Classical Mechanics 2, Spring 2016 CMI

Problem set 5 Due by the beginning of lecture on Monday Feb 8, 2016 Poisson Brackets

- 1. $\langle \mathbf{4} \rangle$ Find the *unequal* time p.b. $\{q(0), q(t)\}$ for a free particle of mass m moving on a line. Hint: Use the solution of the equation of motion.
- 2. $\langle \mathbf{14} \rangle$ Angular momentum Poisson brackets from $\{r_i, p_j\} = \delta_{ij}$. Recall from class discussion that the Cartesian components of angular momentum may be expressed as $L_i = \epsilon_{ijk} r_j p_k$. We place all indices down-stairs in this problem, and sum repeated indices.
 - (a) $\langle 7 \rangle$ Use the properties of the Poisson bracket and the identity

$$\sum_{i=1}^{3} \epsilon_{ijk} \epsilon_{ilm} = \delta_{jl} \delta_{km} - \delta_{jm} \delta_{kl}.$$
 (1)

to show that

$$\{L_i, L_j\} = r_i p_j - r_j p_i.$$

$$\tag{2}$$

For uniformity of notation, begin by taking $L_i = \epsilon_{ikl} r_k p_l$ and $L_j = \epsilon_{jmn} r_m p_n$

- (b) $\langle 2 \rangle$ Use the above formula for L_i to show that $\epsilon_{ijk}L_k = r_i p_j r_j p_i$. Thus we conclude that $\{L_i, L_j\} = \epsilon_{ijk}L_k$.
- (c) $\langle 3 \rangle$ Use the above results to show that

$$\{\{L_i, L_j\}, L_k\} = \delta_{ik}L_j - \delta_{jk}L_i.$$
(3)

(d) $\langle 2 \rangle$ Show that the components of angular momentum satisfy the Jacobi identity

$$\{\{L_i, L_j\}, L_k\} + \{\{L_j, L_k\}, L_i\} + \{\{L_k, L_i\}, L_j\} = 0.$$
(4)