Classical Mechanics 2, Spring 2023 CMI Assignment 3 Due by 8pm, Monday Feb 6, 2023 Hamiltonian, Extremum action principle

- ⟨1+2+2+7+2⟩ Consider the Lagrangian L = T V for a system with 1 real degree of freedom q. Suppose T = ½mq² + ⅓gq³ and V(q) is some smooth nonconstant potential function and m, g are nonzero real constants. (a) Find the momentum p conjugate to q. (b) Find the Euler-Lagrange equation of motion as a 2nd order ODE. (c) Express the Hamiltonian as a function of q and q and comment on whether it is equal to J = T + V. (d) Use the EL equation to check whether H and J = T + V are conserved. (e) Briefly comment on what you may infer from this example.
- 2. $\langle \mathbf{16} \rangle$ Nature of extremum of action. Consider a particle of mass m in the potential $V(x) = \frac{1}{2}m\omega^2 x^2$. Suppose x(t) is a trajectory between $x(t_i) = x_i$ and $x(t_f) = x_f$ and let $x(t) + \delta x(t)$ be a neighboring path with $\delta x(t_i) = \delta x(t_f) = 0$.
 - (a) $\langle 4 \rangle$ Write the action of the path $x + \delta x$ for small δx as a quadratic Taylor polynomial in δx . Show that you get the following expression. What is S_1 ?

$$S[x + \delta x] \approx S_0 + S_1 + S_2 = S[x] - \int_{t_i}^{t_f} (m\ddot{x} + m\omega^2 x) \,\delta x \,dt + \int_{t_i}^{t_f} \left[\frac{1}{2}m(\delta \dot{x})^2 - \frac{1}{2}m\omega^2(\delta x)^2\right] \,dt.$$
(1)

- (b) $\langle \mathbf{2} \rangle$ For what κ is $x(t) + \delta x(t)$ a legitimate neighboring path for the variation $\delta x(t) = \epsilon \sin \kappa (t t_i)$?
- (c) $\langle \mathbf{3} \rangle$ Evaluate $S_2[\delta x]$ for all the allowed values of κ .
- (d) $\langle \mathbf{3} \rangle$ Take $\Delta t = t_f t_i = 10$ s and $\omega = 1$ Hz. Find a path that can be made arbitrarily close to the trajectory x(t), whose action is *less* than that of x(t). [Assume we may ignore higher order corrections in the Taylor approximation.]
- (e) $\langle \mathbf{3} \rangle$ Take $\Delta t = t_f t_i = 10$ s and $\omega = 1$ Hz. Find a path that can be made arbitrarily close to the trajectory x(t), whose action is *more* than that of x(t). [Assume we may ignore higher order corrections in the Taylor approximation.]
- (f) $\langle 1 \rangle$ What sort of an extremum of action is the classical trajectory?