Continuum Mechanics, Spring 2018 CMI

Problem set 7
Due at the beginning of lecture on Tuesday Mar 27, 2018
Tensor of Elasticity and Elastic Potential Energy

1. $\langle\boldsymbol{7}\rangle$ Count the number of components of the tensor of elasticity $Y_{i j k l}$ for a material in three dimensions with the following properties.
(a) $\langle\mathbf{1}\rangle$ Having all indices the same.
(b) $\langle\mathbf{2}\rangle$ Having precisely one lone index. (e.g. $Y_{x y y y}$)
(c) $\langle\mathbf{2}\rangle$ Having precisely two lone indices. (e.g. $Y_{x y z z}$ or $Y_{y x z x}$)
(d) $\langle\mathbf{2}\rangle$ Having 2 distinct indices each repeated twice.
2. $\langle\mathbf{6}\rangle$ Recall that the tensor of elasticity Y for an isotropic material $Y_{i j k l}=\lambda \delta_{i j} \delta_{k l}+$ $\mu\left(\delta_{i k} \delta_{j l}+\delta_{i l} \delta_{k j}\right)$ may be regarded as a symmetric operator on the 6 d space of symmetric 3×3 strain tensors.
(a) $\langle\mathbf{3}\rangle$ Show that the Kronecker delta is an eigenvector of Y. Find the corresponding eigenvlaue.
(b) $\langle\mathbf{3}\rangle$ Find the trace of Y.
3. $\langle\mathbf{8}\rangle$ Express the elastic potential energy U of an isotropic material occupying a volume V in terms of the expansion Θ, shear tensor Σ and the bulk and shear moduli K and μ.
