Continuum Mechanics, Spring 2018 CMI

Problem set 7 Due at the beginning of lecture on Tuesday Mar 27, 2018 Tensor of Elasticity and Elastic Potential Energy

- 1. $\langle \mathbf{7} \rangle$ Count the number of components of the tensor of elasticity Y_{ijkl} for a material in three dimensions with the following properties.
 - (a) $\langle \mathbf{1} \rangle$ Having all indices the same.
 - (b) $\langle 2 \rangle$ Having precisely one lone index. (e.g. Y_{xyyy})
 - (c) $\langle 2 \rangle$ Having precisely two lone indices. (e.g. Y_{xyzz} or Y_{yxzx})
 - (d) $\langle \mathbf{2} \rangle$ Having 2 distinct indices each repeated twice.
- 2. $\langle \mathbf{6} \rangle$ Recall that the tensor of elasticity Y for an isotropic material $Y_{ijkl} = \lambda \delta_{ij} \delta_{kl} + \mu(\delta_{ik}\delta_{jl} + \delta_{il}\delta_{kj})$ may be regarded as a symmetric operator on the 6d space of symmetric 3×3 strain tensors.
 - (a) $\langle 3 \rangle$ Show that the Kronecker delta is an eigenvector of Y. Find the corresponding eigenvlaue.
 - (b) $\langle \mathbf{3} \rangle$ Find the trace of Y.
- 3. $\langle \mathbf{8} \rangle$ Express the elastic potential energy U of an isotropic material occupying a volume V in terms of the expansion Θ , shear tensor Σ and the bulk and shear moduli K and μ .