Classical Mechanics 2, Spring 2023 CMI

Assignment 2
Due by 6pm, Saturday Jan 21, 2023
Extremal action principle and Euler-Lagrange equations

1. $\langle\mathbf{4}\rangle$ Show through an example [involving a free particle on a line] that if both q and $p=m \dot{q}$ at initial and final times are specified, there may be no trajectory joining these states.
2. $\langle\mathbf{3}+\mathbf{1}+\mathbf{2}\rangle$ Suppose the Lagrangian for a system $L\left(q^{1}, \cdots, q^{n}, \dot{q}^{1}, \cdots, \dot{q}^{n}\right)$ is independent of the generalized coordinate q^{j} for some $1 \leq j \leq n$. (a) Find a dynamical variable that is conserved under time evolution and mention its name. (b) Find the corresponding conserved quantity for $L=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\phi}^{2}\right)-V(r)$ where r, ϕ are plane polar coordinates and $m>0$ is a fixed real constant. (c) What system does this Lagrangian describe and what is the physical meaning of the obtained conserved quantity?
3. $\langle\mathbf{7}+\mathbf{3}\rangle$ Suppose the Lagrangian for a system with one degree of freedom with configuration space $\mathcal{Q}=\mathbb{R}$ is $L=L(q, \dot{q}, \ddot{q})$. Consider the action for paths $q(t)$ with $t_{1} \leq t \leq t_{2}$ between points q_{1} and q_{2} on \mathcal{Q} :

$$
\begin{equation*}
S[q]=\int_{t_{1}}^{t_{2}} L(q, \dot{q}, \ddot{q}) d t \tag{1}
\end{equation*}
$$

We ask that S be extremal with respect to infinitesimal variations of path holding the initial and final positions and velocities fixed. (a) Find the Euler-Lagrange equation for the stationarity of S. (b) Taking $L=\frac{1}{2} m \dot{q}^{2}-V(q)+\frac{1}{2} \alpha \ddot{q}^{2}$ find the EL equation and mention its order (with respect to time derivatives). Here $m>0$ and α are real constants and V a real differentiable function.

