Classical Mechanics 2, Spring 2023 CMI

Assignment 3
Due by 8pm, Monday Feb 6, 2023
Hamiltonian, Extremum action principle

1. $\langle\mathbf{1}+\mathbf{2}+\mathbf{2}+\mathbf{7}+\mathbf{2}\rangle$ Consider the Lagrangian $L=T-V$ for a system with 1 real degree of freedom q. Suppose $T=\frac{1}{2} m \dot{q}^{2}+\frac{1}{3} g \dot{q}^{3}$ and $V(q)$ is some smooth nonconstant potential function and m, g are nonzero real constants. (a) Find the momentum p conjugate to q. (b) Find the Euler-Lagrange equation of motion as a 2nd order ODE. (c) Express the Hamiltonian as a function of q and \dot{q} and comment on whether it is equal to $J=T+V$. (d) Use the EL equation to check whether H and $J=T+V$ are conserved. (e) Briefly comment on what you may infer from this example.
2. $\langle\mathbf{1 6}\rangle$ Nature of extremum of action. Consider a particle of mass m in the potential $V(x)=\frac{1}{2} m \omega^{2} x^{2}$. Suppose $x(t)$ is a trajectory between $x\left(t_{i}\right)=x_{i}$ and $x\left(t_{f}\right)=x_{f}$ and let $x(t)+\delta x(t)$ be a neighboring path with $\delta x\left(t_{i}\right)=\delta x\left(t_{f}\right)=0$.
(a) $\langle\mathbf{4}\rangle$ Write the action of the path $x+\delta x$ for small δx as a quadratic Taylor polynomial in δx. Show that you get the following expression. What is S_{1} ?

$$
\begin{align*}
S[x+\delta x] \approx & S_{0}+S_{1}+S_{2}=S[x]-\int_{t_{i}}^{t_{f}}\left(m \ddot{x}+m \omega^{2} x\right) \delta x d t \\
& +\int_{t_{i}}^{t_{f}}\left[\frac{1}{2} m(\delta \dot{x})^{2}-\frac{1}{2} m \omega^{2}(\delta x)^{2}\right] d t . \tag{1}
\end{align*}
$$

(b) $\langle\mathbf{2}\rangle$ For what κ is $x(t)+\delta x(t)$ a legitimate neighboring path for the variation $\delta x(t)=$ $\epsilon \sin \kappa\left(t-t_{i}\right)$?
(c) $\langle\mathbf{3}\rangle$ Evaluate $S_{2}[\delta x]$ for all the allowed values of κ.
(d) $\langle\mathbf{3}\rangle$ Take $\Delta t=t_{f}-t_{i}=10 \mathrm{~s}$ and $\omega=1 \mathrm{~Hz}$. Find a path that can be made arbitrarily close to the trajectory $x(t)$, whose action is less than that of $x(t)$. [Assume we may ignore higher order corrections in the Taylor approximation.]
(e) $\langle\mathbf{3}\rangle$ Take $\Delta t=t_{f}-t_{i}=10 \mathrm{~s}$ and $\omega=1 \mathrm{~Hz}$. Find a path that can be made arbitrarily close to the trajectory $x(t)$, whose action is more than that of $x(t)$. [Assume we may ignore higher order corrections in the Taylor approximation.]
(f) $\langle\mathbf{1}\rangle$ What sort of an extremum of action is the classical trajectory?

