Classical Mechanics 2, Spring 2016 CMI

Problem set 4 Due by the beginning of lecture on Monday Feb 1, 2016 Hamiltonian from Lagrangian, Legendre transform

- 1. $\langle \mathbf{6} \rangle$ The Lagrangian of a charged particle in a magnetic field (given by the vector potential $\vec{A}(\vec{q})$) is $L = \frac{1}{2}m\dot{q}^2 + (e/c)\vec{A}\cdot\dot{q}$.
 - (a) $\langle \mathbf{1} \rangle$ Find the momentum p_i conjugate to q_i .
 - (b) $\langle \mathbf{3} \rangle$ Find the Hamiltonian H as a function of \vec{q} and \vec{p} by computing the Legendre transform.
 - (c) $\langle \mathbf{2} \rangle$ Express *H* as the dot-product of a vector with itself.
- 2. $\langle 5 \rangle$ The first law of thermodynamics says that the increase in internal energy of a gas is equal to the heat supplied to the gas minus the work done by the gas. For infinitesimal reversible changes, dU = TdS - PdV. Here dU is the increase in internal energy, Pthe pressure, dV the increase in volume dS the increase in entropy and T the absolute temperature.
 - (a) $\langle \mathbf{1} \rangle$ What are the independent variables that U depends on?
 - (b) $\langle \mathbf{1} \rangle$ Write formulae to determine the temperature and pressure from the internal energy
 - (c) $\langle \mathbf{1} \rangle$ Helmholtz free energy may be introduced via the formula F = U TS. Find the independent variables that F depends on.
 - (d) $\langle \mathbf{1} \rangle$ Express the pressure and entropy in terms of the Helmholtz free energy.
 - (e) $\langle \mathbf{1} \rangle$ Write a formula for Helmholtz free energy as a Legendre transform of the internal energy. Indicate which variable to extremize in and give the condition for an extremum.
- 3. $\langle \mathbf{5} \rangle$ Given a Hamiltonian H(q, p), in favourable cases, one may obtain the corresponding Lagrangian $L(q, \dot{q})$ by a suitable 'inverse' Legendre transform. Give a formula to get L from H. Mention which variable to extremize in and what the condition for an extremum is. Relate the condition for an extremum to a familiar equation.