Einstein) in favor of electric and magnetic
fields that could exist in vacuum and in which light could also propagate.

Electromagnetism involves both corpuscular (discrete, particle-like) and field physics.
For instance, electric charge is found only in integer multiples of a minimal charge,
that of a proton or electron. On the other hand, fields vary (continuously) from point
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to point. Although the electric and magnetic fields can be described mathematically in
isolation, point test charges are used to measure them. Conversely, point charges pro-
duce fields of their own. Maxwell’s equations (e.g., µ0ε0

∂E
∂t = −µ0j+∇×B) gov-

ern the dynamics (time evolution) of the electric and magnetic fields in the presence
of electric charges and currents. The dynamics of the charges due to the fields is given
by the Newton-Lorentz equation of motion mr̈(t) = q(E(r(t), t) + ṙ(t)×B(r, t)),
which involves the Lorentz force. Although Maxwell’s equations are linear equations
for the fields E and B, the Newton-Lorentz equations introduce nonlinearities since
the fields generally depend nonlinearly on the particle locations r.
• Classical electromagnetic theory has numerous applications: design of Faraday cage
and capacitors, electric motors, electric generators, telegraph, transmission of electric
currents, wave guides, design of aircraft to evade radar detection, dynamics of charged
particles and fields in the plasma of the solar corona or Earth’s ionosphere, magnetic
confinement fusion in a tokamak, etc.
•Maxwell theory has led to notable theoretical insights including the concept of fields,
Lorentz symmetry and the gauge invariance principle (that arose from writing the
electric and magnetic fields in terms of scalar and vector potentials). These have
had a lasting and continuing impact on the rest of physics (strong interactions, weak
interactions, gravity, models for condensed matter, etc.).

4 Vector calculus

4.1 Scalar and vector fields

Scalar fields. At a given instant of time, the pressure p(r) in the atmosphere is a
real number (scalar) that depends on location r. The pressure function is an example
of a scalar field defined on a region in 3d Euclidean space. A scalar field assigns a
real number to each point r. We will suppose that the real number varies sufficiently
smoothly as the location changes. This is usually physically justified and allows us
to use tools from calculus. Simple examples include (i) p(r) = a · r where a is a
fixed vector and (ii) p(r) = σr · r = σ(x2 + y2 + z2) where σ is a real constant.
A scalar field on the plane may be visualized via a contour plot: a plot of the level
curves (curves along which the field is constant) of the scalar function in the region of
interest. For example, the level curves of x2 +y2 are concentric circles centered at the
origin. For a function of three variables, level curves are replaced by level surfaces in
R3. The level surfaces of a · r are planes perpendicular to the fixed vector a.

Vector fields. Similarly, we have the concept of a vector field: a smoothly varying
vector v(r) at each location r. The gravitational force felt by a point mass m at
various points above the Earth’s surface defines a vector field. A vector field may be
visualized by drawing arrows pointing along v(r) at each point r. The magnitude may
be encoded in the lengths of the arrows. The flow velocity at each point of a steadily
flowing fluid is an example of a vector field. A vector field on the plane is of the form
v = f(x, y)x̂+ g(x, y)ŷ. For instance, v = x̂ is a constant vector field of unit length
that points in the x̂ direction everywhere. A radially outward pointing vector field is
v(r) = r = xx̂+ yŷ, its magnitude at r is equal to the distance from the origin.
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4.2 Gradient, divergence and curl

Gradient of a scalar field. Given a scalar field φ(r), its gradient is a vector field
denoted grad φ(r) or ∇φ(r) where ∇ is the Greek letter nabla. In Cartesian coordi-
nates,

grad φ(r) = ∇φ(r) =
∂φ

∂x
x̂+

∂φ

∂y
ŷ +

∂φ

∂z
ẑ. (1)

For many purposes, we may regard ∇ as the vector first order differential operator
∇ = x̂ ∂

∂x + ŷ ∂
∂y + ẑ ∂

∂z . Examples: (i) If φ(x, y) = x then ∇φ = x̂ is a constant
vector field pointing in the x direction at all points of R2. (ii) If φ = 1

