Classical Mechanics 2, Spring 2016 CMI

Problem set 6
Due by the beginning of lecture on Monday Feb 15, 2016
Canonical Transformations

1. $\langle\mathbf{1 7}\rangle$ Consider a free particle moving on the half line $q>0$ with Lagrangian $L(q, \dot{q})=\frac{1}{2} m \dot{q}^{2}$ and equation of motion $\ddot{q}=0$. Suppose we make the change of coordinate to $Q=q^{2}$.
(a) $\langle\mathbf{2}\rangle$ Express the equation of motion $\ddot{q}=0$ as a second order differential equation for Q.
(b) $\langle\mathbf{2}\rangle$ Find the new Lagrangian $\tilde{L}(Q, \dot{Q})$.
(c) $\langle\mathbf{2}\rangle$ Find the momentum P conjugate to Q from the transformed Lagrangian. Express P as a function of Q and \dot{Q} and as a function of q and p.
(d) $\langle\mathbf{2}\rangle$ Find the new Hamiltonian $\tilde{H}(Q, P)$.
(e) $\langle\mathbf{2}\rangle$ Find Hamilton's equations that follow from the new Hamiltonian $\tilde{H}(Q, P)$ [written as first order differential equations for Q and P].
(f) $\langle\mathbf{2}\rangle$ Check that Hamilton's equations for Q, P are equivalent to the 2nd order ODE for Q obtained by transforming $\ddot{q}=0$ above.
(g) $\langle\mathbf{3}\rangle$ Calculate the Legendre transform of the new Lagrangian $\tilde{L}(Q, \dot{Q})$ and check that you get the new Hamiltonian $\tilde{H}(Q, P)$.
(h) $\langle\mathbf{2}\rangle$ Find the Poisson bracket $\{Q, P\}$ (using definition of PB by differentiating in q and p) and compare with the canonical $\{q, p\}$ PB.
