Continuum Mechanics, Spring 2018 CMI Problem set 9 Due at the beginning of lecture on Monday Apr 16, 2018 Equations of elastodynamics and fluid dynamics

- 1. $\langle 4 \rangle$ Express the continuity equation for mass conservation in terms of the material derivative.
- 2. $\langle 6 \rangle$ A fluid flow is incompressible if the volume of each material element does not change with time. Find an alternate characterization of incompressibility in terms of the Eulerian velocity field **v**. Explain your reasoning.
- 3. $\langle \mathbf{10} \rangle$ Recall the equations of elastodynamics we derived for the Eulerian variables ρ and \mathbf{v} in the absence of external body forces. Now suppose the elastic stress T^{el} is that due to pressure p.
 - (a) $\langle 4 \rangle$ Obtain the resulting non-linear equation for the evolution of **v**.
 - (b) $\langle \mathbf{6} \rangle$ Now suppose the motion is incompressible. Given **v** and ρ find a second-order (non-evolutionary) PDE that the pressure must satisfy.