Continuum Mechanics, Spring 2018 CMI Problem set 6 Due at the beginning of lecture on Monday Mar 19, 2018 Elastostatics

- 1. $\langle 16 \rangle$ Consider a homogeneous isotropic material with Young's modulus E and Poisson's ratio ν . It is subject to a horizontal (along x) normal tensile stress g everywhere.
 - (a) $\langle \mathbf{8} \rangle$ Using the previously determined displacement field $\xi = (g/E)(x, -\nu y, -\nu z)$ and stress tensor $T_{ij} = -g \operatorname{diag}(1, 0, 0)$ in the tensorial form of Hooke's law, express Eand ν in terms of Lamé's elastic constants μ and λ .
 - (b) $\langle \mathbf{5} \rangle$ Invert the formulae obtained to express μ and λ in terms of E and ν . Show that λ and μ must be non-negative.
 - (c) $\langle \mathbf{3} \rangle$ Express the bulk modulus K in terms of λ and μ and verify that the shear modulus defined earlier coincides with Lamé's elastic constant μ .
- 2. $\langle \mathbf{5} \rangle$ Show that the displacement field in a homogeneous isotropic elastic material in equilibrium is bi-harmonic in the absence of external forces: $\nabla^2 \nabla^2 \xi = 0$.