Classical Mechanics 2, Spring 2023 CMI

Assignment 5
Due by 6pm, Sun Mar 26, 2023
Canonical Transformations, Kepler problem

1. $\langle\mathbf{1 4}\rangle$ Suppose $\left(r_{1}, p_{1}\right)$ and $\left(r_{2}, p_{2}\right)$ are the canonically conjugate Cartesian coordinates and momenta of a pair of point particles of masses m_{1}, m_{2} that move on a line (this is a 1 d toy version of the two-body Kepler problem). Define the center of mass and relative positions and momenta by

$$
\begin{equation*}
R=\left(m_{1} r_{1}+m_{2} r_{2}\right) / M, \quad r=r_{2}-r_{1}, \quad P=p_{1}+p_{2}, \quad p=m\left(p_{2} / m_{2}-p_{1} / m_{1}\right) \tag{1}
\end{equation*}
$$

where $M=m_{1}+m_{2}$ and $m=m_{1} m_{2} / M$.
(a) $\langle\mathbf{1}\rangle$ Justify the formula for the relative momentum p.
(b) $\langle\mathbf{4}\rangle$ Invert this transformation and express $r_{1}, r_{2}, p_{1}, p_{2}$ in terms of R, r, P, p.
(c) $\langle\mathbf{3}\rangle$ Given that the old variables are canonical, what are the 6 (up to antisymmetry) basic PBs among them?
(d) $\langle\mathbf{6}\rangle$ Determine whether this transformation is canonical by evaluating all the 6 relevant PBs among new (CM and relative) variables.
2. $\langle\mathbf{1 4}\rangle$ Consider a system with 1 degree of freedom and real position coordinate q and canonically conjugate momentum p. Suppose $q \mapsto Q(q)$ is a point transformation on configuration space. Let $P(q, p)$ denote the new momentum conjugate to Q.
(a) $\langle\mathbf{2}\rangle$ Does this canonical transformation include the identity transformation of phase space variables as a special case? Say yes/no and why.
(b) $\langle\mathbf{2}\rangle$ We seek a generating function of type $2, F_{2}(q, P)$ which, for historical reasons, we will denote $W(q, P)$. Write the 2 equations of transformation in terms of the generating function W.
(c) $\langle\mathbf{4}\rangle$ Integrate one of the two equations to arrive at a formula for $W(q, P)$ including any integration 'constants'. Hint: You need to decide which equation can be integrated easily and with respect to which variable.
(d) $\langle\mathbf{2}\rangle$ Find an expression for the old momentum p in terms of $P, Q(q)$ etc.
(e) $\langle\mathbf{2}\rangle$ Invert this to obtain a formula for the new momentum P in terms of the old quantities.
(f) $\langle\mathbf{2}\rangle$ Earlier, we used a Lagrange function to lift a point transformation on configuration space to a CT on phase space. What roughly encodes the role of the Lagrange function in the above construction?