2 (x2 + y2 + z2),
then ∇φ = xx̂+ yŷ+ zẑ = rr̂ is a radially outward pointing vector field on R3, with
magnitude equal to the distance from the origin. The gradient allows us to write the
first order Taylor polynomial in a nice way. Recall that for a differentiable function
φ(x, y, z), we have

φ(r + δr) ≈ φ(r) +
∂φ

∂x
δx+

∂φ

∂y
δy +

∂φ

∂z
δz (2)

where δr = δx x̂+δy ŷ+δz ẑ. We recognize the last three terms as the dot product of
∇φ and δr. Thus φ(r+δr) ≈ φ(r)+δr ·∇φ. This formula holds in any dimension.
• Example. Show that ∇(1/r) = −r̂/r2.

Interpretation of gradient. At any location r, ∇φ is a vector that points in the di-
rection of most rapid increase of φ. To see why, it is helpful to introduce the level
surfaces of φ, which are surfaces in R3 on which φ is a constant. For φ to change
most rapidly, we must move from r along a vector that has no component along the
level surface through r, i.e., orthogonal to the level surface. We will now argue that
at any point r, ∇φ(r) is also orthogonal to the level surface through r. Suppose
v is a vector at r of small magnitude, then the linear Taylor approximation gives
φ(r + v) ≈ φ(r) + v · ∇φ. Now, v is tangent to the level surface through r if
φ(r+v)−φ(r) vanishes to first order in v. This happens precisely when v ·∇φ = 0.
Thus, ∇φ must be perpendicular to the level surface of φ and must point either in the
direction of most rapid increase or decrease of φ. Taking v = ε∇φ for 0 < ε � 1,
we find that φ(r+ ε∇φ) ≈ φ(r) + ε|∇φ|2 > φ(r). Thus we conclude that ∇φ must
point in the direction of most rapid increase of φ.

If φ is regarded as a potential function, then its level surfaces are referred to as
equipotential surfaces. E.g., (i) For φ(x, y) = x, the level curves are lines parallel to
the y axis, and ∇φ = x̂ points perpendicular to these lines in the direction of most
rapid increase in φ. (ii) For φ = 1

2 (x2 + y2 + z2), the level surfaces are concentric
spheres centered at the origin and ∇φ = r is perpendicular to these surfaces.

Divergence of a vector field. The divergence of a vector field v, denoted ∇ · v or
div v is a scalar field. In Cartesian coordinates, it is defined as ∇ · v = ∂vx

∂x +
∂vy

∂y +
∂vz

∂z . Intuitively, the divergence measures how much a vector field is expanding or
contracting at a point. For instance, if v is the velocity field of a flowing fluid, then
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∇ · v(r) is the fractional rate of change of volume V of a small parcel of fluid at r

∇ · v = lim
V→0

1

V

dV

dt
. (3)

A vector field with constant Cartesian components has zero divergence: the arrows
representing the vector field are parallel and have the same magnitude everywhere.
The vector field v = xx̂ + yŷ + zẑ should be expected to have a positive divergence
everywhere as it represents a radially expanding flow: in fact, we check that it has
divergence 3 everywhere. In other words, the flow is expanding by the same amount
everywhere, not just at the origin.

If v = ∇φ is a gradient, then its divergence

∇ · v = ∇ ·∇φ =
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
(4)

is a scalar field called the Laplacian of φ and denoted ∇2φ. The ‘Laplace operator’
∇2 = ∂2

x + ∂2
y + ∂2

z is a rotationally invariant second order differential operator.
• For example, it is instructive to find the Laplacian of the scalar function 1/r. This is
the divergence of the radially inward vector field v = ∇(1/r) = −r/r3. Show that
∇ · v = 0 as long as r 6= 0.

