Classical Mechanics 2, Spring 2016 CMI

Problem set 5
Due by the beginning of lecture on Monday Feb 8, 2016
Poisson Brackets

1. $\langle\mathbf{4}\rangle$ Find the unequal time p.b. $\{q(0), q(t)\}$ for a free particle of mass m moving on a line. Hint: Use the solution of the equation of motion.
2. $\langle\mathbf{1 4}\rangle$ Angular momentum Poisson brackets from $\left\{r_{i}, p_{j}\right\}=\delta_{i j}$. Recall from class discussion that the Cartesian components of angular momentum may be expressed as $L_{i}=\epsilon_{i j k} r_{j} p_{k}$. We place all indices down-stairs in this problem, and sum repeated indices.
(a) $\langle\mathbf{7}\rangle$ Use the properties of the Poisson bracket and the identity

$$
\begin{equation*}
\sum_{i=1}^{3} \epsilon_{i j k} \epsilon_{i l m}=\delta_{j l} \delta_{k m}-\delta_{j m} \delta_{k l} . \tag{1}
\end{equation*}
$$

to show that

$$
\begin{equation*}
\left\{L_{i}, L_{j}\right\}=r_{i} p_{j}-r_{j} p_{i} . \tag{2}
\end{equation*}
$$

For uniformity of notation, begin by taking $L_{i}=\epsilon_{i k l} r_{k} p_{l}$ and $L_{j}=\epsilon_{j m n} r_{m} p_{n}$
(b) $\langle\mathbf{2}\rangle$ Use the above formula for L_{i} to show that $\epsilon_{i j k} L_{k}=r_{i} p_{j}-r_{j} p_{i}$. Thus we conclude that $\left\{L_{i}, L_{j}\right\}=\epsilon_{i j k} L_{k}$.
(c) $\langle\mathbf{3}\rangle$ Use the above results to show that

$$
\begin{equation*}
\left\{\left\{L_{i}, L_{j}\right\}, L_{k}\right\}=\delta_{i k} L_{j}-\delta_{j k} L_{i} . \tag{3}
\end{equation*}
$$

(d) $\langle\mathbf{2}\rangle$ Show that the components of angular momentum satisfy the Jacobi identity

$$
\begin{equation*}
\left\{\left\{L_{i}, L_{j}\right\}, L_{k}\right\}+\left\{\left\{L_{j}, L_{k}\right\}, L_{i}\right\}+\left\{\left\{L_{k}, L_{i}\right\}, L_{j}\right\}=0 . \tag{4}
\end{equation*}
$$

