Classical Mechanics 2, Spring 2023 CMI Assignment 4 Due by 6pm, Friday Feb 17, 2023 Hamiltonian, Hamilton's equations, Legendre transform

- 1. $\langle \mathbf{12} \rangle$ Consider a mechanical system with configuration space \mathbb{R}^n and generalized coordinates q^i for i = 1, ..., n. It is governed by a smooth potential energy V(q) and kinetic energy $T = \frac{1}{2}m_{ij}\dot{q}^i\dot{q}^j$ where m_{ij} are the entries of a fixed real symmetric matrix with nonzero determinant. Repeated indices are summed from 1 to n. Suppose the Lagrangian is L = T V.
 - (a) $\langle \mathbf{3} \rangle$ Find a simple formula for the momenta p_k conjugate to q^k . Use the notation m^{ij} for the entries of the inverse matrix. What is its defining property?
 - (b) $\langle \mathbf{3} \rangle$ Find the Hamiltonian $H = p_k \dot{q}^k L$ and compare it with E = T + V. Here, we regard H as a function of q and \dot{q} .
 - (c) $\langle \mathbf{3} \rangle$ Solve for the velocities \dot{q}^i and express the Hamiltonian in terms of coordinates and momenta.
 - (d) $\langle \mathbf{3} \rangle$ Find Hamilton's equations of motion.
- 2. $\langle \mathbf{3}+\mathbf{2}+\mathbf{3}\rangle$ Suppose the Lagrangian of a system with one real degree of freedom is $L(q, \dot{q}) = e^{\dot{q}} V(q)$ where V is some smooth potential. (a) Find the corresponding Hamiltonian H(q,p) by evaluating the Legendre transform of L. (b) Evaluate the inverse Legendre transform of H(q,p) and compare the result with $L(q,\dot{q})$. (c) What do you understand by the term convex function? For any fixed q is $L(q,\dot{q})$ a convex function of \dot{q} ?