Curl of a vector field. The curl of a vector field v is the vector field whose Cartesian
components are given by

∇× v = (∂yvz − ∂zvy)x̂+ (∂zvx − ∂xvz)ŷ + (∂xvy − ∂yvx)ẑ. (5)

Here, ∂x is short-hand for ∂
∂x , etc. The 2nd and 3rd terms are obtained from the 1st

by cyclically permuting x → y → z → x. In components, we may write (∇ ×
v)i = εijk∂ivj where εijk is the totally antisymmetric Levi-Civita symbol: ε123 = 1
and it is antisymmetric under interchange of any pair of indices. Being formally a
cross product of ∇ and v, the formula for the curl should remind us of the angular
momentum L = r×p = (ypz− zpy)x̂+ (zpx−xpz)ŷ+ (xpy− ypx)ẑ of a particle.
In fact, the curl is a measure of local rotation in a vector field. If v is the velocity field
of a fluid, then ∇×v is the vorticity field of the flow and is a local measure of angular
velocity or circulation. For example, consider v = Ωrθ̂ = Ω(−yx̂ + xŷ), which is
the velocity vector field of a fluid that is uniformly rotating about the ẑ axis at angular
velocity Ω. Upon calculating its curl we find ∇ × v = 2Ωẑ. Thus, we may interpret
the curl of a vector field as twice the local angular velocity of rotation.

4.2.1 Leibniz product rule for grad, div and curl

• The Leibniz rule for the gradient of a product of scalar functions

∇(fg) = f∇g + (∇f)g (6)

• Leibniz rule for the divergence of a scalar multiple of a vector field

∇ · (fv) = ∇f · v + f∇ · v. (7)
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• The Leibniz rule for the curl of a scalar multiple of a vector field

∇× (fv) = (∇f)× v + f∇× v. (8)

4.2.2 Second order derivatives and Helmholtz decomposition

Curl-free and divergence-free vector fields and the Helmholtz decomposition. (i)
There is a simple way of constructing a curl-free vector field: take the gradient of a
scalar. A gradient vector field has vanishing curl due to the equality of mixed partials:

∇×∇φ = (∂y∂zφ−∂z∂yφ)x̂+ (∂z∂xφ−∂x∂zφ)ŷ+ (∂x∂yφ−∂y∂xφ)ẑ = 0. (9)

Intuitively, a gradient vector field points in the direction of most rapid increase of φ
and cannot ‘circulate’. (ii) Similarly, there is a nice way of constructing a divergence-
free vector field: take the curl of any vector fieldA. In other words, the divergence of
a curl is identically zero:

∇·(∇×A) = ∂x(∂yAz−∂zAy)+∂y(∂zAx−∂xAz)+∂z(∂xAy−∂yAx) = 0, (10)

again by the equality of mixed partials. (iii) The Helmholtz decomposition expresses
a vector field, quite generally, as a sum of curl-free and divergence-free vector fields:
v = ∇φ+ ∇×A.
• The curl of a curl appears when we write the magnetic field in terms of the vector
potentialB = ∇×A in Ampere’s law for ∇×B.

∇× (∇×A) = −∇2A+ ∇(∇ ·A). (11)

The curl of a curl is a second order vector differential operator acting on vector fields.
There are two other such second order differential operators: the vector Laplacian and
the gradient of the divergence. The RHS is a linear combination of these two. We may
show this by using the identity εijkεilm = δjlδkm − δjmδkl.

4.3 Fundamental theorem of calculus, Stokes’, Green’s and Gauss’ integral theorems

Line integral. Given a vector field v(r) = (vx, vy, vz)(r) in three-dimensional space
and a parametrized curve γ(t) = (x(t), y(t), z(t)) for 0 ≤ t ≤ 1, we may define the
‘line integral’ or ‘contour integral’ of v along γ as the real number∫

γ

v · dγ =

∫ 1

0

v · dγ
dt
dt =

∫ 1

0

[
vx
dx

dt
+ vy

dy

dt
+ vz

dz

dt

]
dt. (12)

Here, γ̇ = dγ
dt = ẋx̂ + ẏŷ + żẑ is a vector field along the curve γ (it is not defined

elsewhere in R3). At each fixed t, it is the tangent vector to the curve at the point γ(t)
as shown in Fig. 1.

