Classical Mechanics 2, Spring 2016 CMI

Problem set 8 Due by the beginning of lecture on Monday Mar 14, 2016 Generators for finite canonical transformations

1. $\langle 15 \rangle$ Consider the finite canonical transformation, corresponding to a rotation of the phase plane

Q = cq - sp and P = sq + cp where $s = \sin \theta$ and $c = \cos \theta$. (1)

- (a) $\langle \mathbf{2} \rangle$ We seek a generating function of type-II W(q, P) for the above finite CT. Write the equations of transformation for such a generator and find the two first order partial differential equations that W(q, P) must satisfy to ensure it generates the above CT.
- (b) $\langle \mathbf{3} \rangle$ Integrate the PDE that involves only one partial derivative $\frac{\partial W}{\partial q}$ and express the answer in terms of an arbitrary differentiable function g. What variables does g depend on?
- (c) $\langle \mathbf{4} \rangle$ Determine g by imposing the other PDE. Find an ODE for g, solve it, and give a simple formula for the generating function W(q, P).
- (d) $\langle \mathbf{1} \rangle$ For $\theta = 0$ what does W(q, P) reduce to, and what CT does it generate?
- (e) $\langle \mathbf{1} \rangle$ Verify that your proposed function W(q, P) indeed generates the above finite rotation.
- (f) $\langle \mathbf{2} \rangle$ Find a generating function of type $F_1(q, Q)$ that generates the same finite rotation via an appropriate Legendre transform from W(q, P). This provides an example of a CT that admits a generator of both type I and II.
- (g) $\langle 2 \rangle$ Try to find a generator of type I for the identity CT, by letting the angle of rotation go to zero. What do you find?