Continuum Mechanics, Spring 2018 CMI Problem set 5 Due at the beginning of lecture on Monday Mar 12, 2018 Elasticity: Strain tensor

- 1. $\langle \mathbf{13} \rangle$ Consider the second-rank tensor field $S = \nabla \xi$ for a displacement field ξ with S_{ij} in Cartesian coordinates given by $\epsilon \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ where ϵ is a small dimensionless parameter.
 - (a) $\langle \mathbf{3} \rangle$ Find the corresponding rotation/vorticity tensor ω_{ij} , strain tensor e_{ij} , shear tensor Σ_{ij} and expansion Θ .
 - (b) $\langle \mathbf{6} \rangle$ Find a three dimensional displacement field ξ corresponding to the above S. What is the curl of ξ ?
 - (c) $\langle 4 \rangle$ Plot the vector field ξ in the x-y plane and mention the type of elastic deformation it corresponds to. You must indicate the direction of the vector field by arrows.
- 2. $\langle 15 \rangle$ Consider a homogeneous isotropic material with Young's modulus E and Poisson's ratio ν . It is subject to a horizontal (along x) normal tensile stress g everywhere.
 - (a) $\langle \mathbf{6} \rangle$ Find an expression for the displacement field in the material in Cartesian coordinates. Hint: Consider a bar of rectangular cross-section with faces parallel to the coordinate planes and choose a suitable origin for coordinates.
 - (b) $\langle \mathbf{5} \rangle$ Find the corresponding tensor field $S = \nabla \xi$ and decompose it into a rotation ω_{ij} and strain tensor e_{ij} .
 - (c) $\langle 4 \rangle$ Find the corresponding shear tensor Σ and expansion Θ .
- 3. $\langle \mathbf{7} \rangle$ Suppose $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are three-component row vectors and $\delta \mathbf{u}, \delta \mathbf{v}, \delta \mathbf{w}$ are small 3-component row vectors. Consider the 3 × 3 matrix $M = \begin{pmatrix} \mathbf{u} + \delta \mathbf{u} \\ \mathbf{v} + \delta \mathbf{v} \\ \mathbf{w} + \delta \mathbf{w} \end{pmatrix}$. Find a simple expression for $\mathbf{w} + \delta \mathbf{w}$.

 $\det M$ as a sum of determinants by dropping terms that are quadratic or higher order in small quantities. Justify your result.