For example, if γ is the helix (cos t, sin t, t), then dγ = (− sin t, cos t, 1)dt. We
may consider dγ as the differential of the map γ : [0, 1] → R3. The work done by
a force field F (r) in moving a particle along a curve γ is an important example of a
line integral: WF (γ) =

∫
γ
F · dγ.
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Line integral of v along 𝜸

𝜸(0)

𝜸(1) d𝜸/dt

 d𝜸/dt

v

v

v

v

Figure 1: Contour γ along which the line integral of the vector field v is evaluated.

Fundamental theorem of calculus for line integrals. In general, the line integral
depends on the values of v all along the curve γ. However, if v is the gradient of a
scalar, v = ∇φ, then the line integral can be evaluated in terms of the values of φ at
the endpoints:∫

γ

∇φ · dγ =

∫ 1

0

(
∂φ

∂x

dx

dt
+
∂φ

∂y

dy

dt
+
∂φ

∂z

dz

dt

)
dt

=

∫ 1

0

dφ(r(t))

dt
dt = φ(r(1))− φ(r(0)). (13)

Here, we viewed φ(x(t), y(t), z(t)) as a function of t and used the chain rule to dif-
ferentiate it with respect to t. In particular, if γ is a closed curve, then r(0) = r(1)
and the line integral of a gradient vanishes

∮
γ
∇φ · dγ = 0. Here

∮
denotes a line

integral around a closed contour.
A vector field that is the gradient of a scalar field is called a gradient vector field. In

mechanics, if a force field F (r) is the (negative) gradient of a scalar field (or ‘poten-
tial’ φ(r)), then it is called a conservative force field. The work done by a conservative
force field −∇φ depends only on the initial and final locations of the particle, and not
on other details of the path taken. A conservative force field does no work in moving
a particle around a closed curve.

We have shown that the integral of a gradient ∇φ along a contour γ : [0, 1] → R
is equal to the difference between the values of φ at the end and beginning of the
contour. The latter difference may itself be viewed as an integral over the boundary of
γ, denoted ∂γ, which is the set consisting of two points: the final and initial points on
the contour. Thus, we rewrite (13) as∫

γ

∇φ · dγ =

∫
∂γ

φ = φ(γ(1))− φ(γ(0)). (14)

The minus sign for the initial point is to take into account that γ is oriented from
initial to final point. There are higher dimensional analogs of this integral formula,
concerning the surface integral of a curl (Stokes’ theorem) and the volume integral of
a divergence (Gauss’ theorem).
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Stokes’ theorem. Suppose v is a vector field and S a 2d surface (with area element
dS) with boundary given by the curve ∂S. Stokes’ theorem says that∫

S

(∇× v) · dS =

∮
∂S

v · dl. (15)

In particular, if v = ∇φ is the gradient of a scalar, then ∇ × v = 0 from (9) and
Stokes’ theorem says that

∮
v · dl = 0.

Gauss’ theorem. On the other hand, suppose Ω is a 3d region bounded by the surface
∂Ω, then Gauss’ divergence theorem states that∫

Ω

(∇ · v)dr =

∫
∂Ω

v · dS. (16)

Green’s theorem. Green’s theorem is a planar version of Stokes’ theorem. Suppose
v = vxx̂ + vy ŷ is a vector field on the x-y plane and let S be a region in the plane
bounded by the curve ∂S. Then ∇× v has only a z component while dS = dx dy ẑ
and dl = dx x̂+ dy ŷ, so that (15) becomes∫

S

(∂xvy − ∂yvx)dx dy =

∮
∂S

(vxdx+ vydy). (17)

Green’s theorem leads to a line integral representation of the area of a region S on
the plane. We pick a planar vector field v such that the z-component of its curl is a
constant, say vx = −y, vy = x. Then

Area(S) =

∫
S

dxdy =
1

2

∮
∂S

(x dy − y dx). (18)

