Classical Mechanics 2, Spring 2023 CMI

Assignment 4
Due by 6pm, Friday Feb 17, 2023
Hamiltonian, Hamilton's equations, Legendre transform

1. $\langle\mathbf{1 2}\rangle$ Consider a mechanical system with configuration space \mathbb{R}^{n} and generalized coordinates q^{i} for $i=1, \ldots, n$. It is governed by a smooth potential energy $V(q)$ and kinetic energy $T=\frac{1}{2} m_{i j} \dot{q}^{i} \dot{q}^{j}$ where $m_{i j}$ are the entries of a fixed real symmetric matrix with nonzero determinant. Repeated indices are summed from 1 to n. Suppose the Lagrangian is $L=T-V$.
(a) $\langle\mathbf{3}\rangle$ Find a simple formula for the momenta p_{k} conjugate to q^{k}. Use the notation $m^{i j}$ for the entries of the inverse matrix. What is its defining property?
(b) $\langle\mathbf{3}\rangle$ Find the Hamiltonian $H=p_{k} \dot{q}^{k}-L$ and compare it with $E=T+V$. Here, we regard H as a function of q and \dot{q}.
(c) $\langle\mathbf{3}\rangle$ Solve for the velocities \dot{q}^{i} and express the Hamiltonian in terms of coordinates and momenta.
(d) $\langle\mathbf{3}\rangle$ Find Hamilton's equations of motion.
2. $\langle\mathbf{3}+\mathbf{2}+\mathbf{3}\rangle$ Suppose the Lagrangian of a system with one real degree of freedom is $L(q, \dot{q})=$ $e^{\dot{q}}-V(q)$ where V is some smooth potential. (a) Find the corresponding Hamiltonian $H(q, p)$ by evaluating the Legendre transform of L. (b) Evaluate the inverse Legendre transform of $H(q, p)$ and compare the result with $L(q, \dot{q})$. (c) What do you understand by the term convex function? For any fixed q is $L(q, \dot{q})$ a convex function of \dot{q} ?
