Classical Mechanics 2, Spring 2016 CMI

Problem set 6 Due by the beginning of lecture on Monday Feb 15, 2016 Canonical Transformations

- 1. $\langle 17 \rangle$ Consider a free particle moving on the half line q > 0 with Lagrangian $L(q, \dot{q}) = \frac{1}{2}m\dot{q}^2$ and equation of motion $\ddot{q} = 0$. Suppose we make the change of coordinate to $Q = q^2$.
 - (a) $\langle \mathbf{2} \rangle$ Express the equation of motion $\ddot{q} = 0$ as a second order differential equation for Q.
 - (b) $\langle \mathbf{2} \rangle$ Find the new Lagrangian $\tilde{L}(Q, \dot{Q})$.
 - (c) $\langle 2 \rangle$ Find the momentum P conjugate to Q from the transformed Lagrangian. Express P as a function of Q and \dot{Q} and as a function of q and p.
 - (d) $\langle \mathbf{2} \rangle$ Find the new Hamiltonian H(Q, P).
 - (e) $\langle \mathbf{2} \rangle$ Find Hamilton's equations that follow from the new Hamiltonian H(Q, P) [written as first order differential equations for Q and P].
 - (f) $\langle 2 \rangle$ Check that Hamilton's equations for Q, P are equivalent to the 2nd order ODE for Q obtained by transforming $\ddot{q} = 0$ above.
 - (g) $\langle \mathbf{3} \rangle$ Calculate the Legendre transform of the new Lagrangian $\tilde{L}(Q, \dot{Q})$ and check that you get the new Hamiltonian $\tilde{H}(Q, P)$.
 - (h) $\langle \mathbf{2} \rangle$ Find the Poisson bracket $\{Q, P\}$ (using definition of PB by differentiating in q and p) and compare with the canonical $\{q, p\}$ PB.