Classical Mechanics 2, Spring 2016 CMI Problem set 9 Due by the beginning of lecture on Monday Mar 21, 2016 Inertia tensor of a rigid body

- 1. $\langle \mathbf{16} \rangle$ Consider a uniform square plate of side L and total mass M (surface mass density $\sigma = M/L^2$).
 - (a) $\langle 3 \rangle$ Select a convenient right-handed orthonormal coordinate system and draw a diagram of the plate and the coordinate axes.
 - (b) $\langle \mathbf{1} \rangle$ Where is the center of mass located? What are its coordinates in the chosen system of coordinates?
 - (c) $\langle 8 \rangle$ Find all the matrix elements of the inertia matrix in a suitable basis with origin at the center of mass. Exploit the symmetries of the mass distribution on the plate to simplify the calculation.
 - (d) $\langle 2 \rangle$ Find the principal moments of inertia of the plate.
 - (e) (2) Find the corresponding principal axes of inertia, are they uniquely determined? Clarify.
- 2. $\langle \mathbf{5} \rangle$ Consider a rigid rotator, a system of mass points m_a , $a = 1, \dots N$ that are concentrated along the z-axis at the locations z_a , defined so that the center of mass lies at z = 0 (and x = y = 0). Draw a figure indicating masses, origin and coordinate axes. What can you say about the off-diagonal elements of the inertia tensor? Find the principal moments of inertia of the rotator.