Classical Mechanics 2, Spring 2023 CMI

Assignment 6
Due by 6pm, Saturday Apr 15, 2023
Kepler problem

1. $\langle\mathbf{8}\rangle$ Given that the radius of the Sun is $r_{s} \approx 7 \times 10^{5} \mathrm{~km}$, make order of magnitude estimates to find whether the CM of the Sun-Earth system and the orbit of the Sun lie within the solar interior. Recall that $1 \mathrm{AU} \approx 1.5 \times 10^{8} \mathrm{~km}, m_{e} \approx 6 \times 10^{24} \mathrm{~kg}$ and $m_{s} \approx 2 \times 10^{30} \mathrm{~kg}$. Draw a figure to roughly illustrate the situation showing the orbits of the Sun and Earth, CM etc. Hint: The eccentricity of the orbit is very small.
2. $\langle\mathbf{4}+\mathbf{3}\rangle$ (a) For bound elliptical orbits of the Kepler problem, express the time period $T(E)$ as a function of relative energy E and physical constants. Give an explicit formula, not just an integral representation. (b) What happens to $T(E)$ as $E \rightarrow 0^{-}$and why is this physically reasonable based on properties of the effective potential? Hint: You do not need to evaluate any new integrals if you use the techniques developed in the lecture.
