Continuum Mechanics, Spring 2018 CMI Problem set 8 Due at the beginning of lecture on Monday Apr 9, 2018 Bending of a cantilever beam

- 1. $\langle 17 \rangle$ We showed that the drop $\eta(x)$ of the neutral surface of a cantilever beam (clamped at one end) from its undisturbed height satisfies a 4th order differential equation with appropriate BCs.
 - (a) $\langle 6 \rangle$ Solve this equation and find $\eta(x)$ as a function of the weight per unit length W, length l and flexural rigidity D of the beam.
 - (b) $\langle \mathbf{4} \rangle$ Verify that $\eta'' \geq 0$ and find the drop at the extreme end $\eta(l)$.
 - (c) $\langle \mathbf{7} \rangle$ Consider a beam of length l, width w and thickness t with $l \gg t > w$. Would the free end sag more or less (and by what factor?) if it were laid 'sideways' (with width and thickness exchanged). Draw a picture illustrating the two cases.