Classical Mechanics 2, Spring 2016 CMI

Problem set 9
Due by the beginning of lecture on Monday Mar 21, 2016
Inertia tensor of a rigid body

1. $\langle\mathbf{1 6}\rangle$ Consider a uniform square plate of side L and total mass M (surface mass density $\left.\sigma=M / L^{2}\right)$.
(a) $\langle\mathbf{3}\rangle$ Select a convenient right-handed orthonormal coordinate system and draw a diagram of the plate and the coordinate axes.
(b) $\langle\mathbf{1}\rangle$ Where is the center of mass located? What are its coordinates in the chosen system of coordinates?
(c) $\langle\mathbf{8}\rangle$ Find all the matrix elements of the inertia matrix in a suitable basis with origin at the center of mass. Exploit the symmetries of the mass distribution on the plate to simplify the calculation.
(d) $\langle\mathbf{2}\rangle$ Find the principal moments of inertia of the plate.
(e) $\langle\mathbf{2}\rangle$ Find the corresponding principal axes of inertia, are they uniquely determined? Clarify.
2. $\langle\mathbf{5}\rangle$ Consider a rigid rotator, a system of mass points $m_{a}, a=1, \cdots N$ that are concentrated along the z-axis at the locations z_{a}, defined so that the center of mass lies at $z=0$ (and $x=y=0$). Draw a figure indicating masses, origin and coordinate axes. What can you say about the off-diagonal elements of the inertia tensor? Find the principal moments of inertia of the rotator.
