Classical Mechanics 2, Spring 2016 CMI

Problem set 3 Due by the beginning of lecture on Monday Jan 25, 2016 Coordinate invariance of EL equations and action principle

- 1. $\langle \mathbf{8} \rangle$ Consider a free particle on the positive half line q > 0 with Lagrangian $L(q, \dot{q}) = \frac{1}{2}m\dot{q}^2$ and equation of motion $\ddot{q} = 0$. Let us choose a new coordinate on configuration space $Q = q^2$.
 - (a) $\langle \mathbf{3} \rangle$ Though there is no force, the equation of motion is not $\ddot{Q} = 0$. Find the correct equation of motion in terms of Q by transforming $\ddot{q} = 0$.
 - (b) $\langle \mathbf{2} \rangle$ Transform the Lagrangian and express it as a function $\tilde{L}(Q,\dot{Q})$.
 - (c) $\langle \mathbf{2} \rangle$ Find the EL equation in the new variable and express it as a 2nd order ODE for Q.
 - (d) $\langle \mathbf{1} \rangle$ Verify that the EL equation for Q agrees with that obtained by transforming $\ddot{q} = 0$ to the new coordinate.
- 2. $\langle \mathbf{16} \rangle$ Consider a particle of mass m in the potential $V(x) = \frac{1}{2}m\omega^2 x^2$. Suppose x(t) is a trajectory between $x_i(t_i)$ and $x_f(t_f)$ and let $x(t) + \delta x(t)$ be a neighboring path with $\delta x(t_i) = \delta x(t_f) = 0$.
 - (a) $\langle \mathbf{4} \rangle$ Write the classical action of the path $x + \delta x$ as a quadratic Taylor polynomial in δx . Show that you get the following expression. What can you say about S_1 ?

$$S[x+\delta x] = S_0 + S_1 + S_2 = S[x] - \int_{t_i}^{t_f} (m\ddot{x} + m\omega^2 x)\delta x dt + \int_{t_i}^{t_f} \left[\frac{1}{2}m(\delta\dot{x})^2 - \frac{1}{2}m\omega^2(\delta x)^2\right] dt$$

(b) $\langle 2 \rangle$ For what values of κ is $x(t) + \delta x(t)$ a legitimate neighboring path for the variation

$$\delta x(t) = \epsilon \sin \kappa (t - t_i) ? \tag{1}$$

- (c) $\langle \mathbf{3} \rangle$ Evaluate $S_2[\delta x]$ for all the allowed values of κ .
- (d) $\langle \mathbf{3} \rangle$ Take $\Delta t = t_f t_i = 10$ s and $\omega = 1$ Hz. Find a path that can be made arbitrarily close to the trajectory x(t), whose action is *less* than that of x(t).
- (e) $\langle \mathbf{3} \rangle$ Take $\Delta t = t_f t_i = 10$ s and $\omega = 1$ Hz. Find a path that can be made arbitrarily close to the trajectory x(t), whose action is *more* than that of x(t).
- (f) $\langle 1 \rangle$ What sort of an extremum of action is the classical trajectory?