• Stokes’ theorem in general. In all these cases, on the left we have the integral of an
exact differential (gradient of scalar, curl of a vector, divergence of a scalar) of some
quantity ω over some space M . The RHS is an integral of the same quantity ω over
the boundary of M . Thus Stokes’ theorem may in general be written as∫

M

dω =

∫
∂M

ω. (19)

5 Electrostatics

5.1 Electric charge, Coulomb’s law for electric force

• Electric charge. Macroscopic bodies like rocks and planets are electrically neutral.
However, it was found that some bodies can be charged by friction: Thales of Miletus
(c 600 BCE) is reported to have observed that amber (fossilized tree resin) rubbed
with fur attracts small light objects like hair. Conventionally we say that the amber
and fur become negatively and positively charged respectively. Similarly, rubbing a
glass rod with silk makes the glass positively charged and silk negatively charged. The

8



microscopic explanation is that electrons have been transferred from the glass to the
silk. The phenomenon is the triboelectric effect or ‘static electricity’.
• According to the empirically deduced principle of charge conservation, electric
charge cannot be created or destroyed. Moreover, the total charge of a collection of
bodies with charges q1, · · · , qn is the algebraic sum of the individual charges qtot =
q1 + · · ·+ qn.
• A point charge is a useful idealization and models a charged body whose linear
dimensions are small compared to the scales of interest, such as the separation between
bodies.
• Coulomb’s law for the forces between point charges q1 and q2 in free space (vac-
uum) is deduced from experiment. They are central, proportional to the product of
charges, inversely proportional to the square of the separation and form an action-
reaction pair:

F1 on 2 =
q1q2(r2 − r1)

4πε0|r2 − r1|3
and F2 on 1 = −F1 on 2. (20)

Electric charge (unlike mass) can have either sign. The force between charges of
the same sign is repulsive while unlike charges attract. In SI units, the charges are
measured in Coulombs. A Coulomb is a rather large unit of charge by microscopic
standards: the charge of a proton is about 1.602 × 10−19C. Since macroscopic elec-
trical phenomena typically involve very large numbers (∼ 1024) of elementary charge
carriers, for many practical purposes, the corpuscular character of charge is smoothed
out and one speaks of charge varying continuously.
• The proportionality constant (4πε0)−1 ≈ 9× 109 Nm2/C2 while the permittivity
of free space is ε0 ≈ 8.85×10−12 C2/Nm2. It is used to relate the units for electrical
charge to the mechanical units for force and distance. This constant can be eliminated
by changing the unit of electrical charge (say, to esu), as is done in gaussian (CGS)
units. The name permittivity is used for historical reasons. It acquires a physical
significance when we ask about the force between charges in a dielectric/polarizable
medium rather than in vacuum. The force between charges is reduced by a factor εr
called the relative permittivity, since each of the charges is slightly screened by the
polarization of the medium. Thus, roughly, the name (relative) permittivity is meant
to convey the extent to which a medium ‘permits’ polarization and thereby decreases
the electrostatic force between charges.
• Remark on units. It may be borne in mind that SI units, although in wide use,
have conceptual shortcomings. We will see that they assign different dimensions to
electric and magnetic fields and thereby partly obscure the Lorentz symmetry that
relates electric and magnetic fields under a Lorentz boost.
• Due to the neutrality of macroscopic matter, electric forces between macroscopic
bodies are rather weak (comparable to or smaller than Earth’s gravity). They are
manifested in contact forces such as friction. On the other hand, on atomic scales there
is significant charge separation, say between the nucleus and electrons and electrical
forces are the dominant ones.
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• Gravity vs electrostatic force. Compare the magnitudes of the electrostatic force
between a pair of protons to the Newtonian gravitational force between them.
• It is empirically found that the electrostatic force obeys the superposition principle.
The force due to two charges on a third is the vector sum of the individual forces:
F1 & 2 on 3 = F1 on 3 + F2 on 3. Thus, we may model the force as a vector satisfying the
parallelogram law of addition. This is the principle that allows us to extend Coulomb’s
law to deal with several charges by reducing the force to a sum of two-body forces.
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