Classical Mechanics 2, Spring 2016 CMI Problem set 7 Due by the beginning of lecture on Monday Mar 7, 2016 Canonical Transformations, Liouville's Theorem, Phase portraits

- 1. $\langle \mathbf{9} \rangle$ Consider a free particle of mass m moving on a line with coordinate q, canonically conjugate momentum p and hamiltonian $H = \frac{p^2}{2m}$. Suppose we make the transformation to new variables Q = q + kp, P = p.
 - (a) $\langle 3 \rangle$ What is the physical dimension of constant k? Argue why the transformation is canonical. Under what circumstances is it an infinitesimal canonical transformation?
 - (b) $\langle \mathbf{2} \rangle$ Find a generating function f(q, p) for the corresponding infinitesimal canonical transformation (up to an additive constant).
 - (c) $\langle 4 \rangle$ Physically interpret the above infinitesimal CT and its generator by a suitable choice of k in terms of familiar physical quantities.
- 2. $\langle \mathbf{9} \rangle$ Consider a particle of mass m moving in one dimension subject to the double-well potential $V(x) = g(x^2 a^2)^2$ with g, a > 0.
 - (a) $\langle 3 \rangle$ Give the algebraic equation (in terms of p and x) for the separatrices that divide the phase space between trajectories that are restricted to a single well from those that explore both wells. Specify the energy on the separatrices and draw a figure of the separatrices on the phase plane.
 - (b) $\langle \mathbf{3} \rangle$ Find an expression (in terms of x) for the possible slopes of the separatrices dp/dx.
 - (c) $\langle 2 \rangle$ Find the slopes dp/dx of the separatrices at the origin of phase space (x = p = 0) in terms of the parameters a, m, g. Check that the slope has the correct dimension.
 - (d) $\langle \mathbf{1} \rangle$ Does the separatrix have a discontinuous derivative at the origin or not?
- 3. $\langle 7 \rangle$ Liouville theorem for infinitesimal CTs for one degree of freedom. Consider the infinitesimal CT $Q = q + \delta q$, $P = p + \delta p$ generated by $\epsilon f(q, p)$.
 - (a) $\langle 4 \rangle$ Express $\delta q, \delta p$ as derivatives of f. Write the 2 × 2 Jacobian matrix $J = \frac{\partial(Q,P)}{\partial(q,p)}$ explicitly with entries expressed as partial derivatives of f. Write $J = I + \epsilon F$ for an appropriate matrix F.
 - (b) $\langle \mathbf{3} \rangle$ Express det *J* as a quadratic polynomial in ϵ and show that the linear term is equal to the trace of *F*. Thus find det *J* ignoring quadratic terms in ϵ .